
INEQUALITIES FOR NONCOMMUTATIVE SUBMARTINGALES

AND THEIR STRONG DIFFERENTIAL SUBORDINATES

YONG JIAO, ADAM OS�KOWSKI, AND LIAN WU

Abstract. We introduce a notion of strong di�erential subordination of non-
commutative semimartingales, extending Burkholder's de�nition from the clas-
sical case. Then we establish weak-type (1,1) and L1 → Lp estimates (0 <
p < 1) under the additional assumption that the dominating process is a sub-
martingale. The proof rests on a signi�cant extension of the maximal weak-
type estimate of Cuculescu and a Gundy-type decomposition of an arbitrary
noncommutative submartingale. We also show the corresponding Lp estimates
(1 < p < ∞) under the assumption that the dominating process is a nonneg-
ative submartingale. This is accomplished by combining several techniques,
including interpolation and noncommutative analogue of good-λ inequalities.

1. Introduction

The motivation for the results obtained in this paper comes from the question
about appropriate noncommutative extensions of several semimartingale inequali-
ties studied by Burkholder [8] and Hammack [10] in the classical case. To brie�y
describe these estimates, assume that (Ω,F ,P) is a probability space, equipped
with a �ltration (Fn)n≥0, that is, a non-decreasing sequence of sub-σ-�elds of F .
Suppose that x = (xn)n≥0 and y = (yn)n≥0 are adapted sequences of integrable ran-
dom variables, with the corresponding di�erences dx = (dxn)n≥0, dy = (dyn)n≥0
given by dx0 = x0 and dxn = xn − xn−1 for n ≥ 1 (with an analogous formula for
dy). Consider the following two conditions:

(DS) for any n ≥ 0 we have |dyn| ≤ |dxn| almost surely;
(CDS) for any n ≥ 1 we have |En−1(dyn)| ≤ |En−1(dxn)|,
where for any nonnegative integer n, the symbol En stands for the conditional
expectation with respect to the σ-�eld Fn. If the requirement (DS) is satis�ed,
then y is said to be di�erentially subordinate to x. If (CDS) holds true, then y is
conditionally di�erentially subordinate to x. Finally, if both (DS) and (CDS) are
satis�ed, then y is strongly di�erentially subordinate to x.

The strong di�erential subordination implies many interesting estimates if we
impose some additional structure on the dominating process. Suppose �rst that x
is a martingale. Then the condition (CDS) enforces y to be a martingale as well
and the strong di�erential subordination reduces to the requirement (DS). In such
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a case, Burkholder [7] proved the sharp weak-type (1,1) bound

P
(

sup
n≥0
|yn| ≥ 1

)
≤ 2||x||1

and the sharp strong-type estimate

||y||p ≤ (p∗ − 1)||x||p, 1 < p <∞,

where p∗ = max{p, p/(p−1)} and ‖x‖p = supn≥0 ‖xn‖p. These celebrated estimates
have been extended in numerous directions and found applications in harmonic
analysis, functional analysis and the theory of quasiconformal mappings (see [1, 2,
3, 4, 5, 21, 22] and consult the references therein).

The strong di�erential subordination can also be exploited under slightly weaker
assumptions on the dominated process. As Burkholder proved in [8], if x is assumed
to be a nonnegative submartingale, then the weak- and strong-type bounds also hold
true. More precisely, we have

(1.1) P
(

sup
n≥0
|yn| ≥ 1

)
≤ 3||x||1

and

(1.2) ||y||p ≤ (p∗∗ − 1)||x||p, 1 < p <∞,

where p∗∗ = max{2p, p/(p − 1)}. Again, the constants in the estimates above
are optimal. A few years later, Hammack [10] generalized the weak-type inequality
(1.1) to the setting of arbitrary submartingales (i.e., with no assumption on the sign
of the dominating process) and proved that then the optimal constant increases to
6. Furthermore, he showed that there is no version of (1.2) in this more general
context, by constructing appropriate examples.

We will be interested in the analogs of the above results in the context of noncom-
mutative (or quantum) probability. The theory of semimartingale inequalities in the
non-commutative setting has gained a lot interest in the last twenty years. Starting
with the seminal paper of Pisier and Xu [24], where the appropriate counterparts
of Burkholder-Gundy inequalities were proposed, many important estimates have
been successfully extended to the noncommutative realm. These include the ana-
logue of Doob's maximal Lp bound obtained by Junge [11] in the case 1 < p < ∞
and Randrianantoanina [29] for 0 < p < 1, noncommutative Burkholder-Rosenthal
inequalities investigated by Junge and Xu [12, 14], as well as appropriate weak-type
versions due to Randrianantoanina [26, 27, 28].

Let us brie�y describe the structure of the paper and say a few words about our
approach. We should point out that the passage from noncommutative martingales
to the context of noncommutative submartingales (and their strong di�erential
subordinates) requires the development of new methods and techniques. Most of
the arguments which are typically used in the area (e.g., standard interpolation,
duality) cannot be successfully applied here, or their e�ciency is limited. As we
believe, the approach we present considerably extends the machinery which can
be used in the theory of noncommutative semimartingales, and its appropriate
modi�cations might play an important role in the further exploration of the subject.
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The background on noncommutative semimartingale theory, which is necessary
for the treatment of the above problems, is presented in Section 2. We also pro-
vide there the appropriate counterpart of the strong di�erential subordination and
discuss some of its properties.

In Section 3 we establish the noncommutative analogue of Hammack's result
(i.e., a maximal weak-type (1,1) estimate for arbitrary submartingales and their
strong di�erential subordinates). This is accomplished by establishing a signi�cant
extension of Cuculescu's weak-type estimate [9], which is of independent interest,
and an appropriate modi�cation of noncommutative Gundy-type decomposition
due to Parcet and Randrianantoanina [23]. We conclude by giving an important
application, a localized L1 → Lp estimate for 0 < p < 1.

Section 4, the �nal part of the paper, is devoted to the nocommutative extension
of the inequality (1.2). Quite interestingly, we will have to split the reasoning into
two parts, corresponding to 1 < p ≤ 2 (�small p�) and p > 2 (�big p�), in which our
methods will be quite di�erent. In the case 1 < p ≤ 2 we use a certain adaptation
of Gundy-type decomposition and exploit arguments which can be interpreted as a
version of real interpolation: in a sense, we will study a behavior of theK-functional
associated with the subordinates. For p > 2, our approach depends heavily on the
noncommutative analogue of good-lambda inequalities. In the classical case, this
extrapolation technique was introduced by Burkholder in [6], and it has turned
out to be very powerful in a number of problems arising in harmonic analysis and
probability. The noncommutative counterpart of this method, recently obtained by
the authors in [17], allows us to obtain a certain version of the noncommutative
Doob's inequality (proved by Junge in [11]). This estimate, combined with a certain
novel Lp bound for submartingale di�erences, yields the moment inequality for the
strong subordinates in the range p > 2.

2. Preliminaries

Throughout the paper, we use standard notation from the theory of operator
algebras, we refer the reader to [19, 20, 30] for the detailed exposition. Let H be a
given Hilbert space and denote by B(H) the algebra of all bounded operators acting
on H. LetM be a von Neumann subalgebra of B(H), equipped with a semi�nite
normal faithful trace τ . A closed densely de�ned operator a on H is said to be
a�liated withM if u∗au = a for all unitary u in the commutantM′ ofM. Such
an operator is said to be τ -measurable if for any ε > 0 there exists a projection e
contained in its domain, satisfying τ(I−e) < ε (here and in what follows, the letter
I stands for the identity operator). The set of all τ -measurable operators will be
denoted by L0(M, τ). The trace τ can be extended to a positive tracial functional
on the positive part L0

+(M, τ) of L0(M, τ) and this extension is still denoted by τ .

Suppose that a is a self-adjoint τ -measurable operator and let a =
∫∞
−∞ λdeλ stand

for its spectral decomposition. For any Borel subset B of R, the spectral projection
of a corresponding to the set B is de�ned by IB(a) =

∫∞
−∞ χB(λ)deλ. Sometimes,

with no risk of confusion, we will write τ(a ∈ B) instead of τ(IB(a)).
For 0 < p < ∞, we recall that the noncommutative Lp-space associated with

(M, τ) is de�ned by Lp(M, τ) = {x ∈ L0(M, τ) : τ(|x|p) <∞} equipped with the
(quasi-)norm ‖x‖p = (τ(|x|p))1/p, where |x| = (x∗x)1/2 is the modulus of x. For
p = ∞, the space Lp(M, τ) coincides with M with its usual operator norm. We
refer to the survey [25] and the references therein for more details.
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The main subject of this paper is the theory of noncommutative semimartingales.
Let us now present the general setup. Assume that (Mn)n≥0 is a �ltration, that is,
a nondecreasing sequence of von Neumann subalgebras ofM whose union is weak∗-
dense inM. Then for any n ≥ 0 there exists a normal conditional expectation En
fromM ontoMn, which satis�es the following two conditions:

(i) En(axb) = aEn(x)b for all a, b ∈Mn and x ∈M;
(ii) τ ◦ En = τ .

It can be veri�ed readily that the conditional expectations enjoy the property
EmEn = EnEm = Emin(m,n) for all nonnegative integers m and n. Furthermore,
the operator En is trace preserving, and hence it can be extended to a contractive
projection from Lp(M, τ) onto Lp(Mn, τn) for all 1 ≤ p ≤ ∞; here τn denotes the
restriction of τ toMn.

A sequence x = (xn)n≥0 in L1(M) is called a noncommutative martingale (re-
spectively, submartingale or supermartingale) adapted to (Mn)n≥0 if for any n ≥ 0
we have

En(xn+1) = xn

(respectively, En(xn+1) ≥ xn or En(xn+1) ≤ xn). Note that the sub- and super-
martingales need to consist of self-adjoint operators, so that the inequalities make
sense. The associated di�erence sequence is de�ned as in the commutative case,
with the use of the formulae dx0 = x0 and dxn = xn − xn−1 for n ≥ 1. Sometimes
we will exploit the notation

‖x‖p = sup
n≥0
‖xn‖p, 0 < p <∞,

for the p-th norm of the sequence x. In the paper we will mostly deal with �nite
martingales x = (xn)Nn=0 (that is, consisting of a �nite number of operators).

In what follows, we will need the so-called Burkholder-Rosenthal inequalities for
�nite, self-adjoint martingales (see [12], [28] for the general statement). Suppose
that x = (xn)Nn=0 is such a sequence with terms belonging to L2(M). We de�ne
the associated conditional square function sN (x) by the formula

sN (x) =

(
N∑
n=0

En−1(dx2n)

)1/2

.

Then for any p ≥ 2 there exists a constant cp depending only on p such that

c−1p ‖xN‖p ≤ ‖sN (x)‖p +

(
N∑
n=0

‖dxn‖pp

)1/p

≤ cp‖xN‖p.

Furthermore, cp can be taken to be of order O(p) as p→∞ (see [28]).
We are ready to introduce the domination principle under which we will work in

this paper.

De�nition 2.1. Suppose that x = (xn)n≥0, y = (yn)n≥0 are self-adjoint adapted
sequences in L1(M). We say that y is strongly di�erentially subordinate to x if the
following two conditions are satis�ed:

(DS) for any n ≥ 0 and any projection R ∈Mn−1 we have

RdynRdynR ≤ RdxnRdxnR;
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(CDS) for any n ≥ 1 we have

−|En−1(dxn)| ≤ En−1(dyn) ≤ |En−1(dxn)|.

Observe that in the commutative case this reduces to the usual de�nition of
strong di�erential subordination formulated in the introductory section. Further-
more, note that the condition (CDS) is slightly weaker than the requirement

|En−1(dyn)| ≤ |En−1(dxn)| for each n ≥ 1.

There is a weaker version of the di�erential subordination (i.e., the condition (DS))
which will also be of importance:

(WDS) for any n ≥ 0 we have dy2n ≤ dx2n.
We refer the reader to [16, Lemma 3.3] for a detailed comparison on the conditions
(DS) and (WDS).

We will show that some of the results (namely, the Lp estimates in the range
p ≥ 2) holds true under the weaker assumption (WDS)+(CDS). On the other hand,
as the authors exhibited in [16], this weaker set of conditions is not su�cient for the
validity of Lp estimates in the range 1 < p < 2 even in the martingale setting. This
justi�es the use of the more complicated requirement (DS) in the case of �small
exponent p�.

3. A maximal weak-type estimate

We will now handle a maximal weak-type (1, 1) estimate for strong di�erential
subordinates of arbitrary (no necessary to be nonnegative) noncommutative sub-
martingales, which provides a noncommutative version of (1.1). Recall that (1.1)
was �rstly proved by Burkholder in [8] for nonnegative submartingales and then
generalized to the general case by Hammack in [10]. The following is the precise
statement.

Theorem 3.1. Let x = (xn)n≥0 be an arbitrary submartingale and suppose that y
is strongly di�erentially subordinate to x. Then there exists a projection q satisfying

(3.1) −q ≤ qynq ≤ q for all n

and such that

(3.2) τ(I − q) ≤ 327||x||1.

Two important observations are in order. In the commutative case, it is easy to
see that the largest projection q satisfying (3.1) is precisely the indicator function
of the set {supn≥0 |yn| ≤ 1} and then (3.2) becomes

P
(

sup
n≥0
|yn| > 1

)
≤ 327||x||1.

This explains why we refer to (3.2) as to a maximal weak-type bound. The second
comment is that the above result holds true in the particular case when x is a
martingale. Thus Theorem 3.1 generalizes the main result of [15], as it provides an
estimate for a wider class of processes and under a weaker domination requirement.

We start with introducing certain families (Rn)n≥−1, (Dn)n≥0 and (Un)n≥0 of
projections which will play a key role in our considerations below. For an arbitrary
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submartingale x = (xn)n≥0, de�ne R−1 = I and for n ≥ 0, inductively,

Rn = Rn−1I(−1,1)(Rn−1xnRn−1),

Dn = I[1,∞)(Rn−1xnRn−1),

Un = I(−∞,−1](Rn−1xnRn−1).

Crucial properties of these objects, to be needed later, are gathered in the next
lemma.

Lemma 3.2. Let x = (xn)n≥0 be an L1-bounded submartingale. Then the following
statements hold true:

(i) for each n ≥ 0 the projections Rn, Un and Dn belong to Mn and Rn +
Un +Dn = Rn−1;

(ii) for each n ≥ 0, the projections Rn, Un and Dn commute with Rn−1xnRn−1;
(iii) for each n ≥ 0 we have

−Rn ≤ RnxnRn ≤ Rn, UnxnUn ≤ −Un, DnxnDn ≥ Dn;

(iv) for any N ≥ 0 we have

τ(I −RN ) ≤ 2τ(x+N )− τ(x0).

Remark 3.3. The expression on the right-hand side of (iv) can be bounded from
above by a simple 3||x||1. However, we have decided to keep the above formulation.
It should be stressed that both terms τ(x0) and τ(x+N ) (i.e., the measurements of
the size of the starting and the terminating operator of x) are necessary, due to
the submartingale structure of x (cf. [10] for a similar phenomenon in the classical
case). This should be contrasted with the martingale setting, where both terms
could be replaced by the expression τ(|xN |) involving just the terminating operator.
A similar remark applies to three lemmas below.

Proof of Lemma 3.2. The �rst three properties are evident and the main di�culty
lies in proving (iv). Note that for any n ≥ 1 we have, by the submartingale property
of x, the tracial property of τ and part (i) above,

τ(Rn−1xn−1Rn−1) ≤ τ(Rn−1xnRn−1)

= τ(Rn−1xn)

= τ(Rnxn) + τ(Dnxn) + τ(Unxn)

= τ(RnxnRn) + τ(DnxnDn) + τ(UnxnUn).

(3.3)

Now by Lemma 3.2 (iii), we have τ(UnxnUn) ≤ −τ(Un) and

τ(DnxnDn) ≤ 2τ(DnxnDn)− τ(Dn) ≤ 2τ(DnxNDn)− τ(Dn),

where in the last passage we have exploited the submartingale property. Putting
all the above facts together, we see that we have proved that

τ(Rn−1xn−1Rn−1)− τ(RnxnRn) ≤ 2τ(DnxNDn)− τ(Dn)− τ(Un)

= 2τ(DnxN )− τ(Rn−1 −Rn).

Summing over all 1 ≤ n ≤ N , we get

τ(R0x0R0)− τ(RNxNRN ) ≤ 2τ

(
N∑
n=1

DnxN

)
− τ(R0 −RN ).
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Adding to this estimate the trivial bounds τ(U0x0U0) ≤ −τ(U0) (which follows
from part (iii)) and τ(D0x0D0) ≤ τ(D0xND0) ≤ 2τ(D0xND0) (which is due to the
submartingale property and the fact that τ(D0x0D0) ≥ 0), we obtain that

τ(x0) = τ(R0x0R0) + τ(U0x0U0) + τ(D0x0D0)

≤ τ

((
RN + 2

N∑
n=0

Dn

)
xN

)
− τ(R0 −RN )− τ(U0)

≤ τ

((
RN + 2

N∑
n=0

Dn

)
x+N

)
− τ(I −RN ) ≤ 2τ(x+N )− τ(I −RN ).

This is precisely the claim. �

We will also need the following further properties of the projections (Rn)n≥−1.

Lemma 3.4. Let x = (xn)n≥0 be an L1-bounded submartingale. Then for any
nonnegative integer N we have

N∑
n=0

τ(RndxnRn−1dxn) ≤ 4τ(x+N )− 2τ(x0).

Proof. Let us �rst study a single summand of the above sum, corresponding to
some n ≥ 1. We have

τ(RndxnRn−1dxn) = τ(Rn(xn − xn−1)Rn−1(xn − xn−1))

= τ(RnxnRn−1xn) + τ(Rnxn−1Rn−1xn−1)

− τ(RnxnRn−1xn−1)− τ(Rnxn−1Rn−1xn).

The last two summands are equal, by the tracial property and the fact that Rn
commutes with Rn−1xnRn−1 (which implies RnxnRn−1 = Rn−1xnRn). This com-
muting property of Rn implies also that τ(RnxnRn−1xn) = τ(RnxnRnxn). Fur-
thermore, because of the traciality of τ and the inequality Rn−1 ≥ Rn, we see
that

τ(Rnxn−1Rn−1xn−1) = τ(Rn−1xn−1Rnxn−1Rn−1) ≤ τ(Rn−1xn−1Rn−1xn−1Rn−1)

and hence we may write

τ(RndxnRn−1dxn) ≤ τ(RnxnRnxn)− τ(Rn−1xn−1Rn−1xn−1)

+ 2τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
.

(3.4)

Let us handle the latter expression. Since RnxnRn = Rn−1xnRn, we have the
splitting

τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
= τ

(
Rn−1xn−1Rn−1(xn−1 − xn)Rn−1

)
+ τ
(
Rn−1xn−1Rn−1xn(Rn−1 −Rn)

)
.

(3.5)

We have xn−1 − xn = −dxn, so by the properties of conditional expectation

τ
(
Rn−1xn−1Rn−1(xn−1 − xn)Rn−1

)
= τ

(
Rn−1xn−1Rn−1(−En−1(dxn))

)
.

Lemma 3.2 (iii) gives Rn−1xn−1Rn−1 ≥ −Rn−1; furthermore, x is a submartingale,
so En−1(dxn) ≥ 0. These two observations imply that the above expression does
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not exceed

τ(Rn−1En−1(dxn)) = τ(Rn−1dxnRn−1)

= τ(Rn−1xnRn−1)− τ(Rn−1xn−1Rn−1)

= τ(Rnxn) + τ(Unxn) + τ(Dnxn)− τ(Rn−1xn−1)

≤ τ(Rnxn) + τ(Unxn) + τ(DnxN )− τ(Rn−1xn−1),

(3.6)

where in the last line we have exploited the submartingale property of x. Let us
now analyze the second term on the right-hand side of (3.5). We have Rn−1−Rn =
Un +Dn, so by the commuting properties of U and D described in Lemma 3.2, we
obtain

τ
(
Rn−1xn−1Rn−1xn(Rn−1 −Rn)

)
= τ

(
Rn−1xn−1Rn−1DnxnDn)

)
+ τ
(
Rn−1xn−1Rn−1UnxnUn)

)
.

However, the operator DnxnDn is nonnegative, while UnxnUn is nonpositive; fur-
thermore, we have −Rn−1 ≤ Rn−1xn−1Rn−1 ≤ Rn−1. Consequently, the above
expression does not exceed

τ(DnxnDn)− τ(UnxnUn) ≤ τ(DnxN )− τ(Unxn),

where the last passage is due to the fact that x is a submartingale. Plugging the
above observations into (3.5), we get

τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
≤ τ(Rnxn)− τ(Rn−1xn−1) + 2τ(DnxN )

and hence, returning to (3.4), we have shown that

τ(RndxnRn−1dxn) ≤ τ(RnxnRnxn)− τ(Rn−1xn−1Rn−1xn−1)

+ 2
(
τ(Rnxn)− τ(Rn−1xn−1)

)
+ 4τ(DnxN ).

Consequently, using the equality τ(R0dx0R−1dx0) = τ(R0x0R0x0), we get

N∑
n=0

τ(RndxnRn−1dxn)

= τ(R0x0R−1x0) +

N∑
n=1

τ(RndxnRn−1dxn)

≤ τ(RNxNRNxN ) + 2τ(RNxN )− 2τ(R0x0) + 4τ

(
N∑
n=1

DnxN

)
.

(3.7)

It remains to apply some �nal estimates. The operator RN (xN + I)RN is nonneg-
ative and does not exceed 2RN (see Lemma 3.2 (iii)), so

τ(RNxNRNxN ) + τ(RNxN ) = τ(RNxNRN (xN + I)RN )

≤ τ(RNx
+
NRN (xN + I)RN )

≤ 2τ(RNx
+
NRN ).

(3.8)
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Furthermore, U0x0U0 is nonpositive, so using the submartingale property,

τ(RNxN )− 2τ(R0x0) + 4τ

(
N∑
n=1

DnxN

)

= −2τ(x0) + 2τ(D0x0) + 2τ(U0x0) + τ

((
RN + 4

N∑
n=1

Dn

)
xN

)

≤ −2τ(x0) + τ

((
RN + 2D0 + 4

N∑
n=1

Dn

)
xN

)

≤ −2τ(x0) + τ

((
RN + 4

N∑
n=0

Dn

)
x+N

)
.

(3.9)

Combining the estimates (3.7), (3.8) and (3.9), we obtain the desired result. �

We conclude the analysis of (Rn)n≥0 by the following statement.

Lemma 3.5. Let x = (xn)n≥0 be an L1-bounded submartingale. Then for any
nonnegative integer N we have∥∥∥∥∥

N∑
n=0

(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1En−1(dxn)Rn−1

)∥∥∥∥∥
1

≤ 4τ(x+N )− 2τ(x0).

(3.10)

(we interpret E−1a = 0 for each a ∈ L1).

Proof. Let us analyze a single summand of the above sum (note that each such
summand is nonnegative). First we take a look at summands corresponding to
n ≥ 1. The trace of the term Rn−1En−1(dxn)Rn−1 can be handled as in (3.6). To
deal with the reamining part, we apply the triangle inequality to get

τ(|(Rn−1 −Rn)dxn(Rn−1 −Rn)|)

≤ τ
(
|(Rn−1 −Rn)xn(Rn−1 −Rn)|+ |(Rn−1 −Rn)xn−1(Rn−1 −Rn)|

)
.

Now, by the commuting properties of U and D, for any n ≥ 1 we have

(Rn−1 −Rn)xn(Rn−1 −Rn) = DnxnDn + UnxnUn.

The �rst term on the right is nonnegative, while the second is nonpositive, so

τ(|(Rn−1 −Rn)xn(Rn−1 −Rn)|) ≤ τ(Dnxn)− τ(Unxn) ≤ τ(DnxN )− τ(Unxn),

where in the last passage we have exploited the submartingale property. Next, we
have the estimate

|(Rn−1 −Rn)xn−1(Rn−1 −Rn)| ≤ Rn−1 −Rn,

directly from Lemma 3.2 (iii). Thus, combining the above observations, we have
shown that if n ≥ 1, then

τ

(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1En−1(dxn)Rn−1

)
≤ τ(Rnxn)− τ(Rn−1xn−1) + 2τ(DnxN ) + τ(Rn−1 −Rn).
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A similar reasoning to that above yields also the appropriate upper bound for the
�rst term in (3.10):

τ(|(I −R0)dx0(I −R0)|) = τ(|(I −R0)x0(I −R0)|) ≤ τ(D0xN )− τ(U0x0).

Summing over n, it follows from the fact τ(D0x0D0) ≤ τ(D0xND0) (which is due
to the submartingale property) that∥∥∥∥∥

N∑
n=0

(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1En−1(dxn)Rn−1

)∥∥∥∥∥
1

=

N∑
n=0

τ

(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1En−1(dxn)Rn−1

)
= τ(D0xN )− τ(U0x0)

+ τ(RNxN )− τ(R0x0) + 2τ

((
N∑
n=1

Dn

)
xN

)
+ τ(R0 −RN )

= τ

((
RN +D0 + 2

N∑
n=1

Dn

)
xN

)
− τ(x0) + τ(D0x0) + τ(R0 −RN )

≤ τ

((
RN + 2

N∑
n=0

Dn

)
xN

)
− τ(x0) + τ(R0 −RN )

≤ 2τ(x+N )− τ(x0) + τ(I −RN ).

It remains to apply Lemma 3.2 (iv) to get the claim. �

The next step of our analysis is to introduce yet another families of projections
(Sn)n≥−1, (Qn)n≥0, (Tn)n≥0, this time associated with the dominated process y.
Set S−1 = I and for n ≥ 0, by induction,

Sn = Sn−1I(−1,1)

(
Sn−1

(
n∑
k=0

Rk−1dykRk−1

)
Sn−1

)
,

Qn = I[1,∞)

(
Sn−1

(
n∑
k=0

Rk−1dykRk−1

)
Sn−1

)
,

Tn = I(−∞,−1]

(
Sn−1

(
n∑
k=0

Rk−1dykRk−1

)
Sn−1

)
.

The crucial property of (Sn)n≥−1 is described in the next lemma. Before we
proceed, let us introduce a Gundy-type decomposition for y:

dyn = dαn + dβn + dγn + dδn,

where

dαn = Rn−1dynRn +RndynRn−1 −RndynRn
− En−1(Rn−1dynRn +RndynRn−1 −RndynRn),

dβn = En−1(Rn−1dynRn +RndynRn−1 −RndynRn),

dγn = Rndyn(I −Rn−1),

dδn = (I −Rn)dyn − (Rn−1 −Rn)dynRn.
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Lemma 3.6. For any integer N ≥ −1 we have

τ(I − SN ) ≤ 216τ(x+N )− 108τ(x0).

Proof. For the sake of clarity, it is convenient to split the quite lengthy reasoning
into a few intermediate parts.

Step 1 (Preliminary observations). We start with the identity

(3.11) τ(I − SN ) =

N∑
n=0

τ(Sn−1 − Sn) =

N∑
n=0

(
τ(Qn) + τ(Tn)

)
.

Now by the very de�nition of Qn we have

τ(Qn) = τ

(
Qn

(
n∑
k=0

Rk−1dykRk−1

)
Qn ≥ 1

)

= τ

(
Qn

(
n∑
k=0

Rk−1(dαk + dβk + dγk + dδk)Rk−1

)
Qn ≥ 1

)
.

(3.12)

Note that Rk−1dγkRk−1 = 0, Rk−1dαkRk−1 = dαk, Rk−1dβkRk−1 = dβk and
Rk−1dδkRk−1 = (Rk−1 −Rk)dyk(Rk−1 −Rk). Consequently, the above expression
is not bigger than

τ (QnαnQn ≥ 1/3) + τ (QnβnQn ≥ 1/3)

+ τ

(
Qn

(
n∑
k=0

(Rk−1 −Rk)dyk(Rk−1 −Rk)

)
Qn ≥ 1/3

)
.

(3.13)

We will treat each of these three summands separately.

Step 2 (Bound for the summand involving α). By Chebyshev's inequality and the
fact that α is an L2-bounded martingale, we obtain

τ(QnαnQn ≥ 1/3) ≤ 9τ((QnαnQn)2) ≤ 9τ(Qnα
2
nQn) ≤ 9τ(Qnα

2
N ).

Hence, summing over n and using the fact that the sum of Qn's is not bigger than
I, we get

(3.14)

N∑
n=0

τ(QnαnQn ≥ 1/3) ≤ 9

N∑
n=0

τ(Qnα
2
N ) ≤ 9τ(α2

N ) = 9

N∑
n=0

τ(dα2
n).

Directly from the de�nition of dαn we infer that

τ(dα2
n) ≤ τ((Rn−1dynRn +RndynRn−1 −RndynRn)2)

= 2τ(RndynRn−1dyn)− τ(RndynRndyn) ≤ 2τ(Rn−1dynRndyn).
(3.15)

Applying the di�erential subordination of y to x, we obtain

Rn−1dynRn−1dynRn−1 ≤ Rn−1dxnRn−1dxnRn−1

and hence also RndynRn−1dynRn ≤ RndxnRn−1dxnRn, since Rn ≤ Rn−1. Passing
to the trace, this implies

τ(Rn−1dynRndyn) = τ(RndynRn−1dynRn) ≤ τ(RndxnRn−1dxnRn).
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Plugging this into (3.15) and then returning to (3.14), we obtain

N∑
n=0

τ(QnαnQn ≥ 1/3) ≤ 18τ

(
N∑
n=0

RndxnRn−1dxnRn

)
≤ 72τ(x+N )− 36τ(x0),

(3.16)

where in the last line we exploited the estimate of Lemma 3.4.

Step 3 (Bound for the term involving β). Let us �rst �nd an appropriate upper
bound for dβn. We have

dβn = En−1(−Rn−1dynRn−1 +Rn−1dynRn +RndynRn−1 −RndynRn)

+Rn−1En−1(dyn)Rn−1

= −En−1((Rn−1 −Rn)dyn(Rn−1 −Rn)) +Rn−1En−1(dyn)Rn−1

≤ −En−1((Rn−1 −Rn)dyn(Rn−1 −Rn)) +Rn−1En−1(dxn)Rn−1,

where in the last line we have exploited the conditional di�erential subordination
of y to x. Next, by the di�erential subordination of y to x, we have

Rn−1dynRn−1dynRn−1 ≤ Rn−1dxnRn−1dxnRn−1,
so

(Rn−1 −Rn)dyn(Rn−1 −Rn)dyn(Rn−1 −Rn)

≤ (Rn−1 −Rn)dynRn−1dyn(Rn−1 −Rn)

≤ (Rn−1 −Rn)dxnRn−1dxn(Rn−1 −Rn)

= (Rn−1 −Rn)(xn − xn−1)Rn−1(xn − xn−1)(Rn−1 −Rn)

= (Rn−1 −Rn)xnRn−1xn(Rn−1 −Rn) + (Rn−1 −Rn)xn−1Rn−1xn−1(Rn−1 −Rn)

− (Rn−1 −Rn)xn−1Rn−1xn(Rn−1 −Rn)− (Rn−1 −Rn)xnRn−1xn−1(Rn−1 −Rn).

Since Rn commutes with Rn−1xnRn−1, the above sum is equal to

(Rn−1 −Rn)xn(Rn−1 −Rn)xn(Rn−1 −Rn)

+ (Rn−1 −Rn)xn−1Rn−1xn−1(Rn−1 −Rn)

− (Rn−1 −Rn)xn−1(Rn−1 −Rn)xn(Rn−1 −Rn)

− (Rn−1 −Rn)xn(Rn−1 −Rn)xn−1(Rn−1 −Rn)

(note that the second summand has not changed), which can be further transformed
into

(Rn−1 −Rn)dxn(Rn−1 −Rn)dxn(Rn−1 −Rn)

+ (Rn−1 −Rn)xn−1Rnxn−1(Rn−1 −Rn).
(3.17)

Let us handle the second term in the latter expression. Since Rn ≤ Rn−1, we have
(Rn−1 −Rn)xn−1Rnxn−1(Rn−1 −Rn)

≤ (Rn−1 −Rn)xn−1Rn−1xn−1(Rn−1 −Rn).

This is not bigger than Rn−1−Rn. Indeed, by Lemma 3.2 (iii), we have the estimate
Rn−1xn−1Rn−1 ≤ Rn−1, which yields Rn−1xn−1Rn−1xn−1Rn−1 ≤ Rn−1 and hence
also the desired inequality. This enables us to bound the expression in (3.17) from
above by a convenient square:

(|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn)2.
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Putting all the above facts together, we conclude that

(Rn−1 −Rn)dyn(Rn−1 −Rn)dyn(Rn−1 −Rn)

≤ (|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn)2,

which implies

|(Rn−1 −Rn)dyn(Rn−1 −Rn)|
≤ |(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn

(3.18)

and hence

dβn ≤ En−1
(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn

)
+Rn−1En−1(dxn)Rn−1.

Denoting the right-hand side by dβ̃n, we see that βn ≤ β̃n and β̃n is nonnegative.
Therefore, by Chebyshev's inequality, we get

τ(QnβnQn ≥ 1/3) ≤ τ(Qnβ̃nQn ≥ 1/3) ≤ 3τ(Qnβ̃nQn) ≤ 3τ(Qnβ̃N )

and hence, summing over n, we arrive at

N∑
n=0

τ(QnβnQn ≥ 1/3) ≤ 3τ(β̃N ) = 3

N∑
n=0

τ(dβ̃n)

≤ 12τ(x+N )− 6τ(x0) + 3τ(I −RN )

≤ 18τ(x+N )− 9τ(x0),

where the last two estimates follow from Lemma 3.2 (iv) and Lemma 3.5.

Step 4 (Bound for the term involving δ). All the crucial observations has been made
in the previous step. First, by Chebyshev's inequality, we have

τ

(
Qn

(
n∑
k=0

(Rk−1 −Rk)dyk(Rk−1 −Rk)

)
Qn ≥ 1/3

)

≤ τ

(
Qn

(
n∑
k=0

|(Rk−1 −Rk)dyk(Rk−1 −Rk)|

)
Qn ≥ 1/3

)

≤ 3τ

(
Qn

(
n∑
k=0

|(Rk−1 −Rk)dyk(Rk−1 −Rk)|

)
Qn

)

≤ 3τ

(
Qn

(
N∑
k=0

|(Rk−1 −Rk)dyk(Rk−1 −Rk)|

)
Qn

)
.

(3.19)

Summing over n, we obtain that

N∑
n=0

τ

(
Qn

(
N∑
k=0

(Rk−1 −Rk)dyk(Rk−1 −Rk)

)
Qn ≥ 1/3

)

≤ 3τ

(
N∑
k=0

|(Rk−1 −Rk)dyk(Rk−1 −Rk)|

)
.

In the light of (3.18), this can be bounded from above by

3τ(I −RN ) + 3τ

(
N∑
k=0

|(Rk−1 −Rk)dxk(Rk−1 −Rk)|

)
.
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The �rst trace can be handled with the use of Lemma 3.2 (iv). The second trace
is not bigger than the left-hand side of (3.10), by the submartingale property of x.
Combining these observations with (3.19), we �nally obtain

τ

(
Qn

(
n∑
k=0

(Rk−1 −Rk)dyk(Rk−1 −Rk)

)
Qn ≥ 1/3

)
≤ 18τ(x+N )− 9τ(x0).

Step 5 (Conclusion). Having completed the analysis of the three terms in (3.13),
we combine it with (3.12) and obtain

N∑
n=0

τ(Qn) ≤ 108τ(x+N )− 54τ(x0).

The same analysis (or simply the replacement of y with −y in all relevant places)
gives the corresponding bound for the projections T :

N∑
n=0

τ(Tn) ≤ 108τ(x+N )− 54τ(x0).

Summing the last two estimates yields the claim, by virtue of (3.11). �

We are ready for the proof of the weak-type estimate.

Proof of Theorem 3.1. The desired projection q is given by the intersection

q =

∞∧
n=−1

Sn ∧
∞∧

n=−1
Rn.

To show that −q ≤ qynq ≤ q for each n, �x a vector ξ ∈ q(H). Then ξ ∈ Sn(H)
and ξ ∈ Rk−1(H) for each k ≤ n, so

|〈ynξ, ξ〉| =

∣∣∣∣∣
n∑
k=0

〈dykRk−1Snξ,Rk−1Snξ〉

∣∣∣∣∣
=

∣∣∣∣∣
〈
Sn

(
n∑
k=0

Rk−1dynRk−1

)
Snξ, ξ

〉∣∣∣∣∣ < ||ξ||2,
where the last estimate follows from the very de�nition of Sn. It remains to show
the upper bound for τ(I− q). This is an immediate consequence of Lemma 3.2 (iv)
and Lemma 3.6: indeed, we have

τ(I − SN ∧RN ) ≤ τ(I − SN ) + τ(I −RN ) ≤ 218τ(x+N )− 109τ(x0) ≤ 327||x||1.
Letting N →∞ completes the proof. �

We conclude this section by a simple, yet important application of the above
weak-type bound, which serves as a motivation for our further considerations.

Theorem 3.7. Suppose that τ(I) = 1 and 0 < p < 1. If x = (xn)n≥0 is an
arbitrary submartingale and y is strongly di�erentially subordinate to x, then

‖y‖p ≤
654

(1− p)−1
‖x‖1.

The order (1− p)−1 is the best possible, as it is already optimal in the case when x
is assumed to be a classical martingale.
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Proof. We will �rst show that for any nonnegative integer N and any positive
number t we have

(3.20) tτ(|yN | > t) ≤ 654‖x‖1.

By homogeneity, we may assume that t = 1. By Theorem 3.1, there is a projection
q such that −q ≤ qyNq ≤ q and τ(I − q) ≤ 327‖x‖1. Observe that the projection
I(1,∞)(yN ) is equivalent to a subprojection of I − q. Indeed, if a vector ξ belongs

to q(H), then 〈yNξ, ξ〉 = 〈qyNqξ, ξ〉 ≤ ‖ξ‖2 and hence this vector cannot lie in
I(1,∞)(yN )(H), unless ξ = 0. This gives the equivalence and implies the inequality

τ(yN > 1) ≤ τ(I − q) ≤ 327‖x‖1.

We prove analogously the symmetric estimate τ(yN < −1) ≤ 327‖x‖1 and hence
(3.20) follows. Consequently, if we set a = 654‖x‖1, then

‖yN‖pp = p

∫ ∞
0

tp−1τ(|yN | > t)dt

= p

∫ a

0

tp−1τ(|yN | > t)dt+ p

∫ ∞
a

tp−1τ(|yN | > t)dt

≤ p
∫ a

0

tp−1dt+ p

∫ ∞
a

tp−2adt

=
ap

1− p
.

Since N was arbitrary, the proof is complete. �

4. Moment estimates for 1 < p <∞

The primary goal of this section is to prove the strong type (p, p) inequality
(1 < p < ∞) for noncommutative submartingales and their strong di�erential
subordinates. As we mentioned in the introduction, this inequality fails in general
even in the classical case, and to overcome this problem one imposes the additional
sign assumption on the dominating process. We will proceed similarly and assume,
throughout this section, that x = (xn)n≥0 is a nonnegative submartingale. We shall
establish the following noncommutative version of (1.2).

Theorem 4.1. For any 1 < p <∞ there is a �nite constant Cp depending only on
p such that the following holds: if y is strongly di�erentially subordinate to x (i.e.,
y and x satisfy the conditions (DS)+(CDS)), then

(4.1) ‖yN‖p ≤ Cp‖xN‖p, N = 0, 1, 2, . . . .

Furthermore, if p ≥ 2, the same inequality holds true under the �weaker� strong
di�erential subordination (WDS)+(CDS) of Section 2.

Remark 4.2. Our proof will give Cp of orders O((p− 1)−1) as p→ 1+ and O(p4)
as p→∞. The �rst order is optimal, as it is already the best possible in the com-
mutative setting. Unfortunately, the second order does not seem to be the optimal,
and our guess is that the best order is O(p2), the same as in the noncommutative
Doob's inequality. The reason for this conjecture is the following. Let a = (an)n≥0
be a sequence of positive operators adapted to some �ltration (Mn)n≥0. Consider

the �extended� �ltration M̃ = (M0,M0,M1,M1,M2,M2, . . .), in which each al-
gebraMk appears twice. Then the process x = (xn)n≥0 with the di�erence de�ned
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by dx2n = En−1an and dx2n+1 = an − En−1(an), n = 0, 1, 2, . . ., is a nonnega-

tive submartingale with respect to M̃. Furthermore, the sequence y = (yn)n≥0
de�ned by dy2n = En−1an and dy2n+1 = 0, is strongly di�erentially subordinate to
x (no matter which domination - (DS)+(CDS) or (WDS)+(CDS) - we consider).
Therefore, (4.1) yields ∥∥∥∥∥

N∑
n=0

En−1(an)

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥
N∑
n=0

an

∥∥∥∥∥
p

,

for N = 0, 1, 2, . . .. If we drop the adaptedness assumption on the sequence
a = (an)n≥0, the above estimate is just the noncommutative Doob's Lp inequality
established by Junge in [11]. As Junge and Xu showed in [13], the optimal order
of the constant in this inequality, as p → ∞, is O(p2). Thus, we believe that the
optimal order of the constant in (4.1) should also be quadratic.

The proof of the Lp bound between x and y will involve the Doob-Meyer de-
compositions of these sequences, which we brie�y recall. For any n ≥ 0, we may
write

dxn = dun + dan, dyn = dvn + dbn,

where dun = dxn − En−1(dxn), dan = En−1(dxn) and, similarly, dvn = dyn −
En−1(dyn), dbn = En−1(dyn). Note that du and dv are martingale di�erences, while
da, db are predictable processes and da consists of nonnegative operators. The Lp

bound for y will be obtained by providing appropriate estimates for ‖v‖p and ‖b‖p.
As we have already mentioned in the introductory section, the analysis in the cases
1 < p ≤ 2 and p > 2 will be quite di�erent; we have decided to split the remaining
part of this section accordingly.

4.1. The case 1 < p ≤ 2. We start with the estimate for the �nite variation
term ‖bN‖p. It is quite interesting to note that the lemma below provides the best
constants, even in the commutative case (see Wang [31]).

Lemma 4.3. For 1 ≤ p ≤ 2, we have ‖bN‖p ≤ p‖xN‖p.

Proof. By the conditional di�erential subordination (i.e., the condition (CDS)), we
have −an ≤ bn ≤ an and hence ||bN ||p ≤ ‖aN‖p for each N . Therefore, it su�ces

to prove the bound ‖aN‖p ≤ p‖xN‖p. To this end, consider the sequence

wn = apn − pap−1n xn, n = 0, 1, 2, . . . , N.

We will prove that wn is trace-decreasing. Recall that (an)n≥0 is predictable, so
for any n ≥ 0,

τ
(
apn+1 − pa

p−1
n+1xn+1

)
= τ

(
En(apn+1 − pa

p−1
n+1xn+1)

)
= τ

(
apn+1 − pa

p−1
n+1En(xn+1)

)
= τ

(
apn+1 − pa

p−1
n+1(xn + dan+1)

)
.

We have an ≤ an+1 and 1 ≤ p ≤ 2: therefore, ap−1n ≤ ap−1n+1 and

τ
(
ap−1n+1xn

)
= τ

(
x1/2n ap−1n+1x

1/2
n

)
≥ τ

(
x1/2n ap−1n x1/2n

)
= τ

(
ap−1n xn

)
.
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Furthermore, by Young's inequality,

τ
(
ap−1n+1an

)
≤ p− 1

p
τ
(
apn+1

)
+

1

p
τ (apn) ,

which is equivalent to

τ
(
apn+1

)
≤ τ (apn) + pτ

(
ap−1n+1(an+1 − an)

)
= τ (apn) + pτ

(
ap−1n+1dan+1

)
.

Putting these observations above, we get

τ(wn+1) = τ
(
apn+1 − pa

p−1
n+1xn+1

)
≤ τ

(
apn − pap−1n xn

)
= τ(wn),

as we have claimed. Consequently, we have τ(wN ) ≤ τ(w0) = 0. Using Young's
inequality, we get

pτ
(
ap−1N xN

)
= τ

(
ap−1N (pxN )

)
≤ p− 1

p
τ (apN ) +

1

p
τ
(
(pxN )p

)
,

or, equivalently,

τ(wN ) ≥ 1

p
τ (apN − p

pxpN ) .

Combining this with τ(wN ) ≤ 0, we obtain that ‖aN‖p ≤ p‖xN‖p. The proof is
complete. �

Proof of Theorem 4.1 for p = 2. As we have just shown above, we have ‖bN‖2 ≤
2‖xN‖2, so it remains to provide an L2 bound for v. This sequence is a martingale,
so, by properties of conditional expectations,

‖vN‖22 =

N∑
n=0

τ(dv2n) =

N∑
n=0

τ
((
dyn − En−1(dyn)

)2)
=

N∑
n=0

τ
(
dy2n −

(
En−1(dyn)

)2) ≤ N∑
n=0

τ
(
dy2n
)
.

Furthermore, since x is a nonnegative submartingale,

τ
(
x2n
)

= τ
(
dx2n + 2xn−1dxn + x2n−1

)
≥ τ

(
dx2n + x2n−1

)
.

Hence,
N∑
n=0

τ(dx2n) ≤ τ(x2N ).

It remains to use the �weak� di�erential subordination of y to x (that is, the con-
dition (WDS)) to obtain ‖vN‖2 ≤ ‖xN‖2. This implies ‖yN‖2 ≤ ‖vN‖2 + ‖bN‖2 ≤
3‖xN‖2 and completes the proof. �

For 1 < p < 2 the analysis of ‖vN‖p will be more elaborate and will ex-
ploit the projections (Rn)n≥0 studied in the previous sections. Since x is non-
negative, these objects are given by the recursive formula R−1 = 0 and Rn =
Rn−1I[0,1)(Rn−1xnRn−1) for n ≥ 0. We will require appropriate versions of lem-
mas studied in Section 3, taking into account that x is nonnegative. We start with
the following version of property (iv) of Lemma 3.2.

Lemma 4.4. For any N ≥ 0 we have τ(I −RN ) ≤ τ
(
(I −RN )xN

)
.
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Proof. We repeat the argument of Cuculescu [9]: for any n ≥ 0, by the very de�ni-
tion of Rn and the submartingale property of x,

τ(Rn−1 −Rn) ≤ τ
(
(Rn−1 −Rn)xn(Rn−1 −Rn)

)
≤ τ

(
(Rn−1 −Rn)xN (Rn−1 −Rn)

)
= τ

(
(Rn−1 −Rn)xN

)
.

Summing the estimate over n = 0, 1, 2, . . . , N we get the claim. �

We also need the following version of Lemma 3.4.

Lemma 4.5. For any nonnegative integer N we have

N∑
n=0

τ(RndxnRn−1dxn) ≤ τ(RNxNRNxN ) + 2τ
(
(I −RN )xN

)
.

Proof. Arguing as the proof of Lemma 3.4, we show that

τ(RndxnRn−1dxn) ≤ τ(RnxnRnxn)− τ(Rn−1xn−1Rn−1xn−1)

+ 2τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)(4.2)

(this is (3.4)). We will now analyze the last trace. Since x is a nonnegative sub-
martingale, we have

τ
(
Rn−1xn−1Rn−1xn−1Rn−1

)
= τ

(
(Rn−1xn−1Rn−1)1/2xn−1(Rn−1xn−1Rn−1)1/2

)
≤ τ

(
(Rn−1xn−1Rn−1)1/2En−1(xn)(Rn−1xn−1Rn−1)1/2

)
= τ

(
Rn−1xn−1Rn−1xnRn−1

)
.

Consequently, using the equality RnxnRn = RnxnRn−1, we may write

2τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
≤ 2τ

(
Rn−1xn−1Rn−1(Rn−1 −Rn)xnRn−1

)
= 2τ

(
Rn−1xn−1Rn−1(Rn−1 −Rn)xn(Rn−1 −Rn)

)
(the last equality follows from the fact thatRn, and hence alsoRn−1−Rn, commutes
with Rn−1xnRn−1). But Rn−1xn−1Rn−1 ≤ I, so we obtain

2τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
≤ 2τ

(
(Rn−1 −Rn)xn

)
≤ 2τ

(
(Rn−1 −Rn)xN

)
Plugging this into (4.2) and summing over n = 0, 1, 2, . . . , N , we get

N∑
n=0

τ(RndxnRn−1dxn) ≤ τ(RNxNRNxN ) + 2τ
(
(I −RN )xN

)
.

�

Finally, we will need the following analogue of Lemma 3.5.

Lemma 4.6. For any nonnegative integer N we have∥∥∥∥∥
N∑
n=0

∣∣(Rn−1 −Rn)dxn(Rn−1 −Rn)
∣∣∥∥∥∥∥

1

≤ 2τ
(
(I −RN )xN

)
.
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Proof. By the triangle inequality and the fact that x is a nonnegative submartingale
satisfying RnxnRn ≤ I for each n, we see that

τ
(∣∣(Rn−1 −Rn)dxn(Rn−1 −Rn)

∣∣)
≤ τ

(
(Rn−1 −Rn)xn(Rn−1 −Rn)

)
+ τ
(

(Rn−1 −Rn)xn−1(Rn−1 −Rn)
)

≤ τ
(

(Rn−1 −Rn)xN (Rn−1 −Rn)
)

+ τ
(
Rn−1 −Rn

)
.

It remains to sum over n = 0, 1, 2, . . . , N and use Lemma 4.4. �

The proof of the Lp bound for v will rest on the following intermediate weak-type
inequality.

Theorem 4.7. Suppose that x = (xn)n≥0 is a nonnegative submartingale and
y = (yn)n≥0 is strongly di�erentially subordinate to x. Then for any nonnegative
integer N we have

(4.3) τ
(
|vN | ≥ 4

)
≤ 2τ(RNxNRNxN ) + 9τ

(
(I −RN )xN

)
.

Remark 4.8. The inequality (4.3) can be interpreted in the language of real inter-
polation theory. The left-hand side is a tail of vN , which after homogenization and
integration leads to the p-th norm of vN up to some multiplicative constant. The
right-hand side can be viewed as a K-functional of the operator xN , corresponding
to the interpolating spaces L1 and L2. Indeed, let us look at this expression in
the commutative context. As we have already discussed earlier, the projection RN
corresponds to the indicator function of the set {max0≤n≤N xn ≤ 1} and hence,
roughly speaking, the operator

2RNxNRNxNRN + 9(I −RN )xN

is equal to the quadratic term x2N when xN is small and to the linear term 9xN
when xN is large. This is precisely the intuition behind the K-functional.

Proof of Theorem 4.7. We decompose dvn using a splitting similar to that intro-
duced in Section 3:

dvn = dαn + dβn + dγn + dδn,

where this time,

dαn = Rn−1dynRn +RndynRn−1 −RndynRn
− En−1

(
Rn−1dynRn +RndynRn−1 −RndynRn

)
,

dβn = −En−1
(
(Rn−1 −Rn)dyn(Rn−1 −Rn)

)
,

dγn =
(
Rndyn − En−1(dyn)

)
(I −Rn−1),

dδn = (I −Rn)dyn − (Rn−1 −Rn)dynRn − (I −Rn−1)En−1(dyn)Rn−1.

We write

τ
(
|vN | ≥ 4

)
≤ τ

(
|αN | ≥ 1

)
+ τ
(
|βN | ≥ 1

)
+ τ
(
|γN | ≥ 1

)
+ τ
(
|δN | ≥ 1

)
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and analyze each term on the right separately. Arguing as in the proof of Lemma
3.6, we obtain

τ(|αN | ≥ 1) ≤ τ(α2
N ) =

N∑
n=0

τ(dα2
n)

≤ 2

N∑
n=0

τ(RndynRn−1dyn)

≤ 2

N∑
n=0

τ(RndxnRn−1dxn)

≤ 2τ
(
RNxNRNxN

)
+ 4τ

(
(I −RN )xN

)
,

where in the last line we exploited Lemma 4.5. Furthermore, again by the reasoning
presented in the proof of Lemma 3.6 (see (3.18)), we get

τ
(
|βN | ≥ 1

)
≤ τ

(
|βN |

)
≤

∥∥∥∥∥
N∑
n=0

|dβn|

∥∥∥∥∥
1

≤

∥∥∥∥∥
N∑
n=0

(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+ (Rn−1 −Rn)

)∥∥∥∥∥
1

≤ 3τ
(
(I −RN )xN

)
,

where the latter passage is due to Lemmas 4.4 and 4.6. To handle the terms
τ(|γN | ≥ 1) and τ(|δN | ≥ 1), note that the right support of dγn satis�es r(dγn) ≤
I −Rn−1 ≤ I −RN , so

N∨
n=0

r(dγn) ≤ I −RN .

Therefore, by Lemma 4.4,

τ
(
|γN | ≥ 1

)
≤ τ

(
N∨
n=0

r(dγn)

)
≤ τ

(
(I −RN )xN

)
.

A similar analysis of the left support of dδn gives

τ (|δN | ≥ 1) ≤ τ

(
N∨
n=0

`(dδn)

)
≤ τ

(
(I −RN )xN

)
.

Putting all the above facts together we get the claim. �

Arguing as in Jiao et al. [16, Theorem 5.1 (i)], the weak-type bound (4.3) yields
the following Lp estimate.

Theorem 4.9. For any nonnegative integer N and any B > 1 we have

‖vN‖p ≤
4Bp−1

Bp−1 − 1

(
9Bp − 3 +

4Bp(Bp − 1)

1−Bp−2

)1/p

‖xN‖p.

Proof of Theorem 4.1 for 1 < p < 2. Combining Theorem 4.9 with Lemma 4.3, we
get the desired Lp estimate between x and y:

‖yN‖p ≤

(
p+

4Bp−1

Bp−1 − 1

(
9Bp − 3 +

4Bp(Bp − 1)

1−Bp−2

)1/p
)
‖xN‖p.
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Note that the constant is indeed of order O
(
(p− 1)−1

)
as p→ 1+. �

4.2. The case p > 2. In [12], Junge and Xu proved that if z = (zn)Nn=0 is a
martingale, then we have

(4.4)

(
N∑
n=0

||dzn||pp

)1/p

≤ 21−2/p||zN ||p.

We will prove that the same inequality is true if z is assumed to be a nonnegative
submartingale. To this end, we �rst strengthen (4.4) slightly.

Lemma 4.10. Let z = (zn)Nn=0 be a martingale. Then we have the estimate

(4.5)

(
2p−2||dz0||pp +

N∑
n=1

||dzn||pp

)1/p

≤ 21−2/p||zN ||p.

Proof. We argue as in [12]. With no loss of generality we may assume that ||zN ||p =
1. We have

(4.6)

(
2p−2‖dz0‖pp +

N∑
n=1

‖dzn‖pp

)1/p

= τ(b0 · 21−2/pdz0) +
∑

1≤k≤N

τ(bkdzk),

where
∑

0≤k≤N ‖bk‖
p′

p′ ≤ 1. By approximation and the interpolation results of

Kosaki [18], there exist continuous functions Z, Bk : {z ∈ C : 0 ≤ Re z ≤ 1} → M
analytic in the interior of the strip such that zN = Z(2/p), bk = Bk(2/p) and

sup
t∈R

max

{
‖Z(it)‖∞, ‖Z(1 + it)‖2

}
≤ 1,

sup
t∈R

max


∑

0≤k≤N

‖Bk(it)‖1,

 ∑
0≤k≤N

‖Bk(1 + it)‖22

1/2
 ≤ 1.

(4.7)

Consider the analytic function

F (z) = τ

21−zB0(z)E0Z(z) +
∑

0<k≤N

Bk(z)(Ek − Ek−1)Z(z)

 .

By Hölder's inequality,

|F (it)| ≤ τ

 ∑
0≤k≤N

|Bk(it)|


×max

{
||2E0Z(it)||∞, ||(E1 − E0)Z(it)||∞, . . . , ||(EN − EN−1)Z(it)||∞

}
,

which is not bigger than 2, by the assumptions in (4.7). Similarly, we have

|F (1 + it)| ≤ τ

 ∑
0≤k≤N

|Bk(1 + it)|2
1/2

× τ

|E0Z(1 + it)|2 +
∑

0<k≤N

|(Ek − Ek−1)Z(1 + it)|2
1/2

≤ 1.
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Hence, by the three lines lemma, we get F (2/p) ≤ 21−2/p, which is the desired
claim (see (4.6)). �

The estimate (4.5) allows to obtain the following trace inequality, which is of
independent interest.

Lemma 4.11. For any a, b ∈M we have

τ
(
|a+ b|p

)
≥ τ

(
|a|p
)

+ pτ
(
|a|p−2ab

)
+ 22−pτ

(
|b|p
)
.

Proof. Let s be a positive number and introduce the centered random variable ξ
with the distribution

P(ξ = −s) =
1

s+ 1
= 1− P(ξ = 1).

Consider the martingale given by z0 = 1⊗a, z1 = 1⊗a+ξ⊗b (on the von Neumann
algebra L∞(Ω,F ,P)⊗M with the natural �ltration). By (4.5), we get

2p−2τ(|a|p) +
s

s+ 1
τ(|b|p) +

sp

s+ 1
τ(|b|p)

≤ 2p−2
(

s

s+ 1
τ(|a+ b|p) +

1

s+ 1
τ(|a− sb|p)

)
,

or, equivalently,

2p−2
(
τ(|a+ b|p)− τ(|a|p)

s+ 1
+
τ(|a− sb|p)− τ(|a|p)

s(s+ 1)

)
≥ τ(|b|p)

s+ 1
+
sp−1τ(|b|p)
s+ 1

.

It remains to let s→ 0 to obtain the claim. �

Now we prove the following �submartingale� version of (4.4).

Theorem 4.12. Suppose that x = (xn)Nn=0 is a nonnegative submartingale. Then

(4.8)

(
N∑
n=0

‖dxn‖pp

)1/p

≤ 21−2/p‖xN‖p.

Proof. By the previous lemma, applied to a = xn−1 and b = dxn, we have

‖xn‖pp − ‖xn−1‖pp ≥ pτ(xp−1n−1dxn) + 22−p‖dxn‖pp ≥ 22−p‖dxn‖pp.
Summing over n completes the proof. �

We turn our attention to the upper bound for ‖bN‖p. We will exploit the non-
commutative good-λ inequalities developed by Jiao et al. in [16, 17]. Let us brie�y
recall the framework. Let (M, τ) be a von Neumann algebra equipped with some
�ltration (Mn)n≥0. Suppose that q = (qn)Nn=0 is an adapted �nite self-adjoint mar-
tingale, and r, s are self-adjoint operators. For any λ > 0, consider the projections
Sλ−1, S

λ
0 , S

λ
1 , . . . , S

λ
N given by Sλ−1 = I and Sλn = Sλn−1I(−λ,λ)(S

λ
n−1qnS

λ
n−1) for

n = 1, 2, . . . , N .

De�nition 4.13. The triple
(
q, r, s

)
is said to satisfy the good-λ testing condition

if the following two requirements are ful�lled.

(i) For all λ > 0, we have

N∑
n=0

N∑
k=n+1

τ
((
Sλn−1 − Sλn

)
dqkS

λ
n−1dqk

(
Sλn−1 − Sλn

))
≤ τ

((
I − SλN

)
r2
)
.
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(ii) For each 0 ≤ n ≤ N and any projection P ∈Mn,

τ
(
Pdq2nP

)
≤ τ

(
Ps2P

)
.

Let us stress here that we do not assume that r, s areMN -measurable. One of
the main results of [17] is the following.

Theorem 4.14. If (q, r, s) satis�es the good-λ testing condition, then for any p > 2,

(4.9) ||qN ||p ≤
12p(

1−
(

1 + 1
p

)2−p)1/2

(
||r||2p + ||s||2p

)1/2
.

Equipped with the above statement, we will prove the following statement.

Theorem 4.15. Fix p > 2. Then for any �nite nonnegative submartingale x =
(xn)n≥0 we have

(4.10) ‖bN‖p ≤ ‖aN‖p ≤ Cp ‖xN‖p ,

where Cp is of order O(p2) as p→∞.

Proof. Fix p > 2. It su�ces to show the second estimate in (4.10). We start with an
appropriate complication of the underlying von Neumann algebra which will enable
us to �t the assertion into the framework of good-λ inequalities. Let (Ω,F ,P) be a
classical probability space and let ε0, ε1, ε2, . . ., εN be a sequence of independent
Rademacher variables. Consider the algebra N = MN+2⊗L∞(Ω,F ,P)⊗M, where
MN+2 denotes the algebra of (N + 2)× (N + 2) matrices with the standard trace.
So, we may interpret N as the algebra of (N + 2)× (N + 2) matrices, whose entries
are random elements of M. We equip N with the usual tensor trace ν and the
�ltration (Nn)Nn=0 = (MN+2⊗L∞(Ω,Fn,P)⊗Mn−1)Nn=0, where Fn stands for the
σ-�eld generated by the variables ε0, ε1, ε2, . . ., εn. Notice that we have used the
algebraMn−1 on the third factor (with the convention thatM−1 =M0). Consider
the operator

r = s = e1,1 ⊗ 1⊗ x1/2N +

N∑
n=0

en+2,n+2 ⊗ 1⊗ |dxn|1/2

=


x
1/2
N 0 0 . . . 0
0 |dx0|1/2 0 . . . 0
0 0 |dx1|1/2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . |dxN |1/2
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and the sequence q = (qn)Nn=0 given by

qn =

n∑
k=0

(e1,k+2 + ek+2,1)⊗ εk ⊗ da1/2k

=



0 ε0da
1/2
0 ε1da

1/2
1 . . . εnda

1/2
n 0 . . . 0

ε0da
1/2
0 0 0 . . . 0 0 . . . 0

ε1da
1/2
1 0 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

εnda
1/2
n 0 0 . . . 0 0 . . . 0

0 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 . . . 0


.

Of course, q is a martingale adapted to (Nn)Nn=0: this is due to the fact that the
sequence da is predictable. Let us verify that the triple (q, r, s) satis�es the good-λ
testing condition. We have

dq2k = ((e1,k+2 + ek+2,1)⊗ εk ⊗ da1/2k )2 = (e1,1 + ek+2,k+2)⊗ 1⊗ dak,
so

N∑
n=0

N∑
k=n+1

ν
(
(Sλn−1 − Sλn)dqkS

λ
n−1dqk(Sλn−1 − Sλn)

)
≤ ν

(
N∑
n=0

N∑
k=n+1

(Sλn−1 − Sλn)dq2k(Sλn−1 − Sλn)

)

= ν

(
N∑
n=0

N∑
k=n+1

(Sλn−1 − Sλn) ((e1,1 + ek+2,k+2)⊗ 1⊗ dak)

)

= ν

(
N∑
n=0

N∑
k=n+1

(Sλn−1 − Sλn) ((e1,1 + ek+2,k+2)⊗ 1⊗ dxk)

)
.

We split the latter expression into two parts:

ν

(
N∑
n=0

N∑
k=n+1

(
Sλn−1 − Sλn

)
(e1,1 ⊗ 1⊗ dxk)

)

+ ν

(
N∑
n=0

N∑
k=n+1

(
Sλn−1 − Sλn

)
(ek+2,k+2 ⊗ 1⊗ dxk)

)

≤
N∑
n=0

ν
((
Sλn−1 − Sλn

)
(e1,1 ⊗ 1⊗ (xN − xn))

)
+ ν

(
N∑
k=0

k−1∑
n=0

(
Sλn−1 − Sλn

)
(ek+2,k+2 ⊗ 1⊗ |dxk|)

)

≤ ν

((
I − SλN

)(
e1,1 ⊗ 1⊗ xN +

N∑
k=0

ek+2,k+2 ⊗ 1⊗ |dxk|

))
= ν

((
I − SλN

)
r2
)
,
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which is the condition (i). Concerning the assumption (ii), we check that for any
projection P ∈ Nn,

ν
(
Pdq2nP

)
= τ

(
P ((e1,1 + en+2,n+2)⊗ 1⊗ dan)P

)
= τ

(
P ((e1,1 + en+2,n+2)⊗ 1⊗ dxn)P

)
≤ τ

(
Ps2P

)
,

where in the second passage we have used the equality dan = En−1(dxn) (and the
fact that the third factor in Nn = MN+2 ⊗ L∞(Ω,Fn,P) ⊗Mn−1 is the algebra
Mn−1). So, the good-λ testing condition holds true and therefore the inequality
(4.9) gives

(4.11) ||qN ||2p ≤
24p(

1−
(

1 + 1
2p

)2−2p)1/2
· 21/2||r||2p.

However, we have q2N ≥ e1,1⊗1⊗aN , which implies ||qN ||22p ≥ ‖aN‖p. Furthermore,
we have

||r||22p =

(
‖xN‖pp +

N∑
n=0

‖dxn‖pp

)1/p

.

By Theorem 4.12, the expression on the right does not exceed (1 + 2p−2)1/p||xN ||p.
Putting all the above observations together, we get the desired estimate (4.10). �

We turn our attention to the estimate for the martingale part ‖v‖p. This is the
only missing part of the proof of Theorem 4.1.

Theorem 4.16. We have ‖vN‖p ≤ κp‖xN‖p, where κp is of order O(p4) as p→∞.

Proof. First apply Burkholder-Rosenthal inequality (see [12]) to obtain

‖vN‖p ≤ cp

‖sN (v)‖p +

(
N∑
n=0

‖dvn‖pp

)1/p
 ,

where cp is of order O(p) as p→∞. By the assumption (WDS), we have

En−1(dv2n) = En−1((dyn − En−1(dyn))2) ≤ En−1(dy2n)

≤ En−1(dx2n) = En−1(du2n) + da2n,

so sN (v)2 ≤ sN (u)2 + sN (a)2 and ‖sN (v)‖p ≤ ‖sN (u)‖p + ‖sN (a)‖p. In addition,
the triangle inequality and (WDS)+(CDS) assumptions give that

(
N∑
n=0

‖dvn‖pp

)1/p

≤

(
N∑
n=0

‖dun‖pp

)1/p

+

(
N∑
n=0

‖dan‖pp

)1/p

.
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Combining the above observations, we obtain

‖sN (v)‖p +

(
N∑
n=0

‖dvn‖pp

)1/p

≤ ‖sN (u)‖p +

(
N∑
n=0

‖dun‖pp

)1/p

+ ‖sN (a)‖p +

(
N∑
n=0

‖dan‖pp

)1/p

≤ c̃p||uN ||p + (1 + 21−2/p)||aN ||p
≤ c̃p||xN ||p + (c̃p + 1 + 21−2/p)||aN ||p,

with c̃p of order O(p). Here in the second passage we have used the reverse
Burkholder-Rosenthal inequality (which gave the estimate for the terms involving
u), the inequality

||sN (a)||p =

∥∥∥∥∥∥
(

N∑
n=0

da2n

)1/2
∥∥∥∥∥∥
p

≤ ‖aN‖p

and Theorem 4.12 applied to the submartingale (an)Nn=0. Putting all the above facts
together and combining them with the estimate (4.10), we obtain the claim. �

Proof of Theorem 4.1 for 2 < p <∞. Combining Theorem 4.15 with Theorem 4.16,
we get the desired Lp estimate between x and y:

‖yN‖p ≤ cp‖xN‖p,

where cp is of order O(p4) as p→∞. �

We conclude with the following interesting question.

Remark 4.17. Let us write the estimates of Lemma 4.3 and Theorem 4.15 in the
language of noncommutative Doob's inequality. We have shown that if x = (xn)n≥0
is a nonnegative submartingale, then for 1 ≤ p <∞ we have∥∥∥∥∥

N∑
n=0

En−1(dxn)

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥
N∑
n=0

dxn

∥∥∥∥∥
p

,

with Cp = O(p2) as p → ∞. Is this order optimal? This is not clear, since the
sequence dx above needs to be adapted and hence the estimate does not generalize
Doob's inequality.
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