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Abstract. We determine the best constants Cp,∞ and C1,p, 1 < p < ∞,

for which the following holds. If u, v are orthogonal harmonic functions on a
Euclidean domain such that v is differentially subordinate to u, then

||v||p ≤ Cp,∞||u||∞,

||v||1 ≤ C1,p||u||p.
In particular, the inequalities are still sharp for the conjugate harmonic func-

tions on the unit disc of R2. Sharp probabilistic versions of these estimates are

also studied. As an application, we establish a sharp version of the classical
logarithmic inequality of Zygmund.

1. Introduction

The objective of this paper is to study some sharp inequalities for orthogonal
harmonic functions. Let us introduce the necessary background. Suppose that N
is a fixed positive integer, D is an open connected subset of RN and let u and v
be real-valued harmonic functions on D. Following Burkholder [5], we say that v
is differentially subordinate to u, if for all x ∈ D we have

(1.1) |∇v(x)| ≤ |∇u(x)|.
The functions u, v are said to be orthogonal if

(1.2) ∇u · ∇v = 0 on D,

where the dot · stands for the standard scalar product in RN . As an example for
which (1.1) and (1.2) are valid, take N = 2, D equal to the unit disc of R2 and u,
v satisfying Cauchy-Riemann equations.

Fix a point ξ ∈ D and let D0 be a bounded connected subdomain of D, satisfying
ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D. We will consider those u, v, for which

(1.3) |v(ξ)| ≤ |u(ξ)|.
The conditions (1.1), (1.2) and (1.3) imply many interesting estimates involving
u and v. Denote by µξD0

the harmonic measure on ∂D0 with respect to ξ. If
1 < p <∞, define p-th norm and weak p-th norm of u by

||u||p =
[
sup
D0

∫
∂D0

|u(x)|pdµξD0
(x)
]1/p
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and

||u||p,∞ = sup
λ>0

λ

[
sup
D0

µξD0
({x ∈ ∂D0 : |u(x)| ≥ λ})

]1/p

,

where the supremum is taken over all D0 as above. If D is the unit disc of R2,
ξ = (0, 0) and v is assumed to be the harmonic conjugate of u with v(ξ) = u(ξ),
the problem of comparing the p-th norms of u and v goes back to the works by M.
Riesz [14], who showed that for some universal cp, 1 < p <∞, we have

(1.4) ||v||p ≤ cp||u||p.

Then it was shown by Pichorides [12] and Cole (see Gamelin [10]), that the optimal
constant cp above is equal to cot(π/2p∗), where p∗ = max{p, p/(p − 1)}. Finally,
Bañuelos and Wang [1] proved the following.

Theorem 1.1. Suppose that u, v satisfy (1.1), (1.2) and (1.3). Then for 1 < p <∞
the inequality (1.4) is valid, with cp equal to the Pichorides-Cole constant.

If one drops the orthogonality assumption, the inequality (1.4) remains true, with
some different constant cp. Precisely, we have the following result of Burkholder
[5].

Theorem 1.2. Let u, v satisfy (1.1) and (1.3). Then, for 1 < p <∞,

||v||p ≤ (p∗ − 1)||u||p.

It is not known whether the constant p∗ − 1 is the best possible (except for the case
p = 2, when the inequality is sharp).

It is a natural question what happens in the case p = 1. Let us first consider the
setting of conjugate harmonic functions on the unit disc. It turns out that the p-th
norms of u and v are not comparable, but, as proved by Kolmogorov, the following
weak-type estimate is valid: for some universal c1,∞ <∞,

(1.5) ||v||1,∞ ≤ c1,∞||u||1,

Then it was shown by Davis in [7], that the optimal c1,∞ above equals

1 + 1
32 + 1

52 + . . .

1− 1
32 + 1

52 − . . .
.

Finally, the paper [6] by Choi contains the proof of the following inequality for
orthogonal harmonic functions.

Theorem 1.3. If u, v satisfy (1.1), (1.2) and (1.3), then the inequality (1.5) is
valid, with c1,∞ equal to the Davis’ constant.

Without the orthogonality assumption, we have the following fact, proved by
Burkholder in [5].

Theorem 1.4. Let u, v satisfy (1.1) and (1.3). Then

||v||1,∞ ≤ 2||u||1,

and the constant 2 is the best possible.
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All the inequalities discussed above have their counterparts in the martingale
theory. Let (Ω,F ,P) be a complete probability space filtered by a nondecreasing
family (Ft)t≥0 of sub-σ-algebras of F . Assume in addition, that F0 contains all the
events of probability 0. Let X = (Xt), Y = (Yt) be two real valued martingales
adapted to (Ft). Let [X,Y ] denote the quadratic covariance process between X
and Y (see e.g. [8]).

Following [1] and [16], we say that Y is differentially subordinate to X, if the
process [X,X] − [Y, Y ] is nondecreasing and nonnegative as a function of t. In
particular, if this is the case, then we have |Y0| ≤ |X0|, which can be obtained
simply by comparing [X,X]0 and [Y, Y ]0.

Here is the martingale version of Theorem 1.2 and Theorem 1.4, taken from [16]
(see also [4]). We write ||X||p = supt ||Xt||p and ||X||1,∞ = supt supλ λP(|Xt| ≥ λ).

Theorem 1.5. Let X and Y be two martingales such that Y is differentially sub-
ordinate to X. Then, for 1 < p <∞, we have

||Y ||p ≤ (p∗ − 1)||X||p.
Furthermore,

||Y ||1,∞ ≤ 2||X||1.
Both inequalities are sharp.

We say that X and Y are orthogonal, if the process [X,Y ] is constant. Under
the assumption of differential subordination and orthogonality, Bañuelos and Wang
[1], [2] and [3] proved the following fact.

Theorem 1.6. Let X and Y be two continuous-time orthogonal martingales such
that Y is differentially subordinate to X. Then, for 1 < p <∞,

||Y ||p ≤ cot(π/2p∗)||X||p.
Furthermore,

||Y ||1,∞ ≤
1 + 1

32 + 1
52 + . . .

1− 1
32 + 1

52 − . . .
||X||1.

Both inequalities are sharp.

In the present paper we continue the research in this direction and find the
optimal constants in related inequalities for orthogonal harmonic functions and
martingales. Let

Cp,∞ =


1 if 1 < p ≤ 2,[

2p+2

πp+1
Γ(p+ 1)

∞∑
k=0

(−1)k

(2k + 1)p+1

]1/p

if p > 2

and, for 1 < p <∞,
C1,p = Cp/(p−1),∞.

Theorem 1.7. Let u, v satisfy (1.1), (1.2) and (1.3). Then, for 1 < p <∞,

(1.6) ||v||1 ≤ C1,p||u||p
and

(1.7) ||v||p ≤ Cp,∞||u||∞.
Both inequalities are sharp, even if D is a unit disc in R2, ξ = (0, 0) and u, v are
assumed to satisfy Cauchy-Riemann equations.
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Theorem 1.8. Let X and Y be two continuous-time orthogonal martingales such
that Y is differentially subordinate to X. Then for 1 < p <∞,

(1.8) ||Y ||1 ≤ C1,p||X||p

and

(1.9) ||Y ||p ≤ Cp,∞||X||∞.

Both inequalities are sharp.

As an application, we present sharp versions of some classical inequalities for
conjugate harmonic functions on the unit disc, which may seem more natural in
our context. Let Φ, Ψ : [0,∞)→ R be the Young functions given by Φ(t) = et−t−1
and Ψ(t) = (t+ 1) log(t+ 1)− t.

Theorem 1.9. Let u, v be conjugate harmonic functions on the unit disc.
(i) If ||u||∞ ≤ 1, then, for γ < π/2,

(1.10) sup
0<r<1

∫ π

−π
Φ(γ|v(reiθ)|)dθ ≤ 8

∫ ∞
1

t2γ/π − 2γ
π log t− 1

t2 + 1
dt.

(ii) For K > 2/π,

sup
0<r<1

∫ π

−π
|u(reiθ)|dθ ≤ sup

0<r<1

∫ π

−π
Ψ(K|u(reiθ)|)dθ + 8

∫ ∞
1

t2/(Kπ) − 2 log t
Kπ − 1

t2 + 1
dt.

Both inequalities are sharp.

The logarithmic estimate above is related to the classical inequality of Zygmund
[17] (||v||1 ≤ A

∫ π
−π u log+ u+B for some A, B > 0). This should also be compared

to the results of Pichorides [12] and Essen, Shea and Stanton [9]. Pichorides showed
that there is L = L(K) <∞ such that

||v||1 ≤ K sup
0<r<1

∫ π

−π
|u(reiθ)| log |u(reiθ)|dθ

2π
+ L(K)

if and only if K > 2/π. He also determined the sharp version of this estimate
under an additional assumption that the function u is nonnegative. Essen, Shea
and Stanton studied the limit case K = 2/π, and showed that for some absolute
constants C1 and C2,

||v||1 ≤
2
π

sup
0<r<1

∫ π

−π
|u(reiθ)| log(e+ |u(reiθ)|) dθ

2π

+
4
π

sup
0<r<1

∫ π

−π
|u(reiθ)| log log(e+ |u(reiθ)|) dθ

2π
+ C1||u||1 + C2.

In addition, the constant 2/π is the best, and 4/π cannot be replaced by a constant
smaller than 2/π. See [9] for details and for other related results.

The paper is organized as follows. The proofs of the announced estimates are
based on the existence of certain special superharmonic functions. We study (1.7)
and (1.9) in the next section, while (1.6) and (1.8) are established in Section 3. The
final section is devoted to the proof of Theorem 1.9.
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2. On inequalities (1.7) and (1.9)

If 1 ≤ p ≤ 2, the estimates (1.7) and (1.9) are straightforward. Indeed, we have

||v||p ≤ ||v||2 ≤ ||u||2 ≤ ||u||∞,
and similar chain of inequalities yields the martingale inequality. Obviously, the
constant 1 is the best possible. Therefore, we may and do restrict ourselves to the
case when p lies in the interval (2,∞).

Let H = R × (0,∞) denote the upper halfplane and let U = Up : H → R be
given by the Poisson integral

U(α, β) =
1
π

∫ ∞
−∞

β
∣∣ 2
π log |t|

∣∣p
(α− t)2 + β2

dt.

The function U is harmonic on H and satisfies

(2.1) lim
(α,β)→(z,0)

U(α, β) =
(

2
π

)p
| log |z||p, z 6= 0.

Let S denote the strip (−1, 1) × R and consider a conformal mapping ϕ(z) =
ie−iπz/2, or

ϕ(x, y) =
(
eπy/2 sin

(π
2
x
)
, eπy/2 cos

(π
2
x
))

, (x, y) ∈ R2.

One easily verifies that ϕ maps S onto H. Define U = Up on S by

(2.2) U(x, y) = U(ϕ(x, y)).

The function U is harmonic on S and, by (2.1), can be extended to the continuous
function on the closure S of S by U(±1, y) = |y|p.

Further properties of U are investigated in the lemma below.

Lemma 2.1. (i) The function U satisfies U(x, y) = U(−x, y) on S.
(ii) We have

(2.3) U(x, y) ≥ |y|p for all (x, y) ∈ S.

(iii) For any (x, y) ∈ S we have Uxx(x, y) ≤ 0 and Uyy(x, y) ≥ 0.
(iv) If (x, y) ∈ S and y > 0, then Uyyy(x, y) ≥ 0.
(v) For any (x, y) ∈ S such that |y| ≤ |x|, we have U(x, y) ≤ Cpp,∞.
(vi) For any (x, y) ∈ S we have U(x, y) ≤ 2p−1|y|p + 2p−1Cpp,∞.

Proof. (i) This is a consequence of the equality U(α, β) = U(−α, β), (α, β) ∈ H:
simply substitute s = −t in the integral defining U .

(ii) This follows from Jensen’s inequality: after a change of variables t = s exp(πy/2),
we get

U(x, y) =
∫ ∞
−∞

∣∣∣∣ 2π log |s|+ y

∣∣∣∣p · 1
π

cos(π2x)
(s− sin(π2x))2 + cos2(π2x)

ds

≥

∣∣∣∣∣ 1π
∫ ∞
−∞

cos(π2x)
(

2
π log |s|+ y

)
(s− sin(π2x))2 + cos2(π2x)

ds

∣∣∣∣∣
p

= |y|p.
(2.4)

(iii) In view of the harmonicity of U , it suffices to deal with the second estimate.
Using Fubini’s theorem we verify that

Uyy(x, y) =
p(p− 1)

π

∫ ∞
−∞

cos(π2x)
∣∣ 2
π log |s|+ y

∣∣p−2

(s− sin(π2x))2 + cos2(π2x)
ds



6 ADAM OSȨKOWSKI

and it is evident that the expression on the right is nonnegative.
(iv) We have

Uy(x, y) =
p

π

∫ ∞
−∞

cos(π2x)
∣∣ 2
π log |s|+ y

∣∣p−2 ( 2
π log |s|+ y

)
(s− sin(π2x))2 + cos2(π2x)

ds.

Therefore, for ε ∈ (0, y) we have

2Uy(x, y)− Uy(x, y − ε)− Uy(x, y + ε) =
p

π

∫ ∞
−∞

fy,ε
(

2
π log |s|

)
cos(π2x)

(s− sin(π2x))2 + cos2(π2x)
ds = I,

where

fy,ε(h) = 2|y+ h|p−2(y+ h)− |y− ε+ h|p−2(y− ε+ h)− |y+ ε+ h|p−2(y+ ε+ h).

The expression I, after splitting it into integrals over the nonpositive and nonneg-
ative halfline, and substitution s = ±er, can be written in the form

I =
p

π

∫ ∞
−∞

fy,ε

(
2
π
r

)
gx(r)dr,

where

gx(r) =
cos(π2x)er

(er − sin(π2x))2 + cos2(π2x)
+

cos(π2x)er

(er + sin(π2x))2 + cos2(π2x)
.

Observe that fy,ε(h) ≤ 0 for h ≥ −y and that we have fy,ε(−y+h) = −fy,ε(−y−h)
for all h. Furthermore, gx is even and, for r > 0,

(gx)′(r) =
cos(π2x)er(1− er)

[(er − sin(π2x))2 + cos2(π2x)]2
+

cos(π2x)er(1− er)
[(er + sin(π2x))2 + cos2(π2x)]2

≤ 0.

This implies I ≤ 0 and, since ε ∈ (0, x) was arbitrary, the function U(x, ·) : y 7→
Uy(x, y) is convex on (0,∞).

(v) First we show that

(2.5) Uxy(x, y) ≤ 0 for x ∈ (0, 1), y > 0.

Since U is harmonic on S, so is Uy and hence we have Uxxy(x, y) = −Uyyy(x, y) ≤ 0
for x ∈ (0, 1) and y > 0. Since Ux(0, y) = 0, which is a consequence of (i), we see
that Uxy(0, y) = 0 and therefore (2.5) follows.

Let 0 ≤ y ≤ x ≤ 1 and consider a function Φ(t) = U(tx, ty), t ∈ [−1, 1]. Then Φ
is even and, by (iii) and (2.5),

Φ′′(t) = x2Uxx(tx, ty) + 2xyUxy(tx, ty) + y2Uyy(tx, ty)

≤ x2∆U(tx, ty) + 2xyUxy(tx, ty) ≤ 0
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for t ∈ (−1, 1). This implies

U(x, y) = Φ(1) ≤ Φ(0) = U(0, 0) = U(0, 1) =
2p+1

πp+1

∫ ∞
0

| log t|p

t2 + 1
dt

=
2p+1

πp+1

∫ ∞
−∞

|s|pes

e2s + 1
ds

=
2p+2

πp+1

∫ ∞
0

spe−s
∞∑
k=0

(−e−2s)kds

=
2p+2

πp+1
Γ(p+ 1)

∞∑
k=0

(−1)k

(2k + 1)p+1

= Cpp,∞.

(vi) It is clear from the formula for U appearing in (2.4), that

U(x, y) ≤ 2p−1|y|p + 2p−1

∫ ∞
−∞

∣∣∣∣ 2π log |s|
∣∣∣∣p · 1

π

cos(π2x)
(s− sin(π2x))2 + cos2(π2x)

ds

= 2p−1|y|p + 2p−1U(x, 0) ≤ 2p−1|y|p + 2p−1U(0, 0).

Here in the last passage we have used (i) and (iii). Now use the part (v) to complete
the proof. �

To establish the martingale inequalities (1.7) and (1.9), we will need the follow-
ing auxiliary facts. Recall that for any semimartingale X there exists a unique
continuous local martingale part Xc of X satisfying

[X,X]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t

|4Xs|2

for all t ≥ 0. Here4Xs = Xs−Xs− denotes the jump of X at time s. Furthermore,
we have that [Xc, Xc] = [X,X]c, the pathwise continuous part of [X,X]. Here is
Lemma 2.1 from [3].

Lemma 2.2. If X and Y are semimartingales, then Y is differentially subordinate
and orthogonal to X if and only if Y c is differentially subordinate and orthogonal
to Xc, |Y0| ≤ |X0| and Y has continuous paths.

Now we are ready to prove the martingale inequality.

Proof of (1.9). With no loss of generality, we may assume that ||X||∞ = 1. Let
t ∈ (0,∞). Since U is of class C∞ on S, we may apply Itô’s formula to obtain

U(Xt, Yt) = U(X0, Y0) + I1 +
1
2
I2 +

1
2
I3 + I4,
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where

I1 =
∫ t

0+

Ux(Xs−, Ys)dXs +
∫ t

0+

Uy(Xs−, Ys)dYs,

I2 = 2
∫ t

0+

Uxy(Xs−, Ys)d[Xc, Y ]s,

I3 =
∫ t

0+

Uxx(Xs−, Ys)d[Xc, Xc]s +
∫ t

0+

Uyy(Xs−, Ys)d[Y, Y ]s,

I4 =
∑

0<s≤t

[
U(Xs, Ys)− U(Xs−, Ys)− Ux(Xs−, Ys)∆Xs

]
.

(2.6)

Note that we have used above the equalities Ys− = Ys and Y = Y c, which are
due to the continuity of paths of Y . By Lemma 2.1 (v) and Lemma 2.2, we have
U(X0, Y0) ≤ Cpp,∞. The term I1 has zero expectation, as the stochastic integrals
are martingales. We have I2 = 0 in view of the orthogonality of X and Y . The
differential subordination together with Lemma 2.1 (iii) give

I3 ≤
∫ t

0

Uxx(Xs, Ys)d[Xc, Xc]s +
∫ t

0

Uyy(Xs, Ys)d[Xc, Xc]s = 0.

Finally, we have that I4 ≤ 0, by the concavity of U(·, y) for any fixed y ∈ R (see
Lemma 2.1 (iii)). Therefore, by Lemma 2.1 (ii),

(2.7) E|Yt|p ≤ EU(Xt, Yt) ≤ Cpp,∞
and it suffices to take supremum over t to obtain (1.8). �

Proof of the inequality (1.7). It suffices to show that for any bounded subdomain
D0 of D satisfying ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D we have∫

∂D0

|v(x)|pdµξD0
(x) ≤ Cpp,∞||u||p∞.

Let B = (Bt)t≥0 be an N -dimensional Brownian motion starting from ξ and let τ
denote the first moment B hits the boundary of D0. Consider martingales X, Y
given by Xt = u(Bτ∧t) and Yt = v(Bτ∧t), t ≥ 0. We have

[X,X]t = u2(ξ) +
∫ τ∧t

0

|∇u(Bs)|2ds,

[Y, Y ]t = v2(ξ) +
∫ τ∧t

0

|∇v(Bs)|2ds

[X,Y ]t = u(ξ)v(ξ) +
∫ τ∧t

0

∇u(Bs) · ∇v(Bs)ds

and we see that the assumptions on u and v imply that Y is differentially subordi-
nate to X and that X, Y are orthogonal. Therefore, by (1.9),∫

∂D0

|v(x)|pdµξD0
(x) = ||Y ||pp ≤ Cpp,∞||X||p∞ ≤ Cpp,∞||u||p∞.

The proof is complete. �

Sharpness. It suffices to prove the optimality of Cp,∞ in (1.7). First we provide an
example for D equal to the strip S and ξ = (0, 0); to treat the case when D is the
unit disc of R2, we will use a conformal mapping from the disc to S (see below). Let
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u(x, y) = x and v(x, y) = y for (x, y) ∈ S. We have that ||u||∞ ≤ 1 and u, v satisfy
Cauchy-Riemann equations. Let B = (B(1), B(2)) be a two dimensional Brownian
motion starting from (0, 0). For n ≥ 2, let Dn = (−1 + 1/n, 1− 1/n)× (−n, n) and
τn = inf{t : Bt /∈ Dn}, τ = inf{t : Bt /∈ D}. We will show that

||v||p ≥ ||B(2)
τ ||p = Cpp,∞.

The inequality above is a consequence of

||v||pp ≥
∫
∂Dn

|v(x, y)|pdµξDn
(x, y) = E|B(2)

τn
|p,

the almost sure convergence Bτn → Bτ and Fatou’s lemma. To prove ||B(2)
τ ||p =

Cpp,∞, note that by the harmonicity of U , Itô’s formula yields

Cpp,∞ = U(0, 0) = EU(Bτ∧t), t ≥ 0.

By Burkholder-Davis-Gundy inequalities, we have, for some universal cp and c′p,

sup
t
||B(2)

τ∧t||p ≤ cp||τ1/2||p ≤ c′p sup
t
||B(1)

τ∧t||p = c′p.

Therefore the martingale (B(2)
τ∧t)t≥0 converges in Lp and hence, by Lemma 2.1 (vi)

and Lebesgue’s dominated convergence theorem,

Cpp,∞ = lim
t→∞

EU(Bτ∧t) = EU(Bτ ) = ||B(2)
τ ||pp.

This proves the optimality of (1.7) for D = S. If D is the unit disc of R2, let F =
F1 + iF2, F (0) = 0, be a conformal mapping from D onto S and let u = u◦F = F1,
v = v ◦ F = F2. Then u, v satisfy Cauchy-Riemann equations, ||u||∞ ≤ 1 and
||v||pp = ||v||pp ≥ Cpp,∞. �

3. On inequalities (1.6) and (1.8)

We start with the observation that for p ≥ 2 the inequalities are trivial: for
example, (1.6) follows from

||v||1 ≤ ||v||2 ≤ ||u||2 ≤ ||u||p,
and, clearly, the inequality is sharp. Therefore we assume that 1 < p < 2 through-
out this section.

As we have seen, the crucial role in the proof of (1.7) and (1.9) was played by
the special function U . Here we will also need such an object, however, things are
more complicated. First, we will not work with (1.6) and (1.8) directly, but rather
with the following modifications of these estimates:

(3.1)
∫
∂D0

|v(x)|dµξD0
(x) ≤

∫
∂D0

|u(x)|pdµξD0
(x) + L,

where D0 is as before, and

(3.2) ||Y ||1 ≤ ||X||pp + L.

Here L is a fixed positive number. In order to establish these inequalities, we will use
the value function of the following optimal stopping problem. Let B = (B(1), B(2))
be a two-dimensional Brownian motion starting from (0, 0) and introduce V : R2 →
(−∞,∞] by

(3.3) V (x, y) = sup EG(x+B(1)
τ , y +B(2)

τ ),
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where G(x, y) = |y| − |x|p and the supremum is taken over all stopping times of B
satisfying Eτp/2 <∞.

The key properties of V are listed in the lemma below.

Lemma 3.1. (i) The function V is finite on R2.
(ii) The function V is a superharmonic majorant of G.
(iii) For any fixed x ∈ R, the function V (x, ·) : y 7→ V (x, y) is convex.
(iv) If |y| ≤ |x|, we have

(3.4) V (x, y) ≤
(
Cp/(p−1),∞

p

)p/(p−1)

· (p− 1).

Proof. (i) Take a stopping time τ ∈ Lp/2 and note that the process (B(2)
τ∧t) is

differentially subordinate and orthogonal to (x + B
(1)
τ∧t). Therefore, by theorem of

Bañuelos and Wang, for any t,

E|y +B
(2)
τ∧t| ≤ |y|+ E|B(2)

τ∧t| ≤ |y|+ c+ [cot(π/2p∗)]−p||B(2)
τ∧t||pp

≤ |y|+ c+ ||x+B
(1)
τ∧t||pp,

where c = [cot(π/2p∗)/p]p/(p−1) · (p− 1). Since τ ∈ Lp/2, Burkholder-Davis-Gundy
inequality implies that the martingales (B(1)

τ∧t), (B(2)
τ∧t) converge in Lp to B(1)

τ and
B

(2)
τ , respectively. Thus, letting t→∞ yields V (x, y) ≤ |y|+ c.
(ii) The inequality V ≥ G follows immediately by considering in (3.3) the stop-

ping time τ ≡ 0. The superharmonicity can be established using standard Markov-
ian arguments (see e.g. Chapter I in [13]).

(iii) Fix x, y1, y2 ∈ R and λ ∈ (0, 1). For any τ ∈ Lp/2, by the triangle inequality,

EG(x+B(1)
τ , λy1 + (1− λ)y2 +B(2)

τ ) ≤ λEG(x+B(1)
τ , y1 +B(2)

τ )

+ (1− λ)EG(x+B(1)
τ , y2 +B(2)

τ )

≤ λV (x, y1) + (1− λ)V (x, y2).

It remains to take supremum over τ to get the claim.
(iv) Fix a stopping time τ ∈ Lp/2 and t > 0. We have

E
∣∣∣y +B

(2)
τ∧t

∣∣∣ = E
(
y +B

(2)
τ∧t

)
sgn

(
y +B

(2)
τ∧t

)
.

Consider a martingale ζt = (ζtr)r≥0 given by ζtr = E
[
sgn

(
y +B

(2)
τ∧t

) ∣∣∣Fτ∧r]. There

exists an R2-valued predictable process A = (A(1)
r , A

(2)
r )r such that for all r,

ζtr = Eζtt +
∫ τ∧r

0

AsdBs = Esgn
(
y +B

(2)
τ∧t

)
+
∫ τ∧r

0

AsdBs
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(see e.g. Chapter V in Revuz and Yor [15]). Therefore, using the properties of
stochastic integrals, we may write

E
∣∣∣y +B

(2)
τ∧t

∣∣∣ = yEsgn
(
y +B

(2)
τ∧t

)
+ EB(2)

τ∧t

∫ τ∧t

0

AsdBs

= yEsgn
(
y +B

(2)
τ∧t

)
+ E

∫ τ∧t

0

(0, 1)dBs
∫ τ∧t

0

AsdBs

= yEsgn
(
y +B

(2)
τ∧t

)
+ E

∫ τ∧t

0

A(2)
s ds

= yEsgn
(
y +B

(2)
τ∧t

)
+ E

∫ τ∧t

0

(1, 0)dBs
∫ τ∧t

0

(A(2)
s ,−A(1)

s )dBs

≤ |x|
∣∣∣Esgn

(
y +B

(2)
τ∧t

)∣∣∣+ EB(1)
τ∧t

∫ τ∧t

0

(A(2)
s ,−A(1)

s )dBs

= E
(
x+B

(1)
τ∧t

)[
sgnx

∣∣∣Esgn
(
y +B

(2)
τ∧t

)∣∣∣+
∫ τ∧t

0

(A(2)
s ,−A(1)

s )dBs

]
≤ ||x+B

(1)
τ∧t||p

∣∣∣∣∣∣∣∣sgnx|Esgn(y +B
(2)
τ∧t)|+

∫ τ∧t

0

(A(2)
s ,−A(1)

s )dBs

∣∣∣∣∣∣∣∣
p

p−1

.

Observe that the martingale

(ηtr)r≥0 =
(

sgnx
∣∣∣Esgn

(
y +B

(2)
τ∧t

)∣∣∣+
∫ τ∧r

0

(A(2)
s ,−A(1)

s )dBs

)
r≥0

is differentially subordinate and orthogonal to ζt. Furthermore, we have ||ζt||∞ =
||sgn(y + B

(2)
τ∧t||∞ = 1, so, by (1.9), we see that ||ηt||p/(p−1) ≤ Cp/(p−1),∞. In

consequence,

E|y+B(2)
τ∧t| ≤ Cp/(p−1),∞||x+B(1)

τ∧t||p ≤ E|x+B(1)
τ∧t|p+

(
Cp/(p−1),∞

p

)p/(p−1)

·(p−1)

and it suffices to let t → ∞ to obtain (3.4), using the argument with Burkholder-
Davis-Gundy inequality . �

Proof of (1.8). Fix δ > 0, ε > δ
√

2, and convolve G and V with a nonnegative
C∞ function gδ, supported on the ball with center (0, 0) and radius δ, satisfying
||gδ||1 = 1. As the result, we obtain C∞ functions Gδ and V δ, such that Gδ ≤ V δ

and V δ is superharmonic. Furthermore, by Lemma 3.1 (iii), we have V δyy ≥ 0 and,
by superharmonicity, V δxx ≤ 0. Let ε > 0, t ≥ 0 and apply Itô’s formula to obtain

V δ(ε+Xt, Yt) = V δ(ε+X0, Y0) + I1 +
1
2
I2 +

1
2
I3 + I4,

where I1, I2, I3 and I4 are as in (2.6) (just replace U by V δ and X by ε+X there).
Now we may repeat the arguments from the proof of (1.9), and thus obtain that
EI1 ≤ 0 and I2, I3, I4 are nonpositive. Furthermore, since ε > δ/2, the assumption
on the support of gδ, together with |Y0| ≤ |X0| and (3.4), imply

V δ(ε+X0, Y0) ≤
(
Cp/(p−1),∞

p

)p/(p−1)

· (p− 1).
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Therefore we have proved that

EGδ(ε+Xτ∧t, Yτ∧t) ≤
(
Cp/(p−1),∞

p

)p/(p−1)

· (p− 1).

Obviously, we have |Gδ(x, y)| ≤ |x| + ||y| + δ|p ≤ 2p−1(|y|p + δp). Hence, by
Lebesgue’s dominated convergence theorem, if we let ε→ 0 and δ → 0, we get

E|Yτ∧t| ≤ E|Xτ∧t|p +
(
Cp/(p−1),∞

p

)p/(p−1)

· (p− 1).

By Burkholder-Davis-Gundy inequalities, we may replace τ ∧ t by τ in the above
estimate. Applying it to the pair (X ′, Y ′) = (X/λ, Y/λ) with

λ =
||X||pp1/(p−1)

C
1/(p−1)
p/(p−1),∞

(clearly, the differential subordination and orthogonality remain valid) yields (1.8).
�

Sharpness. We may restrict ourselves to the unit disc of R2 and u, v satisfying
Cauchy-Riemann equations. Then the claim follows immediately by duality. �

4. Proof of Theorem 1.9

Proof of (i). This is straightforward. For any k = 2, 3, . . . we have, by (1.7),

(4.1) ||v||kk ≤ Ckk,∞ =
2k+1

πk+1

∫ ∞
0

| log |t||k

t2 + 1
dt =

4
π

∫ ∞
1

(
2
π log t

)k
t2 + 1

dt,

so, for γ < π/2,

sup
0<r<1

∫ π

−π
Φ(γ|v(reiθ)|) dθ

2π
=
∞∑
k=2

γk||v||kk
k!

≤ 4
π

∫ ∞
1

t2γ/π − 2γ
π log t− 1

t2 + 1
dt

as desired. To see that the bound on the right is the best possible, consider the
pair (u, v) studied at the end of Section 2. Then we have equality in (4.1) for all
k ≥ 2 and hence also (1.10) is sharp. �

Proof of (ii). This follows from (i) by standard duality arguments, since the func-
tions Φ and Ψ are conjugate to each other (in the sense that Φ′ is the inverse to Ψ′

on (0,∞)). We omit the details. �
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