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Abstract. For any fixed α ∈ [0, 1] and λ > 0 we determine the optimal
function Vα,λ satisfying

P(max
n

|gn| ≥ λ) ≤ EVα,λ(f0, g0)

for any submartingale f = (fn) bounded in absolute value by 1 and any process
g = (gn) which is real-valued, adapted, integrable and satisfying

|dgn| ≤ |dfn| and |E(dgn|Fn−1)| ≤ αE(dfn|Fn−1), n = 1, 2 . . . ,

with probability 1. As a corollary, a sharp exponential inequality for the
distribution function of maxn |gn| is established.

1. Introduction

Let (Ω,F ,P) be a probability space, equipped with a discrete filtration (Fn).
Let f = (fn)∞n=0, g = (gn)∞n=0 be adapted integrable processes taking values in a
certain separable Hilbert space H. The difference sequences df = (dfn), dg = (dgn)
of these processes are given by

df0 = f0, dfn = fn − fn−1, dg0 = g0, dgn = gn − gn−1, n = 1, 2, . . . .

Let g∗ stand for the maximal function of g, that is, g∗ = maxn |gn|.
The following notion of differential subordination is due to Burkholder. The

process g is differentially subordinate to f (or, in short, subordinate to f) if for any
nonnegative integer n we have, almost surely,

|dgn| ≤ |dfn|.
We will slightly change this definition and say that g is differentially subordinate
to f , if the above inequality for the differences holds for any positive integer n.

Let α be a fixed nonnegative number. Then g is α-differentially subordinate to
f (or, in short, α-subordinate to f), if it is subordinate to f and for any positive
integer n we have

|E(dgn|Fn−1)| ≤ α|E(dfn|Fn−1)|.
This concept was introduced by Burkholder in [2] in the special case α = 1. In
general form, it first appeared in the paper by Choi [3].

In the sequel it will sometimes be convenient to work with simple processes. A
process f is called simple, if for any n the variable fn is simple and there exists N
such that fN = fN+1 = fN+2 = . . . . Given such a process, we will identify it with
the finite sequence (fn)N

n=0.
Assume that the processes f and g are real-valued and fix α ∈ [0, 1]. The objec-

tive of this paper is to establish a sharp exponential inequality for the distribution
function of g∗ under the assumption that f is a submartingale satisfying ||f ||∞ ≤ 1
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and g is α-subordinate to f . To be more precise, for any λ > 0 define the function
Vα,λ : [−1, 1]× R → R by the formula

(1.1) Vα,λ(x0, y0) = sup P(g∗ ≥ λ).

Here the supremum is taken over all pairs (f, g) of integrable adapted processes,
such that (f0, g0) ≡ (x0, y0) almost surely, f is a submartingale satisfying ||f ||∞ ≤ 1
and g is α-subordinate to f . The filtration must also vary, as well as the probability
space, unless it is nonatomic. Our main result is an explicit formula for the functions
Vα,λ, λ > 0. Usually we will omit the index α and write Vλ instead of Vα,λ.

Let us discuss some related results which appeared in the literature. In [1]
Burkholder studied the analogous question in the case of f , g being Hilbert space-
valued martingales. The paper [1] contains also a related one-sided sharp exponen-
tial inequality for real martingales. This work was later extended by Hammack [4],
who established a similar (two-sided) inequality under the assumption that f is a
submartingale bounded by 1 and g is Rν-valued, ν ≥ 1, and strongly 1-subordinate
to f . Both papers present applications to stochastic integrals.

The paper is organized as follows. In the next section we introduce a family of
special functions Uλ, λ > 0 and study their properties. This enables us to establish
the inequality Vλ ≤ Uλ in Section 3. Then we prove the reverse inequality in the
last section.

Throughout the paper, α is a fixed number from the interval [0, 1]. All the
considered processes are assumed to be real valued.

2. The explicit formulas

Let S be the strip [−1, 1]×R. Consider the following subsets of S: for 0 < λ ≤ 2,

Aλ = {(x, y) ∈ S : |y| ≥ x+ λ− 1},
Bλ = {(x, y) ∈ S : 1− x ≤ |y| < x+ λ− 1},
Cλ = {(x, y) ∈ S : |y| < 1− x and |y| < x+ λ− 1}.

For λ ∈ (2, 4), define

Aλ = {(x, y) ∈ S : |y| ≥ αx+ λ− α},
Bλ = {(x, y) ∈ S : αx+ λ− α > |y| ≥ x− 1 + λ},
Cλ = {(x, y) ∈ S : x− 1 + λ > |y| ≥ 1− x},
Dλ = {(x, y) ∈ S : 1− x > |y| ≥ −x− 3 + λ and |y| < x− 1 + λ},
Eλ = {(x, y) ∈ S : −x− 3 + λ > |y|}.

Finally, for λ ≥ 4, let

Aλ = {(x, y) ∈ S : |y| ≥ αx+ λ− α},
Bλ = {(x, y) ∈ S : αx+ λ− α > |y| ≥ x− 1 + λ},
Cλ = {(x, y) ∈ S : x− 1 + λ > |y| ≥ −x− 3 + λ},
Dλ = {(x, y) ∈ S : −x− 3 + λ > |y| ≥ 1− x},
Eλ = {(x, y) ∈ S : 1− x > |y|}.

Let H : S × (−1,∞) → R be a function given by

(2.1) H(x, y, z) =
1

α+ 2

[
1 +

(x+ 1 + |y|)1/(α+1)((α+ 1)(x+ 1)− |y|)
(1 + z)(α+2)/(α+1)

]
.

Now we will define the special functions Uλ : S → R. For 0 < λ ≤ 2, let

(2.2) Uλ(x, y) =


1 if (x, y) ∈ Aλ,

2−2x
1+λ−x−|y| if (x, y) ∈ Bλ,

1− (λ−1+x−|y|)(λ−1+x+|y|)
λ2 if (x, y) ∈ Cλ.
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For 2 < λ < 4, set

(2.3) Uλ(x, y) =



1 if (x, y) ∈ Aλ,

1− (α(x− 1)− |y|+ λ) · 2λ−4
λ2 if (x, y) ∈ Bλ,

2−2x
1+λ−x−|y| −

2(1−x)(1−α)(λ−2)
λ2 if (x, y) ∈ Cλ,

2(1−x)
λ

[
1− (1−α)(λ−2)

λ

]
− (1−x)2−|y|2

λ2 if (x, y) ∈ Dλ,

aλH(x, y, λ− 3) + bλ if (x, y) ∈ Eλ,

where

(2.4) aλ = −2(1 + α)(λ− 2)2

λ2
, bλ = 1− 4(λ− 2)(1− α)

λ2
.

For λ ≥ 4, set

(2.5) Uλ(x, y) =



1 if (x, y) ∈ Aλ,

1− α(x−1)−|y|+λ
4 if (x, y) ∈ Bλ,

2−2x
1+λ−x−|y| −

(1−x)(1−α)
4 if (x, y) ∈ Cλ,

(1−x)(1+α)
4 exp

(
3+x+|y|−λ

2(α+1)

)
if (x, y) ∈ Dλ,

aλH(x, y, 1) + bλ if (x, y) ∈ Eλ,

where

(2.6) aλ = −bλ = − (1 + α)
2

exp
( 4− λ

2α+ 2

)
.

For α = 1, the formulas (2.2), (2.3), (2.5) give the special functions constructed
by Hammack [4]. The key properties of Uλ are described in the two lemmas below.

Lemma 2.1. For λ > 2, let φλ, ψλ denote the partial derivatives of Uλ with respect
to x, y on the interiors of Aλ, Bλ, Cλ, Dλ, Eλ, extended continuously to the whole
of these sets. The following statements hold.

(i) The functions Uλ, λ > 2, are continuous on S \ {(1,±λ)} .
(ii) Let

Sλ = {(x, y) ∈ [−1, 1]× R : |y| 6= αx+ λ− α and |y| 6= x+ λ− 1}.

Then

(2.7) φλ, ψλ, λ > 2, are continuous on Sλ.

(iii) For any (x, y) ∈ S, the function λ 7→ Uλ(x, y), λ > 0, is left-continuous.
(iv) For any λ > 2 we have the inequality

(2.8) φλ ≤ −α|ψλ|.

(v) For λ > 2 and any (x, y) ∈ S we have χ{|y|≥λ} ≤ Uλ(x, y) ≤ 1.

Proof. We start with computing the derivatives. Let y′ = y/|y| stand for the sign
of y, with y′ = 0 if y = 0. For λ ∈ (2, 4) we have

φλ(x, y) =



0 if (x, y) ∈ Aλ,

− (2λ−4)α
λ2 if (x, y) ∈ Bλ,

− 2λ−2|y|
(1+λ−x−|y|)2 + (2λ−4)(1−α)

λ2 if (x, y) ∈ Cλ,

− 2
λ

[
1− (1−α)(λ−2)

λ

]
+ 2(1−x)

λ2 if (x, y) ∈ Dλ,

−cλ(x+ |y|+ 1)−α/(α+1)(x+ 1 + α
α+1 |y|) if (x, y) ∈ Eλ,
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ψλ(x, y) =



0 if (x, y) ∈ Aλ,
2λ−4

λ2 y′ if (x, y) ∈ Bλ,
2−2x

(1+λ−x−|y|)2 y
′ if (x, y) ∈ Cλ,

2y
λ2 if (x, y) ∈ Dλ,

cλ(x+ |y|+ 1)−α/(α+1) y
1+α if (x, y) ∈ Eλ,

where
cλ = 2(1 + α)(λ− 2)α/(α+1)λ−2.

Finally, for λ ≥ 4, set

φλ(x, y) =



0 if (x, y) ∈ Aλ,

−α
4 if (x, y) ∈ Bλ,

− 2λ−2|y|
(1+λ−x−|y|)2 + 1−α

4 if (x, y) ∈ Cλ,

−x+1+2α
8 exp

(
x+|y|+3−λ

2(α+1)

)
if (x, y) ∈ Dλ,

−cλ(x+ |y|+ 1)−α/(α+1)(x+ 1 + α
α+1 |y|) if (x, y) ∈ Eλ,

ψλ(x, y) =



0 if (x, y) ∈ Aλ,
1
4y

′ if (x, y) ∈ Bλ,
2−2x

(1+λ−x−|y|)2 y
′ if (x, y) ∈ Cλ,

(1−x)
8 exp

(
x+|y|+3−λ

2(α+1)

)
y′ if (x, y) ∈ Dλ,

cλ(x+ |y|+ 1)−α/(α+1) y
1+α if (x, y) ∈ Eλ,

where
cλ = (1 + α)2−(2α+3)/(α+1) exp

( 4− λ

2(α+ 1)

)
.

Now the properties (i), (ii), (iii) follow by straightforward computation. To prove
(iv), note first that for any λ > 2 the condition (2.8) is clearly satisfied on the sets Aλ

and Bλ. Suppose (x, y) ∈ Cλ. Then λ−|y| ∈ [0, 4], 1−x ≤ min{λ−|y|, 4−λ+ |y|}
and (2.8) takes form

−2(λ− |y|) +
2λ− 4
λ2

(1− α)(1− x+ λ− |y|)2 + 2α(1− x) ≤ 0,

or

(2.9) −2(λ− |y|) +
1− α

4
· (1− x+ λ− |y|)2 + 2α(1− x) ≤ 0,

depending on whether λ < 4 or λ ≥ 4. As (2λ−4)/λ2 ≤ 1
4 , it suffices to show (2.9).

If λ− |y| ≤ 2, then, as 1− x ≤ λ− |y|, the left-hand side does not exceed

−2(λ− |y|) + (1−α)(λ− |y|)2 + 2α(λ− |y|) = (λ− |y|)(−2 + (1−α)(λ− |y|) + 2α)

≤ (λ− |y|)(−2 + 2(1− α) + 2α) = 0.
Similarly, if λ− |y| ∈ (2, 4], then we use the bound 1−x ≤ 4−λ+ |y| and conclude
that the left-hand side of (2.9) is not greater than

−2(λ− |y|) + 4(1− α) + 2α(4− λ+ |y|) = −2(λ− |y| − 2)(1 + α) ≤ 0

and we are done with the case (x, y) ∈ Cλ.
Assume that (x, y) ∈ Dλ. For λ ∈ (2, 4), the inequality (2.8) is equivalent to

− 2
λ

[
1− (1− α)(λ− 2)

λ

]
+

2− 2x
λ2

≤ −2α|y|
λ2

,

or, after some simplifications, α|y|+ 1− x ≤ 2 + αλ− 2α. It is easy to check that
α|y|+ 1− x attains its maximum for x = −1 and |y| = λ− 2 and then we have the
equality. If (x, y) ∈ Dλ and λ ≥ 4, then (2.8) takes form −(2α+1+x) ≤ −α(1−x),
or (x+ 1)(α+ 1) ≥ 0. Finally, on the set Eλ, the inequality (2.8) is obvious.
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(v) By (2.8), we have φλ ≤ 0, so Uλ(x, y) ≥ Uλ(1, y) = χ{|y|≥λ}. Furthermore, as
Uλ(x, y) = 1 for |y| ≥ λ and ψλ(x, y)y′ ≥ 0 on Sλ, the second estimate follows. �

Lemma 2.2. Let x, h, y, k be fixed real numbers, satisfying x, x+h ∈ [−1, 1] and
|k| ≤ |h|. Then for any λ > 2 and α ∈ [0, 1),

(2.10) Uλ(x+ h, y + k) ≤ Uλ(x, y) + φλ(x, y)h+ ψλ(x, y)k.

We will need the following fact, proved by Burkholder; see page 17 of [1].

Lemma 2.3. Let x, h, y, k, z be real numbers satisfying |k| ≤ |h| and z > −1.
Then the function

F (t) = H(x+ th, y + tk, z),

defined on {t : |x+ th| ≤ 1}, is convex.

Proof of the Lemma 2.2. Consider the function

G(t) = Gx,y,h,k(t) = Uλ(x+ th, y + tk),

defined on the set {t : |x + th| ≤ 1}. It is easy to check that G is continuous. As
explained in [1], the inequality (2.10) follows once the concavity of G is established.
This will be done by proving the inequality G′′ ≤ 0 at the points, where G is twice
differentiable and checking the inequality G′+(t) ≤ G′−(t) for those t, for which G
is not differentiable (even once). Note that we may assume t = 0, by a translation
argument G′′x,y,h,k(t) = G′′x+th,y+tk,h,k(0), with analogous equalities for one-sided
derivatives. Clearly, we may assume that h ≥ 0, changing the signs of both h, k, if
necessary. Due to the symmetry of Uλ, we are allowed to consider y ≥ 0 only.

We start from the observation that G′′(0) = 0 on the interior of Aλ and G′+(0) ≤
G′−(0) for (x, y) ∈ Aλ ∩ Bλ. The latter inequality holds since Uλ ≡ 1 on Aλ and
Uλ ≤ 1 on Bλ. For the remaining inequalities, we consider the cases λ ∈ (2, 4),
λ ≥ 4 separately.

The case λ ∈ (2, 4). The inequality G′′(0) ≤ 0 is clear for (x, y) lying in the
interior of Bλ. On Cλ, we have

(2.11) G′′(0) = −4(h+ k)(h(λ− y)− k(1− x))
(1− x− y + λ)3

≤ 0,

which follows from |k| ≤ h and the fact that λ−y ≥ 1−x. For (x, y) in the interior
of Dλ,

G′′(0) =
−h2 + k2

λ2
≤ 0,

as |k| ≤ h. Finally, on Eλ, the concavity follows by Lemma 2.3.
It remains to check the inequalities for one-sided derivatives. By Lemma 2.1 (ii),

the points (x, y), for which G is not differentiable at 0, do not belong to Sλ. Since
we excluded the set Aλ ∩ Bλ, they lie on the line y = x − 1 + λ. For such points
(x, y), the left derivative equals

G′−(0) = −2λ− 4
λ2

(αh− k),

while the right one is given by

G′+(0) =
−h+ k

2(λ− y)
+

(2λ− 4)(1− α)h
λ2

,

or

G′+(0) = −2h
λ

[
1− (1− α)(λ− 2)

λ

]
+

2(1− x)h+ 2yk
λ2

,
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depending on whether y ≥ 1 − x or y < 1 − x. In the first case, the inequality
G′+(0) ≤ G′−(0) reduces to

(h− k)
( 1

2(λ− y)
− 2(λ− 2)

λ2

)
≥ 0,

while in the remaining one,

2
λ2

(h− k)(y − (λ− 2)) ≥ 0.

Both inequalities follow from the estimate λ− y ≤ 2 and the condition |k| ≤ h.
The case λ ≥ 4. On the set Bλ the concavity is clear. For Cλ, we have that the

formula (2.11) holds. If (x, y) lies in the interior of Dλ, then

G′′(0) =
1
8

exp
(3 + x+ y − λ

2(α+ 1)

)[ 1− x

2(α+ 1)
·(−h2 +k2)−

(
2− 1− x

α+ 1

)
(h2 +hk)

]
≤ 0,

since |k| ≤ h and (1 − x)/(α + 1) ≤ 2. The concavity on Eλ is a consequence of
Lemma 2.3. It remains to check the inequality for one-sided derivatives. By Lemma
2.1 (ii), we may assume y = x+ λ− 1, and the inequality G′+(0) ≤ G′−(0) reads

1
2
(h− k)

( 1
λ− y

− 1
2

)
≥ 0,

an obvious one, as λ− y ≤ 2. �

3. The main theorem

Now we may state and prove the main result of the paper.

Theorem 3.1. Suppose f is a submartingale satisfying ||f ||∞ ≤ 1 and g is an
adapted process which is α-subordinate to f . Then for all λ > 0 we have

(3.1) P(g∗ ≥ λ) ≤ EUλ(f0, g0).

Proof. If λ ≤ 2, then this follows immediately from the result of Hammack [4];
indeed, note that Uλ coincides with Hammack’s special function and, furthermore,
since g is α-subordinate to f , it is also 1-subordinate to f .

Fix λ > 2. We may assume α < 1. It suffices to show that for any nonnegative
integer n,

(3.2) P(|gn| ≥ λ) ≤ EUλ(f0, g0).

To see that this implies (3.1), fix ε > 0 and consider a stopping time τ = inf{k :
|gk| ≥ λ − ε}. The process fτ = (fτ∧n), by Doob’s optional sampling theorem, is
a submartingale. Furthermore, we obviously have that ||fτ ||∞ ≤ 1 and the process
gτ = (gτ∧n) is α-subordinate to fτ . Therefore, by (3.2),

P(|gτ
n| ≥ λ− ε) ≤ EUλ−ε(fτ

0 , g
τ
0 ) = EUλ−ε(f0, g0).

Now if we let n→∞, we obtain P(g∗ ≥ λ) ≤ EUλ−ε(f0, g0) and by left-continuity
of Uλ as a function of λ, (3.1) follows.

Thus it remains to establish (3.2). By Lemma 2.1 (v), P(|gn| ≥ λ) ≤ EUλ(fn, gn)
and it suffices to show that for all 1 ≤ j ≤ n we have

(3.3) EUλ(fj , gj) ≤ EUλ(fj−1, gj−1).

To do this, note that, since |dgj | ≤ |dfj | almost surely, the inequality (2.10) yields

(3.4) Uλ(fj , gj) ≤ Uλ(fj−1, gj−1) + φλ(fj−1, gj−1)dfj + ψλ(fj−1, gj−1)dgj
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with probability 1. Assume for now that φλ(fj−1, gj−1)dfj , ψλ(fj−1, gj−1)dgj are
integrable. By α-subordination, the condition (2.8) and the submartingale property
E(dj |Fj−1) ≥ 0, we have

E
[
φλ(fj−1, gj−1)dfj + ψλ(fj−1, gj−1)dgj |Fj−1

]
≤ φλ(fj−1, gj−1)E(dfj |Fj−1) +

∣∣ψλ(fj−1, gj−1)
∣∣ · ∣∣E(dgj |Fj−1)

∣∣
≤

[
φλ(fj−1, gj−1) + α|ψλ(fj−1, gj−1)|

]
E(dfj |Fj−1) ≤ 0.

Therefore, it suffices to take the expectation of both sides of (3.4) to obtain (3.3).
Thus the proof will be complete if we show the integrability of φλ(fj−1, gj−1)dfj

and ψλ(fj−1, gj−1)dgj . In both the cases λ ∈ (2, 4), λ ≥ 4, all we need is that the
variables

(3.5)
2λ− 2|gj−1|

(1− fj−1 − |gj−1|+ λ)2
dfj and

2− 2fj−1

(1− fj−1 − |gj−1|+ λ)2
dgj

are integrable on the set K = {|gj−1| < fj−1 +λ−1, |gj−1| ≥ λ−1}, since outside
it the derivatives φλ, ψλ are bounded by a constant depending only on α, λ and
|dfj |, |dgj | do not exceed 2. The integrability is proved exactly in the same manner
as in [4]. We omit the details. �

We will now establish the following sharp exponential inequality.

Theorem 3.2. Suppose f is a submartingale satisfying ||f ||∞ ≤ 1 and g is an
adapted process which is α-subordinate to f . In addition, assume that |g0| ≤ |f0|
with probability 1. Then for λ ≥ 4 we have

(3.6) P(g∗ ≥ λ) ≤ γe−λ/(2α+2),

where
γ =

1 + α

2α+ 4
(
α+ 1 + 2−

α+2
α+1

)
exp

( 2
α+ 1

)
.

The inequality is sharp.

This should be compared to Burkholder’s estimate (Theorem 8.1 in [1])

P(g∗ ≥ λ) ≤ e2

4
· e−λ, λ ≥ 2,

in the case when f , g are Hilbert space-valued martingales and g is subordinate to
f . For α = 1, we obtain the inequality of Hammack [4],

P(g∗ ≥ λ) ≤ (8 +
√

2)e
12

· e−λ/4, λ ≥ 4.

Proof of the inequality (3.6). We will prove that the maximum of Uλ on the set
K = {(x, y) ∈ S : |y| ≤ |x|} is given by the right hand side of (3.6). This,
together with the inequality (3.1) and the assumption P((f0, g0) ∈ K) = 1, will
imply the desired estimate. Clearly, by symmetry, we may restrict ourselves to the
set K+ = K ∩ {y ≥ 0}. If (x, y) ∈ K+ and x ≥ 0, then it is easy to check that

Uλ(x, y) ≤ Uλ((x+ y)/2, (x+ y)/2).

Furthermore, a straightforward computation shows that the function F : [0, 1] → R
given by F (s) = Uλ(s, s) is nonincreasing. Thus we have Uλ(x, y) ≤ Uλ(0, 0). On
the other hand, if (x, y) ∈ K+ and x ≤ 0, then it is easy to prove that Uλ(x, y) ≤
Uλ(−1, x + y + 1) and the function G : [0, 1] → R given by G(s) = Uλ(−1, s) is
nondecreasing. Combining all these facts we have that for any (x, y) ∈ K+,

(3.7) Uλ(x, y) ≤ Uλ(−1, 1) = γe−λ/(2α+2).

Thus (3.6) holds. The sharpness will be shown in the next section. �
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4. Sharpness

Recall the function Vλ = Vα,λ defined by (1.1) in the introduction. The main
result in this section is Theorem 4.1 below, which, combined with Theorem 3.1,
implies that the functions Uλ and Vλ coincide. If we apply this at the point (−1, 1)
and use the equality appearing in (3.7), we obtain that the inequality (3.6) is sharp.

Theorem 4.1. For any λ > 0 we have

(4.1) Uλ ≤ Vλ.

The main tool in the proof is the following ,,splicing” argument. Assume that
the underlying probability space is the interval [0, 1] with the Lebesgue measure.

Lemma 4.1. Fix (x0, y0) ∈ [−1, 1] × R. Suppose there exists a filtration and
a pair (f, g) of simple adapted processes, starting from (x0, y0), such that f is a
submartingale satisfying ||f ||∞ ≤ 1 and g is α-subordinate to f . Then Vλ(x0, y0) ≥
EVλ(f∞, g∞) for λ > 0.

Proof. Let N be such that (fN , gN ) = (f∞, g∞) and fix ε > 0. With no loss of
generality, we may assume that σ-field generated by f, g is generated by the family
of intervals {[ai, ai+1) : i = 1, 2, . . . , M−1}, 0 = a1 < a2 < . . . < aM = 1. For any
i ∈ {1, 2, . . . , M − 1}, denote xi

0 = fN (ai), yi
0 = gN (ai). There exists a filtration

and a pair (f i, gi) of adapted processes, with f being a submartingale bounded in
absolute value by 1 and g being α-subordinate to f , which satisfy f i

0 = xi
0χ[0,1),

gi
0 = yi

0χ[0,1) and P((gi)∗ ≥ λ) > EVλ(f i
0, g

i
0) − ε. Define the processes F , G by

Fk = fk, Gk = gk if k ≤ N and

Fk(ω) =
M−1∑
i=1

f i
k−N ((ω − ai)/(ai+1 − ai))χ[ai,ai+1)(ω),

Gk(ω) =
M−1∑
i=1

gi
k−N ((ω − ai)/(ai+1 − ai))χ[ai,ai+1)(ω)

for k > N . It is easy to check that there exists a filtration, relative to which the
process F is a submartingale satisfying ||F ||∞ ≤ 1 and G is an adapted process
which is α-subordinate to F . Furthermore, we have

P(G∗ ≥ λ) ≥
M−1∑
i=1

(ai+1 − ai)P((gi)∗ ≥ λ)

>

M−1∑
i=1

(ai+1 − ai)
(
EVλ(f i

0, g
i
0)− ε

)
= EVλ(f∞, g∞)− ε.

Since ε was arbitrary, the result follows. �

Proof of Theorem 4.1. First note the following obvious properties of the functions
Vλ, λ > 0: we have Vλ ∈ [0, 1] and Vλ(x, y) = Vλ(x,−y). The second equality is an
immediate consequence of the fact that if g is α-subordinate to f , then so is −g.

In the proof of Theorem 4.1 we repeat several times the following procedure.
Having fixed a point (x0, y0) from the strip S, we construct certain simple finite
processes f , g starting from (x0, y0), take their natural filtration (Fn), apply Lemma
4.1 and thus obtain a bound for Vλ(x0, y0). All the constructed processes appearing
in the proof below are easily checked to satisfy the conditions of this lemma: the
condition ||f ||∞ ≤ 1 is straightforward, while the α-subordination and the fact that
f is a submartingale are implied by the following. For any n ≥ 1, either dfn satisfies
E(dfn|Fn−1) = 0 and dgn = ±dfn, or dfn ≥ 0 and dgn = ±αdfn.
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We will consider the cases λ ≤ 2, 2 < λ < 4, λ ≥ 4 separately. Note that by
symmetry, it suffices to establish (4.1) on S ∩ {y ≥ 0}.

The case λ ≤ 2. Assume (x0, y0) ∈ Aλ. If y0 ≥ λ, then g∗ ≥ λ almost surely, so
Vλ(x0, y0) ≥ 1 = Uλ(x0, y0). If λ > y0 ≥ αx0 − α+ λ, then let (f0, g0) ≡ (x0, y0),

(4.2) df1 = (1− x0)χ[0,1] and dg1 = αdf1.

Then we have g1 = y0 +α−αx0 ≥ λ, which implies g∗ ≥ λ almost surely and (4.1)
follows. Now suppose (x0, y0) ∈ Aλ and y0 < αx0 − α+ λ. Let (f, g) ≡ (x0, y0),

(4.3) df1 =
y0 − x0 + 1− λ

1− α
χ[0,1], dg1 = αdf1

and

(4.4) df2 = dg2 = βχ[0,1−β/2) + (β − 2)χ[1−β/2,1],

where

(4.5) β =
αx0 − y0 − α+ λ

1− α
∈ [0, 2].

Then (f2, g2) takes values (−1, λ−2), (1, λ) with probabilities β/2, 1−β/2, respec-
tively, so, by Lemma 4.1,

(4.6) Vλ(x0, y0) ≥
β

2
Vλ(−1, λ− 2) +

(
1− β

2
)
Vλ(1, λ) =

β

2
Vλ(−1, 2− λ) + 1− β

2
.

Note that (−1, 2 − λ) ∈ Aλ. If 2 − λ ≥ α · (−1) − α + λ, then, as already proved,
Vλ(−1, 2−λ) = 1 and Vλ(x0, y0) ≥ 1 = Uλ(x0, y0). If the converse inequality holds,
i.e., 2− λ < −2α+ λ, then we may apply (4.6) to x0 = −1, y0 = 2− λ to get

Vλ(−1, 2− λ) ≥ β

2
Vλ(−1, 2− λ) + 1− β

2
,

or Vλ(−1, 2− λ) ≥ 1. Thus we established Vλ(x0, y0) = 1 for any (x0, y0) ∈ Aλ.
Suppose then, that (x0, y0) ∈ Bλ. Let

(4.7) β =
2(1− x0)

1− x0 − y0 + λ
∈ [0, 1]

and consider a pair (f, g) starting from (x0, y0) and satisfying

(4.8) df1 = −dg1 = −x0 − y0 − 1 + λ

2
χ[0,β) + (1− x0)χ[β,1].

On [0, β), the pair (f1, g1) lies inAλ; Lemma 4.1 implies Vλ(x0, y0) ≥ β = Uλ(x0, y0).
Finally, for (x0, y0) ∈ Cλ, let (f, g) start from (x0, y0) and

df1 = −dg1 =
−x0 − λ+ 1 + y0

2
χ[0,γ) +

y0 − x0 + 1
2

χ[γ,1],

where

γ =
y0 − x0 + 1

λ
∈ [0, 1].

On [0, γ), the pair (f1, g1) lies in Aλ, while on [γ, 1] we have (f1, g1) = ((x0 + y0 +
1)/2, (x0 + y0 − 1)/2) ∈ Bλ. Hence

Vλ(x0, y0) ≥ γ · 1 + (1− γ) · 1− x0 − y0
λ

= Uλ(x0, y0).

The case 2 < λ < 4. For (x0, y0) ∈ Aλ we prove (4.1) using the same processes
as in the previous case, i.e. the constant ones if y0 ≥ λ and the ones given by (4.2)
otherwise. The next step is to establish the inequality

(4.9) Vλ(−1, λ− 2) ≥ Uλ(−1, λ− 2) =
1 + α

2
+

1− α

2
·
(4− λ

λ

)2

.
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To do this, fix δ ∈ (0, 1] and set

β =
δ(1− α)

λ
, κ =

4− λ− δ(1 + α)
λ

· β, γ = β + (1− β) · δ(1 + α)
4

, ν = κ · λ
4
.

We have 0 ≤ ν ≤ κ ≤ β ≤ γ ≤ 1. Consider processes f , g given by (f0, g0) ≡
(−1, λ− 2), (df1, dg1) ≡ (δ, αδ),

df2 = −dg2 =
λ− δ(1− α)

2
χ[0,β) −

δ(1− α)
2

χ[β,1],

df3 = dg3 = −
(
λ−2+

δ(1 + α)
2

)
χ[0,κ)+

(
2− λ+ δ(1 + α)

2
)
)χ[κ,β)

+
(
2− δ(1 + α)

2
)
χ[β,γ) −

δ(1 + α)
2

χ[γ,1),

df4 = −dg4 =
(
− 2 +

λ

2
)
χ[0,ν) +

λ

2
χ[ν,κ).

As (f4, |g4|) takes values (1, λ), (1, 0) and (−1, λ − 2) with probabilities (γ − β) +
(κ− ν), β − κ and 1− γ + ν, respectively, we have

Vλ(−1, λ− 2) ≥ γ − β + κ− ν + (1− γ + ν)Vλ(−1, λ− 2),

or

Vλ(−1, λ− 2) ≥ γ − β + κ− ν

γ − ν
=

1 + α

2
+

1− α

2
·
(4− λ

λ

)2

− δ(1− α2)
λ2

.

As δ is arbitrary, we obtain (4.9). Now suppose (x0, y0) ∈ Bλ and recall the pair
(f, g) starting from (x0, y0) given by (4.3) and (4.4) (with β defined in (4.5)). As
previously, it leads to (4.6), which takes form

Vλ(x0, y0) ≥
β

2

[1 + α

2
+

1− α

2
·
(4− λ

λ

)2]
+ 1− β

2

=
β(1− α)

4

[(4− λ

λ

)2

− 1
]

+ 1 =
(αx0 − α− y0 + λ)(4− 2λ)

λ2
+ 1 = Uλ(x0, y0).

For (x0, y0) ∈ Cλ, consider a pair (f, g), starting from (x0, y0) defined by (4.8) (with
β given by (4.7)). On [0, β) we have (f1, g1) = ((x0 + y0 + 1− λ)/2, (x0 + y0 − 1 +
λ)/2) ∈ Bλ, so Lemma 4.1 yields

Vλ(x0, y0) ≥ βVλ

(x0 + y0 + 1− λ

2
,
x0 + y0 − 1 + λ

2

)
=

2(1− x0)
1 + λ− x0 − y0

·
{

1−
[
α
(x0 + y0 − 1− λ

2

)
− x0 + y0 − 1− λ

2

]
· 2λ− 4

λ2

}
= Uλ(x0, y0).

For (x0, y0) ∈ Dλ, set β = (y0 − x0 + 1)/λ ∈ [0, 1] and let a pair (f, g) be given by
(f0, g0) ≡ (x0, y0) and

df1 = −dg1 =
−x0 + y0 + 1− λ

2
χ[0,β) +

−x0 + y0 + 1
2

χ[β,1].

As (f1, g1) takes values(x0 + y0 + 1− λ

2
,
x0 + y0 − 1 + λ

2

)
∈ Bλ and

(x0 + y0 + 1
2

,
x0 + y0 − 1

2

)
∈ Cλ

with probabilites β and 1−β, respectively, we obtain Vλ(x0, y0) is not smaller than

βVλ

(x0 + y0 + 1− λ

2
,
x0 + y0 − 1 + λ

2

)
+ (1− β)Vλ

(x0 + y0 + 1
2

,
x0 + y0 − 1

2

)
=
y0 − x0 + 1

λ
·
{

1−
[
α
(x0 + y0 − 1− λ

2

)
− x0 + y0 − 1− λ

2

]
· 2λ− 4

λ2

}
+
λ− y0 + x0 − 1

λ

[1− x0 − y0
λ

− (1− x0 − y0)(1− α)(λ− 2)
λ2

]
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= I + II + III + IV,

where

I+III =
y0 − x0 + 1

λ
+

(λ− y0 + x0 − 1)(1− x0 − y0)
λ2

=
2(1− x0)

λ
− (1− x0)2 − y2

0

λ2

and

II+IV =
(1− α)(λ− 2)

λ3

[
(y0−x0+1)(y0+x0−1−λ)−(1−x0−y0)(λ−y0+x0−1)

]
= − (1− α)(λ− 2)

λ3
· λ(2− 2x0).

Combining these facts, we obtain Vλ(x0, y0) ≥ Uλ(x0, y0).
For (x0, y0) ∈ Eλ with (x0, y0) 6= (−1, 0), the following contruction will turn to

be useful. Denote w = λ − 3, so, as (x0, y0) ∈ Eλ, we have x0 + y0 < w. Fix
positive integer N and set δ = δN = (w − x0 − y0)/[N(α+ 1)]. Consider sequences
(xN

j )N+1
j=1 , (pj)N+1

j=1 , defined by

xN
j = x0 + y0 + (j − 1)δ(α+ 1), j = 1, 2, . . . , N + 1,

and pN
1 = (1 + x0)/(1 + x0 + y0),

(4.10) pN
j+1 =

(1 + xN
j )

(
1 + xN

j + δ(α−1)
2

)
pN

j

(1 + xN
j+1)

(
1 + xN

j + δ(α+1)
2

) +
δ

1 + xN
j+1

, j = 1, 2, . . . , N.

We construct a process (f, g) starting from (x0, y0) such that for j = 1, 2, . . . , N+1,

(4.11)
the variable (f3j , |g3j |) takes values (xN

j , 0) and (−1, 1 + xN
j )

with probabilities pN
j and 1− pN

j , respectively.

We do this by induction. Let

df1 = −dg1 = y0χ[0,pN
1 ) + (−1− x0)χ[pN

1 ,1], df2 = dg2 = df3 = dg3 = 0.

Note that (4.11) is satisfied for j = 1. Now suppose we have a pair (f, g), which
satisfies (4.11) for j = 1, 2, . . . , n, n ≤ N . Let us describe fk and gk for k = 3n+ 1,
3n+2, 3n+ 3. The difference df3n+1 is determined by the following three conditions:
it is a martingale difference, i.e., satisfies E(df3n+1|F3n) = 0; conditionally on
{f3n = xN

n }, it takes values in {−1−xN
n , δ(α+1)/2}; and vanishes on {f3n 6= xN

n }.
Furthermore, set dg3n+1 = df3n+1. Moreover,

df3n+2 = δχ{f3n+1=−1}, dg3n+2 =
g3n+1

|g3n+1|
α · df3n+2.

Finally, the variable df3n+3 satisfies E(df3n+3|F3n+2) = 0, and, in addition, the
variable f3n+3 takes values in {−1, xN

n + δ(α+ 1)} = {−1, xN+1
n }. The description

is completed by
dg3n+3 = − g3n+2

|g3n+2|
df3n+3.

One easily checks that (f3n+3, |g3n+3|) takes values in {(xN
n+1, 0), (−1, 1 + xN

n+1)};
moreover, since

Ef3n+3 = Ef3n + Edf3n+2 = xN
n p

N
n − (1− pN

n ) + δP(f3n+1 = −1)

= xN
n p

N
n − (1− pN

n ) + δ

(
1− pN

n + pN
n

δ(α+ 1)
2(1 + xN

n ) + δ(α+ 1)

)
= pN

n · (xN
n + 1)(1 + xN

n + δ(α− 1)/2)
1 + xN

n + δ(α+ 1)/2
+ δ − 1,

we see that P(f3n+3 = xN
n+1) = pN

n+1 and the pair (f, g) satisfies (4.10) for j = n+1.
Thus there exists (f, g) satisfying (4.10) for j = 1, 2, . . . , N + 1. In particular,
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(f3(N+1), |g3(N+1)|) takes values (w, 0), (−1, w + 1) ∈ Dλ with probabilities pN
N+1,

1− pN
N+1. By Lemma 4.1,

(4.12) Vλ(x0, y0) ≥ pN
N+1Vλ(w, 0) + (1− pN

N+1)Vλ(−1, w + 1).

Recall the function H defined by (2.1). The function h : [x0 + y0, w] → R given by
h(t) = H(x0, y0, t), satisfies the differential equation

h′(t) +
α+ 2
α+ 1

· h(t)
1 + t

=
1

(α+ 1)(1 + t)
.

As we assumed x0+y0 > −1, the expression (h(x+δ)−h(x))/δ converges uniformly
to h′(x) on [x0 + y0, λ− 3]. Therefore there exist constants εN , which depend only
on N and x0 + y0 satisfying limN→∞ εN = 0 and for 1 ≤ j ≤ N ,

∣∣∣h(xN
j+1)− h(xN

j )
(α+ 1)δN

+

[
α+2
α+1 (1 + xN

j )− δN (α+1)
2

]
h(xN

j )

(1 + xN
j+1)

(
1 + xN

j + δN (α+1)
2

) − 1
(α+ 1)(1 + xN

j+1)

∣∣∣ ≤ εN ,

or, equivalently,∣∣∣h(xN
j+1)−

(1 + xN
j )

(
1 + xN

j + δN (α−1)
2

)
h(xN

j )

(1 + xN
j+1)

(
1 + xN

j + δN (α+1)
2

) − δN
1 + xN

j+1

∣∣∣ ≤ (α+ 1)δNεN .

Together with (4.10), this leads to

|h(xN
j+1)− pN

j+1| ≤
(1 + xN

j )
(
1 + xN

j + δN (α−1)
2

)
(1 + xN

j+1)
(
1 + xN

j + δN (α+1)
2

) |h(xN
j )− pN

j |+ (α+ 1)δNεN .

Since pN
1 = h(xN

1 ), we have

|h(w)− pN
N+1| ≤ (α+ 1)NδNεN = (λ− 3− x0 − y0)εN

and hence limN→∞ pN
N+1 = h(w). Combining this with (4.12), we obtain

Vλ(x0, y0) ≥ h(w)(Vλ(w, 0)− Vλ(−1, w + 1)) + Vλ(−1, w + 1).

As w = λ− 3, it suffices to check that we have

aλ = Vλ(λ− 3, 0)− Vλ(−1, λ− 2)) and bλ = Vλ(−1, λ− 2),

where aλ, bλ were defined in (2.4). Finally, if (x0, y0) = (−1, 0), then considering a
pair (f, g) starting from (x0, y0) and satisfying df1 ≡ δ, dg1 ≡ αδ, we get

(4.13) V (−1, 0) ≥ V (−1 + δ, αδ).

Now let δ → 0 to obtain V (−1, 0) ≥ U(−1, 0).
The case λ ≥ 4. We proceed as in previous case. We deal with (x0, y0) ∈ Aλ

exactly in the same manner. Then we establish the analogue of (4.9), which is

(4.14) V (−1, λ− 2) ≥ Uλ(−1, λ− 2) =
1 + α

2
.

To do this, fix δ ∈ (0, 1) and set

β =
4− 2δ

4− δ(1 + α)
, γ = β ·

(
1− δ(α+ 1)

4

)
.

Now let a pair (f, g) be defined by (f0, g0) ≡ (−1, λ− 2), (df1, dg1) ≡ (δ, αδ),

df2 = −dg2 = −δ(1− α)
2

χ[0,β) + (2− δ)χ[β,1],

df3 = dg3 = −δ(1 + α)
2

χ[0,γ) +
(
2− δ(1 + α)

2

)
χ[γ,β).
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Then (f3, g3) takes values (−1, λ−2), (1, λ) and (1, λ−4+δ(α+1)) with probabilities
γ, β − γ and 1− β, respectively, and Lemma 4.1 yields

V (−1, λ− 2) ≥ γV (−1, λ− 2) + (β − γ)V (1, λ),

or

V (−1, λ− 2) ≥ β − γ

1− γ
=

(α+ 1)(2− δ)
4− δ(α+ 1)

.

It suffices to let δ → 0 to obtain (4.14). The cases (x0, y0) ∈ Bλ, Cλ are dealt
with using the same processes as in the case λ ∈ (2, 4). If (x0, y0) ∈ Dλ, then
Lemma 4.1, applied to the pair (f, g) given by (f0, g0) ≡ (x0, y0), df1 = −dg1 =
−(1 + x0)χ[0,(1−x0)/2) + (1− x0)χ[(1−x0)/2,1], yields

(4.15) V (x0, y0) ≥
1− x0

2
V (−1, x0 + y0 + 1).

Furthermore, for any number y and any δ ∈ (0, 1), we have

(4.16) V (−1, y) ≥ V (−1 + δ, y + αδ),

which is proved in the same manner as (4.13). Hence, for large N , if we set δ =
(λ− 3− x0 − y0)/(N(α+ 1)), the inequalities (4.15) and (4.16) give

V (x0, y0) ≥
1− x0

2
V (−1, x0 + y0 + 1) ≥ 1− x0

2
V (−1 + δ, x0 + y0 + 1 + αδ)

≥ 1− x0

2

(
1− δ

2

)
V (−1, x0 + y0 + 1 + (α+ 1)δ)

≥ 1− x0

2

(
1− δ

2

)N

V (−1, x0 + y0 + 1 +N(α+ 1)δ)

=
1− x0

2

(
1− λ− 3− x0 − y0

2N(α+ 1)

)N

V (−1, λ− 2)

=
(1− x0)(1 + α)

4

(
1− λ− 3− x0 − y0

2N(α+ 1)

)N

.

Now take N →∞ to obtain Vλ(x0, y0) ≥ Uλ(x0, y0).
Finally, if (x0, y0) ∈ Eλ we use the pair (f, g) used in the proof of the case

(x0, y0) ∈ Eλ, λ ∈ (2, 4), with ω = 1. Then the process (f, |g|) ends at the
points (1, 0) and (−1, 2) with probabilities, which can be made arbitrarily close to
H(x0, y0, 1) and 1 −H(x0, y0, 1), respectively. It suffices to apply Lemma 4.1 and
check that it gives Vλ(x0, y0) ≥ Uλ(x0, y0). �
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