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Abstract. We determine the best constants in the weak-type (p, p) and Lp

estimates for geometric maximal operator on (R, µ). It is also shown that in
higher dimensions such inequalities fail to hold.

1. Introduction

Let µ be a nonnegative Borel measure on Rn. The maximal geometric mean
operator associated with µ is an operator acting on measurable functions f : Rn →
R by the formula

Gf (x) = sup exp

{
1

µ(B)

∫
B

log(|f(y)|)dµ(y)

}
, x ∈ Rn,

where the supremum is taken over all balls B in Rn containing x such that the
integral is defined and 0 < µ(B) <∞; if no such B exists, we put Gf (x) = 0. This
operator was introduced in the one-dimensional setting by X. Shi, who studied
weighted Lp estimates for this object. More precisely, it was proved in [14] that if
0 < p <∞ is fixed and µ is Lebesgue measure on R, then the inequality∫

R
Gf (x)pw(x)dµ(x) ≤ C1

∫
R
|f(x)|pw(x)dµ(x)

holds for all f ∈ Lp(wdµ) if and only if w satisfies Muckenhoupt’s (A∞) condition

sup
I

(
1

|I|

∫
I

w(x)dµ(x)

)(
exp

{
1

|I|

∫
I

log(1/w(x))dµ(x)

})
≤ C2.

Here the supremum is taken over all intervals I (see [8], [11]). Hu et. al. [9] showed
that for each 0 < p <∞, the latter requirement is equivalent to the validity of the
weak-type estimate

sup
λ>0

λ

{∫
{x:Gf (x)≥λ}

w(x)dµ(x)

}1/p

≤ C3

{∫
R
|f(x)|pw(x)dµ(x)

}1/p

for all f ∈ Lp(wdµ). These results have been extended in many directions, including
two-weight case (see Cruz-Uribe [3], Cruz-Uribe and Neugebauer [4], Hu et. al. [9],
Yin and Muckenhoupt [12]) and one-sided case (Luor [10], Ortega and Ramı́rez
[13]). The concept of maximal geometric mean operator has been also transferred
to probability theory: see [1], [2] and [15].
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The purpose of this paper is to determine best constants in the weak- and strong-
type inequalities for maximal geometric operators associated to general Borel mea-
sures in the one-dimensional setting. For a given measure µ on R and a measurable
f : R→ R, put

||f ||Lp(R,µ) =

{∫
R
|f(x)|pdµ(x)

}1/p

and

||f ||Lp,∞(R,µ) = sup
λ>0

{
λpµ({x : Gf (x) > λ})

}1/p

.

Our main results can be stated as follows.

Theorem 1.1. For any 0 < p <∞ and any measurable function f ,

(1.1) ||Gf ||Lp,∞(R,µ) ≤
(

2

e log 2

)1/p

||f ||Lp(R,µ).

If µ is Lebesgue measure, then the inequality is sharp for each p.

Theorem 1.2. For any 0 < p <∞ and any measurable function f ,

(1.2) ||Gf ||Lp(R,µ) ≤ c1/p||f ||Lp(R,µ),

where c = 3.5911 . . . is the unique solution to the equation

(1.3) log c =
c+ 1

c
.

If µ is Lebesgue measure, then the inequality is sharp for each p.

We have organized this note as follows. In the next section we prove Theorem 1.1,
as well as its extension concerning the more general class of weak-Φ estimates. In
Section 3 we deal with the strong-type estimate. The final part of the paper concerns
the following negative, higher-dimensional result: neither weak- nor strong-type
estimate for Gf holds in Rn, n ≥ 2.

2. Weak-type estimate

We start with the following auxiliary fact.

Lemma 2.1. For any x ∈ R we have

(2.1) ex ≥ e

4
x+

e log 2

2
and

(2.2) ex ≥ e

2
x+

e log 2

2
.

Proof. This follows from a straightforward calculus. We leave the details to the
reader. �

Proof of (1.1). We must prove that for any p, λ > 0 and any function f ∈ Lp(R, µ)
we have

λpµ({x ∈ R : Gf (x) > λ}) ≤ 2

e log 2

∫
R
|f(x)|pdµ(x).

Replacing f with λf if necessary, we may assume that λ = 1. Similarly, plugging
|f |1/p in the place of f , we see that it suffices to establish the above bound for p = 1
and nonnegative f .
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By the definition of Gf , if Gf (x) > 1, then there is a non-degenerate interval Ix
containing x such that

(2.3)
1

µ(Ix)

∫
Ix

log f(y)dµ(y) > 0

and we have Gf > 1 on Ix. By Lindelöf’s theorem, we may pick a countable
subcollection {Ij}j≥1 such that

∞⋃
j=1

Ij =
⋃{

Ix : Gf (x) > 1}.

For a fixed integer N , put IN = {I1, I2, . . . , IN} and let

FN =
⋃
I∈IN

I.

By Lemma 4.4 in [6], there are two subcollections I1 and I2 of IN such that the
intervals in each of these are pairwise disjoint and

FN =

2⋃
i=1

⋃
I∈Ii

I

(this splitting is possible only in the one-dimensional case; the argument breaks
down in Rn, n ≥ 2). Therefore, we can write FN as the sum A∪B, where A is the
set of those x ∈ FN , which belong to exactly one element of I1 ∪ I2 and B is the
set of those x, which lie in one element of I1 and one element of I2. By (2.1),∫

A

f(x)dµ(x) =

∫
A

elog f(x)dµ(x) ≥ e

4

∫
A

log f(x)dµ(x) +
e log 2

2
µ(A)

and, similarly, by (2.2),∫
B

f(x)dµ(x) =

∫
B

elog f(x)dµ(x) ≥ e

2

∫
B

log f(x)dµ(x) +
e log 2

2
µ(B).

Summing these two estimates, we get∫
FN

f(x)dµ(x) ≥ e

4

∑
I∈I1∪I2

∫
I

log f(x)dµ(x) +
e log 2

2
µ(FN ).

However, by (2.3), each term under the above sum is positive. Therefore,∫
FN

f(x)dµ(x) ≥ e log 2

2
µ(FN )

and letting N →∞ yields

µ({x : Gf (x) > 1}) = µ

 ∞⋃
j=1

Ij

 ≤ 2

e log 2

∫
{Gf>1}

f(x)dµ(x)

≤ 2

e log 2

∫
R
f(x)dµ(x),

which is the desired estimate. We turn to the sharpness of this bound: assume
that µ is the Lebesgue measure. First note that by the arguments presented at the
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beginning of the proof, it suffices to focus on the case p = 1. Consider the function
f : R→ R given by

f(x) =
e

2
χ{|x|≤1}(x) +

e

4
χ{1<|x|≤1/(2 log 2−1)}.

We compute that∫ 1

−1/(2 log 2−1)

log f(x)dµ(x) =

(
1

2 log 2− 1
− 1

)
log

e

4
+ 2 log

e

2
= 0

and, similarly, ∫ 1/(2 log 2−1)

−1

log f(x)dµ(x) = 0.

This implies Gf > 1 on the interval (−1/(2 log 2− 1), 1/(2 log 2− 1)) and hence

||Gf ||L1,∞(R,µ) ≥ µ(Gf > 1) ≥ 2

2 log 2− 1
.

On the other hand, we easily check that∫
R
f(x)dµ(x) =

e log 2

2
· 2

2 log 2− 1
.

This shows the optimality and completes the proof of Theorem 1.1. �

Remark 2.2. The reasoning presented above can be used to obtain much wider
class of weak Φ-estimates. Suppose that Φ : [0,∞) → [0,∞) is a C1 function
satisfying Φ(0) = 0, limx↓0 xΦ′(x) = 0, limx→∞ Φ′(x)x = ∞ and such that the
composition x 7→ Φ(ex) is strictly convex on R. We will show how to determine the
best constant CΦ in the inequality

Φ(1)µ({x ∈ R : Gf (x) > 1}) ≤ CΦ

∫
R

Φ(|f(x)|)dµ(x).

For any β ∈ [0,Φ(1)], let α−(β), α+(β) (α−(β) < α+(β)) be the slopes of two
lines passing through (0, β), tangent to the graph of the function x 7→ Φ(ex). By
Darboux property, there is a unique β0 for which α+(β0) = 2α−(β0) (indeed: we
have α+(0) > 0 = 2α−(0) and α−(Φ(1)) = α+(Φ(1)) > 0). Replace (2.1) and (2.2)
with the estimates

Φ(ex) ≥ α−(β0)x+ β0, Φ(ex) ≥ α+(β0)x+ β0

and repeat all the above arguments to obtain the inequality

(2.4) Φ(1)µ({x ∈ R : Gf (x) > 1}) ≤ Φ(1)

β0

∫
R

Φ(|f(x)|)dµ(x).

To see that this bound is sharp, let µ be the Lebesgue measure and let x± be
numbers satisfying Φ(ex±) = α±(β0)x± + β0. Define f : R→ R by the formula

f(x) = ex+χ[−a,a](x) + ex−χ[−1,1]\[−a,a](x),

where the number a ∈ (0, 1) is chosen to satisfy
∫ 1

−a log fdµ = 0 (then, by symmetry,

we also have
∫ a
−1

log fdµ = 0). Directly from this property of a and the definition of
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the geometric maximal operator, we have Gf > 1 on (−1, 1); thus, |{Gf > 1}| ≥ 2.
On the other hand,∫

R
Φ(f)dµ =

∫
[−a,a]

Φ(ex+)dµ+

∫
[−1,1]\[−a,a]

Φ(ex−)dµ

=

∫
[−a,a]

[
α+(β0)x+ + β0

]
dµ+

∫
[−1,1]\[−a,a]

[
α−(β0)x− + β0

]
dµ

= α−(β0)

[∫
[−a,1]

log fdµ+

∫
[−1,a]

log fdµ

]
+ 2β0

= 2β0

and hence both sides of (2.4) are equal.

3. Lp-estimate

We start with two auxiliary results.

Lemma 3.1. For any nonnegative function f on R such that the integral
∫
R log fdµ

is well-defined, we have

(3.1)

∫
{Gf>1}

log fdµ+

∫
{f>1}

log fdµ ≥ 0.

Proof. Let N be an arbitrary integer and let FN , {Ij}j≥1, Ii, A and B be as in
the proof of (1.1) above. Write∫

FN

log fdµ =

∫
A

log fdµ+

∫
B

log fdµ =
∑

I∈I1∪I2

∫
I

log fdµ−
∫
B

log fdµ.

However, ∫
B

log fdµ ≤
∫
B∩{f>1}

log fdµ ≤
∫
{f>1}

log fdµ,

which combined with the previous identity (and the fact that
∫
I

log fdµ ≥ 0 for
any I ∈ I1 ∪ I2) gives ∫

FN

log fdµ+

∫
{f>1}

log fdµ ≥ 0.

It remains to let N →∞ to get the claim. �

We will also need the following technical fact. Recall the number c given by the
equation (1.3).

Lemma 3.2. For any x, y ≥ 0 we have

(3.2) y log x− y log y + x+ y ≤ (cx− y) log c.

Proof. By continuity of both sides, we may assume that y > 0. Divide throughout
by y to transform the inequality into

log s+ 1 + s ≤ (cs− 1) log c,

which follows by a straightforward analysis: the left hand side is a concave function
of s, the right-hand side is a linear function of s, and both these functions agree,
along with their derivatives, at the point s = 1/c (see (1.3)). �



6 ADAM OSȨKOWSKI

Proof of (1.2). Arguing as in the previous section, it suffices to establish the es-
timate for p = 1. Fix a function f : R → R; we may and do assume that f is
integrable, since otherwise the right-hand side of (1.2) is infinite and there is noth-
ing to prove. Pick λ > 0, apply the inequality (3.1) to |f |/λ and integrate the
obtained bound over λ. We get∫ ∞

0

∫
R

log(|f |/λ)
{
χ{Gf>λ} + χ{|f |>λ}

}
dµdλ ≥ 0.

Since f is integrable, the use of Fubini’s theorem is allowed and we obtain∫
R

[
Gf log |f | −Gf logGf +Gf + |f |

]
dµ ≥ 0.

This, by (3.2), implies
∫
R c|f | −Gfdµ ≥ 0, and we are done. �

Sharpness. Again, we may restrict ourselves to p = 1. Let µ be the Lebesgue
measure on R. Fix ε ∈ (0, 1/2) and consider the function f on R given by

fε(x) = ε−1χ{|x|≤ε} + |x|−1χ{ε<|x|≤ε−1}.

We have ||fε||L1(R,µ) = 2(1− 2 log ε). Furthermore, for any x ∈ (cε, ε−1), we easily
derive that

1

|[−c−1x, x]|

∫ x

−c−1x

log fεdµ = 1− log x+
1

c+ 1
log c− 2ε

(1 + c−1)x

= log c− log x− 2ε

(1 + c−1)x

and consequently, Gfε(x) ≥ c
x exp

(
− 2ε

(1+c−1)x

)
. By symmetry, we have Gfε(x) ≥

c
|x| exp

(
− 2ε

(1+c−1)|x|

)
whenever x ∈ (−ε−1,−cε), and therefore,∫

RGfεdµ

||fε||L1(R,µ)
≥ c(1− 2 log ε)−1

∫ ε−1

cε

1

x
exp

(
− 2ε

(1 + c−1)x

)
dx

= c(1− 2 log ε)−1

∫ ε−2

c

1

x
exp

(
− 2

(1 + c−1)x

)
dx.

It remains to note that, by l’Hospital rule, the latter expression converges to c as
ε→ 0. This proves the desired sharpness. �

4. Higher-dimensional setting

There is a natural question about the analogues of the previous results in the
higher-dimensional case. Unfortunately, the answer is negative: if n ≥ 2, then the
geometric maximal operator is in general not bounded on Lp for any p > 0. In fact,
as we will prove now, it does not even map Lp(Rn, µ) into Lp,∞(Rn, µ) for general
measures µ. Consider the following example (similar constructions can be found in
[5] and [7]). Let B1, B2, . . . be closed balls in Rn such that the origin lies on the
boundary of each ball and such that for every Bj there is a point xj ∈ Bj \

⋃
i6=j Bi.

In addition, put x0 = 0 and define the measure µ on Rn by

µ =

∞∑
j=0

δxj
,
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where δx stands for Dirac measure concentrated on x. Let f be given by

f(x) =

∞∑
j=0

(j + 1)−3/(2p)χ{xj}(x).

Then

||f ||Lp(R,µ) =

 ∞∑
j=0

(j + 1)−3/2

1/p

<∞,

but, on the other hand,

Gf (xj) ≥ exp

(
1

µ(Bj)

∫
Bj

log fdµ

)

= exp

(
log 1 + log(j + 1)−3/(2p)

2

)
= (j + 1)−3/(4p), j = 0, 1, 2, . . . .

Consequently,

||Gf ||Lp,∞(R,µ) ≥ sup
j

{
(j + 1)−3/(4p)

[
µ(Gf > (j + 1)−3/(4p))

]1/p}
= sup

j

{
j1/p(j + 1)−3/(4p)

}
=∞

and hence the weak-type bound does not hold for G.
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