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Abstract. We study the weak type inequalities for the operator I − FsFc,
where Fc and Fs are the cosine and sine Fourier transforms on the positive

half line, respectively, and I is the identity operator. We also derive sharp

constants in related weak type estimates for I − HT, I − HR and I − HR+ ,
where HT, HR and HR+ denote the Hilbert transforms on the circle, on the

real line and the positive halfline, respectively. Our main tool is the weak type

inequality for orthogonal martingales, which is of independent interest.

1. Introduction

The motivation for the results of this paper comes from the question about
the weak norms of the re-expansion operator on R+ = (0,∞). Let us start with
introducing the necessary background and notation. Let Fc and Fs be the cosine
and sine Fourier transforms on R+, respectively. That is, for x > 0,

Fcf(x) =

√
2
π

∫
R+

f(t) cos tx dt, Fsf(x) =

√
2
π

∫
R+

f(t) sin tx dt.

Both Fc and Fs are unitary and self-adjoint operators on L2(R+). The re-expansion
operator is defined by Π = FsFc. It is interesting from the analytical point of view,
as the object of spectral analysis and also appears naturally in scattering theory.
To be more specific, let H, H0 be two self-adjoint operators on a Hilbert space.
Then the wave operators W± = W±(H,H0) are defined by

W±(H,H0) = lim
t→±∞

eitHe−itH0

(the limit is understood in the sense of strong operator convergence). One expands
a given function with respect to the eigenfunctions of H0 and then takes the inverse
transform using the eigenfunctions of H. If we put H0, H to be the operator − d2

dx2

on L2(R+) with the boundary conditions f ′(0) = 0 and f(0) = 0, respectively, then
W±(H0,H) = ±Π (see Birman [2]). The re-expansion operator appears also in
the polar decomposition of −i ddx on L2(R+) with the domain defined by f(0) = 0
(again, see [2]) and arises in other problems of mathematical physics.

The re-expansion operator can be represented as singular integral operator: for
x > 0,

Πf(x) =
1
π

p.v.
∫

R+

2xf(t)
x2 − t2

dt.
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It is closely related to HR
+, the Hilbert transform on R+, and L, the Laplace trans-

form, which are given by

HR+f(x) =
1
π

p.v.
∫

R+

f(t)
x− t

dt, Lf(x) =

√
2
π

∫
R+

f(t)e−txdt, x > 0.

The connection is given by the identity Π = HR+ +H1, where

H1f(x) =
1
2
L2f(x) =

1
π

∫
R+

f(t)
x+ t

dt, x > 0.

In what follows, we will also need the Hilbert transforms HR, HT on the real line
and on the unit circle, respectively. These operators are given by

HRf(x) =
1
π

p.v.
∫

R

f(t)
x− t

dt, HTf(x) =
1

2π

∫ π

−π
f(x) cot

x− t
2

dt.

Our main interest will be in calculating norms of various operators related to
Π. Clearly, we have ||Π||L2(R+)→L2(R+) = 1. It can be easily shown that Π can be
extended to a bounded operator on Lp(R+) for 1 < p < ∞. In fact, as proved by
Hollenbeck et al. [8], we have

||Π||Lp(R+)→Lp(R+) = cot
π

2p∗
, p∗ = max{p, p/(p− 1)}.

We see that the expression on the right is precisely the Lp norm of the Hilbert
transformsHR+ , HR andHT: see Gohberg and Krupnik [7] for p = 2n, n = 2, 3, . . .,
and for remaining values of p, consult Pichorides [11] and Cole (unpublished; see
[6]). It will be clear from the reasoning presented in this paper that if 1 ≤ p ≤ 2,
then the weak p-th norms of Π and the Hilbert transform also coincide. Therefore,
by the results of Davis [3] and Janakiraman [10], we have

||Π||Lp(R+)→Lp,∞(R+) =

(
1
π

∫ ∞
−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)−1/p

, 1 ≤ p ≤ 2.

It is also of interest to investigate the properties of the operator I − Π: see
Birman [2]. A straightforward computation gives

||I −Π||L2(R+)→L2(R+) = ||Fc −Fs||L2(R+)→L2(R+) =
√

2.

The question about the Lp-norms of I −Π in the case when p 6= 2 turns out to be
much more difficult. It was answered by Hollenbeck et al. [8]: for 1 < p < ∞ we
have

||I −Π||Lp(R+)→Lp(R+) =
√

2 max
0≤θ≤2π

[
| cos(θ − π

4 )|p + | cos(θ − π
4 + π

p )|p

| cos θ|p + | cos(θ + π
p )|p

]1/p

.

One of our main results will be to derive the weak Lp-norms of I−Π for 1 ≤ p ≤ 2.
In fact, we will study this problem in a much wider setting. Throughout the paper,
C will denote the class of even, convex functions Φ on R satisfying Φ(0) = 0 and
such that the restriction Φ|R+ is of class C1, is strictly increasing and has a concave
derivative (examples: Φ(t) = |t|p for 1 ≤ p ≤ 2; Φ(t) = |t| log(|t|+ 1)). For Φ ∈ C,
we define

KΦ =
(∫

R

Φ(|s+ 1|)
cosh(πs2 )

ds
)−1

.
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Theorem 1.1. Let Φ be a fixed element of C and let f be a locally integrable
function on R+. Then we have

(1.1) |{x ≥ 0 : |(I −Π)f(x)| ≥ 1}| ≤ KΦ

∫
R+

Φ(2f(x))dx.

The constant KΦ is the best possible.

In the particular case when Φ(t) = |t|p, 1 ≤ p ≤ 2, we get the following.

Corollary 1.2. We have

||I −Π||Lp(R+)→Lp,∞(R+) = 2
(∫

R

|s+ 1|p

cosh(πs2 )
ds
)−1/p

.

Our second result will be to show that the inequality (1.1) carries over to Hilbert
transforms with no change in the constant. Let us state this as a separate theorem.

Theorem 1.3. Let Φ be a fixed function belonging to the class C.
(i) If f is a locally integrable function on [−π, π], then

(1.2) |{x ∈ [−π, π] : |(I −HT)f(x)| ≥ 1}| ≤ KΦ

∫
[−π,π]

Φ(2f(x))dx.

(ii) If f is a locally integrable function on R, then

(1.3) |{x ∈ R : |(I −HR)f(x)| ≥ 1}| ≤ KΦ

∫
R

Φ(2f(x))dx.

(iii) If f is a locally integrable function on R+, then

(1.4) |{x ≥ 0 : |(I −HR+)f(x)| ≥ 1}| ≤ KΦ

∫
R+

Φ(2f(x))dx.

All the inequalities are sharp.

Both theorems above will be established by means of probabilistic tools. Let
(Ω,G,P) be a complete probability space, filtered by (Gt)t≥0, a nondecreasing family
of sub-σ-algebras of G. Let us assume in addition, that G0 contains all the events
of probability 0. Let X = (Xt)t≥0, Y = (Yt)t≥0 be two adapted real valued
martingales with continuous paths and let [X,Y ] denote their quadratic covariance
process (see e.g. Dellacherie and Meyer [4] for details). We say that the processes
X and Y are orthogonal, if [X,Y ] is constant almost surely. Following Bañuelos
and Wang [1] and Wang [12], we say that Y is differentially subordinate to X, if the
process ([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t.
For example, let B be a d-dimensional Brownian motion starting from 0 and let H,
K be predictable Rd-valued processes satisfying |Kt| ≤ |Ht| ≤ 1 and 〈Ht,Kt〉 = 0
for all t > 0 almost surely (here | · |, 〈·, ·〉 denote the standard norm and the scalar
product in Rd). If we set

Xt =
∫ t

0+

HsdBs, Yt =
∫ t

0+

KsdBs

for t ≥ 0, then X and Y are orthogonal martingales such that Y is differentially
subordinate to X. This is an immediate consequence of the identities

[X,Y ]t =
∫ t

0+

〈Hs,Ks〉ds = K0H0B
2
0
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and

[X,X]t − [Y, Y ]t =
∫ t

0+

|Hs|2 − |Ks|2 ds.

The probabilistic counterpart of Theorems 1.1 and 1.3 can be stated as follows.
Let Y ∗ denote the maximal function of Y , given by supt≥0 |Yt|.

Theorem 1.4. Let Φ be a function from C. Let X, Y be two continuous-path
orthogonal martingales such that Y is differentially subordinate to X and P(X0 =
−Y0) = 1. Then

(1.5) P(Y ∗ ≥ 1) ≤ KΦ sup
t

EΦ(Xt − Yt)

and the constant KΦ is the best possible.

For related results concerning orthogonal martingales and various applications
of these, we refer the interested reader to [1] and [10].

A few words about the organization of the paper. First, in the next section,
we study the probabilistic result, Theorem 1.4. Namely, we construct a family of
certain special subharmonic functions on R2 which, together with Itô’s formula,
enable us to establish the estimate (1.5). Then, in Section 3, we show how this
martingale inequality leads to (1.2), (1.3) and (1.4). In addition, we show there that
the constant KΦ is optimal in these three estimates and this immediately implies
that the inequality (1.5) is also sharp. The final part of the paper is devoted to the
proof of Theorem 1.1.

2. Weak type inequality for orthogonal martingales

2.1. On the method of proof. Let Φ be a given function from C and let S denote
the strip R× (−1, 1). We will construct a continuous function UΦ : R2 → R which
satisfies the following properties (2.1)–(2.5):

(2.1) UΦ is subharmonic on R2 and harmonic on S,

(2.2) UΦ(0, 0) = K−1
Φ ,

(2.3) UΦxx > 0 on S,

(2.4) UΦ(x,−x) ≥ UΦ(0, 0) for all x ∈ R,

(2.5) Φ(x− y) ≤ UΦ(x, y) ≤ UΦ(0, 0)1{|y|<1} + Φ(x− y) for all x, y ∈ R.

The existence of such a function implies the inequality

(2.6) K−1
Φ sup

t≥0
P(|Yt| ≥ 1) ≤ sup

t≥0
EΦ(Xt − Yt), t ≥ 0,

and this immediately yields (1.5) by a well-known stopping time argument. To see
how UΦ leads to (2.6), fix t ≥ 0 and note that we may assume that the right hand
side of (2.6) is finite. Introduce the stopping time τ = inf{t : |Yt| ≥ 1} and consider
a two-dimensional process Z = ((Xt, Yt))t≥0. When t ∈ (0, τ ], Z takes values in S,
where UΦ is of class C2 (see (2.1)). Thus we may apply Itô’s formula to obtain

(2.7) UΦ(Zτ∧t) = I0 + I1 +
I2
2
,



WEAK-TYPE INEQUALITIES 5

where
I0 = UΦ(Z0),

I1 =
∫ τ∧t

0+

UΦx(Zs)dXs +
∫ τ∧t

0+

UΦy(Zs)dYs,

I2 =
∫ τ∧t

0+

UΦxx(Zs)d[X,X]s + 2
∫ τ∧t

0+

UΦxy(Zs)d[X,Y ]s +
∫ τ∧t

0+

UΦyy(Zs)d[Y, Y ]s.

We have that I0 = UΦ(X0, Y0) ≥ UΦ(0, 0), by (2.4) and the assumption X0 = −Y0.
Moreover, EI1 = 0, by the properties of stochastic integrals. To deal with I2, we
use the orthogonality of X and Y together with harmonicity of UΦ on S to obtain

I2 =
∫ τ∧t

0+

UΦxx(Zs)d[X,X]s +
∫ τ∧t

0+

UΦyy(Zs)d[Y, Y ]s

=
∫ τ∧t

0+

UΦxx(Zs)d([X,X]t − [Y, Y ]t).

This is nonnegative, in virtue of (2.3) and the differential subordination. Both sides
of (2.7) are integrable, by (2.5) and the assumption supt≥0 EΦ(Xt−Yt) <∞; thus,
taking expectation gives the bound EUΦ(Zτ∧t) ≥ UΦ(0, 0). Now if we apply (2.5),
we see that

UΦ(0, 0) ≤ UΦ(0, 0)P(|Yτ∧t| < 1) + EΦ(Xτ∧t − Yτ∧t)
≤ UΦ(0, 0)P(|Yt| < 1) + EΦ(Xt − Yt).

By (2.2), this is precisely the desired bound (2.6). Thus, we have reduced the
problem of proving this weak type inequality to that of finding an appropriate
function UΦ.

2.2. The special functions. Suppose that Φ is a given function from the class
C. First we introduce a certain auxiliary object, a real-valued function UΦ on the
upper plane H = R× (0,∞). It is defined by the Poisson integral

UΦ(α, β) =
1
π

∫
R

βΦ
(

2
π log |t|+ sgn t

)
(α− t)2 + β2

dt.

Clearly, the function UΦ is harmonic on H and satisfies

(2.8) lim
(α,β)→(t,0)

UΦ(α, β) = Φ
(

2
π

log |t|+ sgn t
)
,

if t 6= 0. Consider a conformal mapping ϕ, given by ϕ(z) = i exp(πz/2), or, in real
coordinates,

ϕ(x, y) =
(
−eπx/2 sin(πy/2), eπx/2 cos(πy/2)

)
.

It is easy to check that ϕ maps S onto H. Now, the desired function UΦ : R2 → R
is defined by

UΦ(x, y) =

{
UΦ(ϕ(x, y)) if (x, y) ∈ S,
Φ(x− y) if (x, y) /∈ S.

The remainder of this section is devoted to the verification of the conditions (2.1)–
(2.5). The first three of them are rather easy.

Lemma 2.1. The function UΦ satisfies (2.1), (2.2) and (2.3).
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Proof. To show the first property, note first that UΦ is continuous on R2: this is a
consequence of (2.8). Observe that inside S the function UΦ is a harmonic lift of a
subharmonic function (x, y) 7→ Φ(x− y). This immediately yields (2.1).

We turn to the second condition. By the definition of UΦ, we may write

UΦ(0, 0) = UΦ(0, 1) =
1
π

∫
R

Φ
(

2
π log |t|+ sgn t

)
t2 + 1

dt

=
1
π

∫ ∞
0

Φ
(

2
π log t+ 1

)
t2 + 1

dt+
1
π

∫ ∞
0

Φ
(

2
π log t− 1

)
t2 + 1

dt.

Substitute t := 1/t in the second integral to get

UΦ(0, 0) =
2
π

∫ ∞
0

Φ
(

2
π log t+ 1

)
t2 + 1

dt =
∫

R

Φ (s+ 1)
cosh

(
πs
2

)ds = K−1
Φ ,

as desired. Finally, to show (2.3), we derive that

(2.9) UΦ(x, y) =
1
π

∫
R

cos
(
π
2 y
)

Φ
(

2
π log |s|+ sgn s+ x

)(
sin
(
π
2 y
)

+ s
)2 + cos2

(
π
2 y
) ds

for (x, y) ∈ S. This immediately gives the strict convexity of UΦ(·, y). �

The conditions (2.4) and (2.5) turn out to be much more difficult. Fortunately,
by Fubini’s theorem, they have the following property. Namely, if they are valid for
Φ’s belonging to a certain class, say K, then they also hold for the functions lying
in the convex hull of K. Thus, our plan is to establish these two properties for a
class of ”simple” functions which generates C.

Let K = {Φa : R→ R : a ∈ [0,∞]}, where, for finite and strictly positive a,

(2.10) Φa(t) =

{
1
2 t

2 if |t| ≤ a,
a|t| − 1

2a
2 if |t| > a.

Furthermore, set Φ0(t) = |t| and Φ∞(t) = 1
2 t

2 for t ∈ R. For simplicity, we will use
the notation Ua := UΦa , a ∈ [0,∞]. In the particular case when a =∞ we can give
a simple formula for this function:

(2.11) U∞(x, y) =

{
1
2 (x2 − y2 − 2xy + 2) if |y| ≤ 1,
1
2 (x− y)2 if |y| > 1.

In the sequence of lemmas below, we study the properties of the functions from
class K.

Lemma 2.2. For any 0 < a <∞ we have 0 ≤ Uaxx ≤ 1 on S.

Proof. The lower bound has been established in the previous lemma. To show the
upper bound, note that

Φ′a(t) = −a1(−∞,−a](t) + t1(−a,a)(t) + a1[a,∞)(t),

so Φ′a(x1)− Φ′a(x2) ≤ x1 − x2 for all x1, x2 ∈ R. Let us compute Uax on the strip
S: by Fubini’s theorem, we are allowed to take the derivative under the integral in
(2.9). Hence, by the previous estimate, we have Uax(x1, y)−Uax(x2, y) ≤ x1−x2 for
all x1, x2 ∈ R and y ∈ (−1, 1). By symmetry, this implies |Uax(x1, y)−Uax(x2, y)| ≤
|x1 − x2| for such x1, x2 and y; this yields the claim. �

Lemma 2.3. For any a ∈ [0,∞] and x, y ∈ R we have Ua(x, y) = Ua(−x,−y).
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Proof. Clearly, it suffices to show the claim for (x, y) ∈ S. It follows from the
substitution s := −s in (2.9) that

Ua(x, y) =
1
2

[
1
π

∫
R

cos
(
π
2 y
)

Φa
(

2
π log |s|+ sgn s+ x

)(
sin
(
π
2 y
)

+ s
)2 + cos2

(
π
2 y
) ds

+
1
π

∫
R

cos
(
π
2 y
)

Φa
(

2
π log |s| − sgn s+ x

)(
sin
(
π
2 y
)
− s
)2 + cos2

(
π
2 y
) ds

]
.

It remains to substitute s := 1/s in the both integrals above and use the fact that
Φa is an even function on R. �

Lemma 2.4. For any 0 < a <∞ and x ∈ (0, 1) we have

(2.12) Uax(x, x) ≤ 0.

Proof. Divide the integral in (2.9) into two: over the negative half line and the
positive half line, and substitute s = −eπr/2 and s = eπr/2. We obtain

Ua(x, y) =
1
2

∫
R

eπr/2 cos
(
πy
2

)
Φa(r + x+ 1)

eπr + 2eπr/2 sin
(
πy
2

)
+ 1

dr

+
1
2

∫
R

eπr/2 cos
(
πy
2

)
Φa(r + x− 1)

eπr − 2eπr/2 sin
(
πy
2

)
+ 1

dr.

(2.13)

Therefore, we see that for a fixed x ∈ (0, 1),

F (a) := Uax(x, x) =
1
2

∫
R

eπr/2 cos
(
πx
2

)
Φ′a(r + x+ 1)

eπr + 2eπr/2 sin
(
πx
2

)
+ 1

dr

+
1
2

∫
R

eπr/2 cos
(
πx
2

)
Φ′a(r + x− 1)

eπr − 2eπr/2 sin
(
πx
2

)
+ 1

dr.

(2.14)

Since

(2.15)
eπr/2 cos

(
πx
2

)
eπr ± 2eπr/2 sin

(
πx
2

)
+ 1

=
d
dr

[
2
π

arctan

(
eπr/2

cos
(
πx
2

) ± tan
(πx

2

))]
,

an integration by parts gives

F (a) = a− 1
π

∫ a−x−1

−a−x−1

arctan

(
eπr/2

cos
(
πx
2

) + tan
(πx

2

))
dr

− 1
π

∫ a−x+1

−a−x+1

arctan

(
eπr/2

cos
(
πx
2

) − tan
(πx

2

))
dr.

Now we will show that F satisfies the following properties:

(2.16) F (0) = 0,

(2.17) F ′(0+) < 0,

(2.18) lim
a→∞

F (a) = 0,

(2.19) F ′′ has at most one root inside (0,∞).
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These four conditions clearly imply that F is nonpositive on (0,∞), which is pre-
cisely the claim. The first property is trivial. To check (2.17), note that F ′(0+)
equals

1− 2
π

arctan

(
eπ(−x−1)/2

cos
(
πx
2

) + tan
(πx

2

))
− 2
π

arctan

(
eπ(−x+1)/2

cos
(
πx
2

) − tan
(πx

2

))
and hence we must show that(

eπ(−x−1)/2

cos
(
πx
2

) + tan
(πx

2

))(eπ(−x+1)/2

cos
(
πx
2

) − tan
(πx

2

))
> 1.

This can be rewritten in the form

f(x) := exp
(π

2
x
)
− exp

(
−π

2
x
)
−
[
exp

(π
2

)
− exp

(
−π

2

)]
sin
(π

2
x
)
< 0

and follows from f(0) = f(1) = 0 and the fact that f is strictly convex on [0, 1]:
indeed,

f ′′(x) =
π2

4

{
exp

(π
2
x
)
− exp

(
−π

2
x
)

+
[
exp

(π
2

)
− exp

(
−π

2

)]
sin
(π

2
x
)}

> 0.

We turn to (2.18). Observe that if a → ∞, then Φ′a(t) → t for any fixed t. Since
|Φ′a(t)| ≤ |t| for all t, we obtain, by Lebesgue’s dominated convergence theorem,

lim
a→∞

F (a) =
1
2

∫
R

eπr/2 cos
(
πx
2

)
(r + x+ 1)

eπr + 2eπr/2 sin
(
πx
2

)
+ 1

dr +
1
2

∫
R

eπr/2 cos
(
πx
2

)
(r + x− 1)

eπr + 2eπr/2 sin
(
πx
2

)
+ 1

dr

=
1
2

∫
R

eπr/2 cos
(
πx
2

)
(x+ 1)

eπr + 2eπr/2 sin
(
πx
2

)
+ 1

dr +
1
2

∫
R

eπr/2 cos
(
πx
2

)
(x− 1)

eπr + 2eπr/2 sin
(
πx
2

)
+ 1

dr.

Here in the latter passage we have used the fact that the functions

r 7→
eπr/2 cos

(
πx
2

)
eπr ± 2eπr/2 sin

(
πx
2

)
+ 1

are even on R. It suffices to apply (2.15) and (2.18) follows. Finally, let us look at
(2.19). The equation F ′′(a) = 0 is equivalent to[

cosh
(
π(a− x− 1)

2

)
+ sin

(πx
2

)]−1

+
[
cosh

(
π(a− x+ 1)

2

)
− sin

(πx
2

)]−1

=
[
cosh

(
π(a+ x+ 1)

2

)
+ sin

(πx
2

)]−1

+
[
cosh

(
π(a+ x− 1)

2

)
− sin

(πx
2

)]−1

This, after long, tedious, but rather straightforward computations can be rewritten
in the equivalent form

2s2 − 4 sinh
(π

2

)
·

sin
(
πx
2

)
sinh

(
πx
2

) s+ cosh(πx)− coshπ + 2 sin2
(πx

2

)
= 0,

where s = cosh
(
πa
2

)
> 1. However, for a fixed x ∈ (0, 1), the above equation has at

most one root s larger than 1 (and hence there is at most one positive a for which
F ′′(a) = 0). Indeed, otherwise, by Viéte’s formula, we would have

1
2

(
cosh(πx)− coshπ + 2 sin2

(πx
2

))
> 1,

which is impossible. This completes the proof. �



WEAK-TYPE INEQUALITIES 9

Lemma 2.5. For any 0 < a <∞ and x ∈ (0, 1) we have Uay(x,−x) ≤ 0.

Proof. The reasoning is similar to that of the previous lemma. Note that by (2.13)
we have, for any fixed x ∈ (0, 1),

F (a) := Uay(x,−x) = −
∫

R
A+(r,−x)Φa(r+x+1)dr−

∫
R
A−(r,−x)Φa(r+x−1)dr,

where

A+(r, y) =
1 + cosh

(
πr
2

)
sin
(
πy
2

)
2
(
cosh

(
πr
2

)
+ sin

(
πy
2

))2 , A−(r, y) =
−1 + cosh

(
πr
2

)
sin
(
πy
2

)
2
(
cosh

(
πr
2

)
− sin

(
πy
2

))2 .
A direct computation shows that

A+(r, y) =
d
dr

[
− 1
π

sin
(
πy
2

)
+ e−πr/2

cosh
(
πr
2

)
+ sin

(
πy
2

)]
and

A−(r, y) =
d
dr

[
− 1
π

sin
(
πy
2

)
− e−πr/2

cosh
(
πr
2

)
− sin

(
πy
2

)] ,
so

F ′′(a) =
∫ −a−x−1

−∞
A+(r,−x)dr +

∫ ∞
a−x−1

A+(r,−x)dr

+
∫ −a−x+1

−∞
A−(r,−x)dr +

∫ ∞
a−x+1

A−(r,−x)dr

=
1
π

[
−
− sin

(
πx
2

)
+ e−π(−a−x−1)/2

cosh
(
π(−a−x−1)

2

)
− sin

(
πx
2

) +
− sin

(
πx
2

)
+ e−π(a−x−1)/2

cosh
(
π(a−x−1)

2

)
− sin

(
πx
2

)
−
− sin

(
πx
2

)
− e−π(−a−x+1)/2

cosh
(
π(−a−x+1)

2

)
+ sin

(
πx
2

) +
− sin

(
πx
2

)
− e−π(a−x+1)/2

cosh
(
π(a−x+1)

2

)
+ sin

(
πx
2

)
]
.

After some quite involved calculations one obtains that the sign of F ′′ is equal to
that of

Q(s) = s2 + 2
sinh

(
π
2

)
sinh

(
πx
2

)
sin
(
πy
2

) s− cosh
π(x+ 1)

2
cosh

π(−x+ 1)
2

+ cos2
(πy

2

)
,

where s = cosh
(
πa
2

)
. Now take y = −x. It is easy to see that there is s0 = s0(x) > 1

such that Q(s) < 0 for s ∈ (1, s0) and Q(s) > 0 for s > s0. Thus F is convex on
(0, a0) and concave on (a0,∞), where s0 = cosh πa0

2 . Obviously, we have F (0+) = 0
(since Φa converges pointwise to 0 as a→ 0). In addition, by Lebesgue dominated
convergence theorem,

lim
a→∞

F (a) = 0,

see (2.11). In consequence, F is negative on (0,∞). This proves the claim. �

Lemma 2.6. For any 0 < a <∞ and x ≥ 0 we have

(2.20) Uay(x, 0) ≥ −x.
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Proof. Consider the function Ψa : R → R given by Ψa(t) = Φ∞(t) − Φa(t) =
1
2 (|t| − a)21{|t|≥a} for t ∈ R. This function is convex, and we have

UΨay(x, 0) = −π
4

∫
R

erπ

(erπ + 1)2
Ψa(r + x+ 1)dr +

π

4

∫
R

erπ

(erπ + 1)2
Ψa(r + x− 1)dr

= −π
4

∫ ∞
0

erπ

(erπ + 1)2
AΨa(a, r, x)dr,

where

AΨa(a, r, x) = Ψa(r + x+ 1) + Ψa(r − x− 1)−Ψa(r + x− 1)−Ψa(r − x+ 1).

Here we have used the fact that the function r 7→ erπ(erπ+1)−2 is even on R. Note
that AΨa(a, r, x) is nonnegative: this follows from convexity of the function Ψa, the
fact that the numbers r+ x− 1, r− x+ 1 lie between r− x− 1 and r+ x+ 1, and
the equality

(r + x− 1) + (r − x+ 1)
2

=
(r − x− 1) + (r + x+ 1)

2
.

This yields UΨay(x, 0) ≤ 0; however,

UΨa(x, y) = U∞(x, y)− Ua(x, y)

for x ∈ R and y ∈ (−1, 1). It suffices to note that U∞y(x, 0) = −x, in virtue of
(2.11). �

Now we are ready to show the properties (2.4) and (2.5) for the functions Ua.

Lemma 2.7. For any a ∈ [0,∞] the function Ua satisfies (2.4).

Proof. Observe that for any (x, y) ∈ R2 we have

lim
a→∞

Ua(x, y) = U∞(x, y) and lim
a→0

1
a
Ua(x, y) = U0(x, y),

so it is enough to prove the lemma for finite and strictly positive a. This is straight-
forward. By symmetry (see Lemma 2.3), it suffices to establish the estimate for
x ≥ 0. By (2.12) and Lemma 2.3 again, we have Uax(−x,−x) ≥ 0, which, to-
gether with the convexity of Ua(·,−x), implies Uax(x,−x) ≥ 0. Combining this
with Lemma 2.5 yields that the function x 7→ Uax(x,−x) is nondecreasing on [0, 1].
Clearly, it is also nondecreasing on [1,∞): Uax(x,−x) = Φ(2x) for x lying in this
interval. Thus, the lemma follows. �

Lemma 2.8. For any a ∈ [0,∞] the function Ua satisfies (2.5).

Proof. Clearly, it suffices to establish the inequality on the strip S. Arguing as in
the previous lemma, we see that we may restrict ourselves to a ∈ (0,∞). For the
sake of convenience and clarity of the exposition, we have decided to split the proof
into a few intermediate parts.

Step 1. The lower bound. This is straightforward: the function (x, y) 7→ Φa(x−y)
is subharmonic on S and agrees with Ua at the boundary ∂S.

Step 2. The upper bound: a reduction. For any x ≥ 0 and y ∈ (−1, 1), we have

|Uax(x, y)| < 1
π

∫
R

cos
(
π
2 y
) ∣∣Φ′a ( 2

π log |s|+ sgn s+ x
)∣∣(

sin
(
π
2 y
)

+ s
)2 + cos2

(
π
2 y
) ds < a.
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In consequence, the function x 7→ Ua(x, y)−Φa(x− y) is increasing on (−∞, y− a]
and decreasing on [y + a,∞). Thus it suffices to prove the majorization for x ∈
(y − a, y + a), and for these x and y the inequality takes the form

(2.21) Ua(x, y)− 1
2
|x− y|2 ≤ Ua(0, 0).

We will show this for all x ∈ R and y ∈ (−1, 1). By symmetry (Lemma 2.3), we
may restrict ourselves to nonnegative x. Denote the left hand side of (2.21) by
ψ(x, y).

Step 3. The proof of (2.21) for x ≥ 0, y ∈ (−1, 0]. Lemma 2.3 implies ψx(0, 0) =
0 and, by Lemma 2.2, the function ψ(·, 0) is concave. Thus, ψ(x, 0) ≤ ψ(0, 0), which
is precisely (2.21) with y = 0. Now fix a positive x and note that ψ(x, ·) is concave:
ψyy(x, y) = Uayy(x, y)− 1 = −Uaxx(x, y)− 1 < 0 in view of Lemma 2.2. However,
by (2.20), ψy(x, 0) ≥ 0, so ψ(x, y) ≤ ψ(x, 0) ≤ ψ(0, 0) for y ∈ (−1, 0).

Step 4. The proof of (2.21) for 0 ≤ x ≤ y < 1. First note that (2.21) is valid if
x = y, since the function x 7→ ψ(x, x) is nonincreasing on (0, 1). To see this, note
that we have Uax(x, x) ≤ 0 and Uay(x, x) ≤ 0: the first estimate is precisely (2.12),
while the second follows from Lemma 2.5 and the fact that Ua(x, ·) is concave on
(−1, 1). To deal with y > x, simply observe that for a fixed x ∈ (0, 1), the function
ψ(x, ·) is decreasing on (x, 1].

Step 5. The proof of (2.21) for x ≥ y. By Lemma 2.2, for a fixed y ∈ (0, 1),
the function ψ(·, y) is concave. Furthermore, ψx(y, y) < 0 in view of (2.12); this
completes the proof. �

The lemma below is the final step in the proof of (1.5).

Lemma 2.9. Let Φ ∈ C. Then UΦ satisfies (2.4) and (2.5).

Proof. All we need is to represent Φ as a ”mixture” of elements of K. Let µ be
the unique nonnegative measure on R+ satisfying µ((a, b]) = Φ′′+(a)−Φ′′+(b) for all
0 ≤ a < b. Here Φ′′+ stands for the right-hand derivative of the concave function
Φ′. Integration by parts gives that

Φ(x) =
∫ ∞

0

Φa(x)µ(da) + Φ′(0)x+
Φ′′+(∞)

2
x2

=
∫ ∞

0

Φa(x)µ(da) + Φ′(0)Φ0(x) +
Φ′′+(∞)

2
Φ∞(x)

for any x ≥ 0. Thus the claim follows from Fubini’s theorem. �

Before we proceed to the applications of the above martingale inequality, let us
make here an important observation.

Remark 2.10. As already mentioned, the above approach enables us to derive
sharp weak type (p, p) bounds for orthogonal martingales in the case when 1 ≤
p ≤ 2. A natural question arises: what are the corresponding optimal constants if
p > 2? In particular, does the inequality

(2.22) P(Y ∗ ≥ 1) ≤
(∫

R

|s+ 1|p

cosh(πs2 )
ds
)−1

||X − Y ||pp

hold true also for p > 2? Unfortunately, the answer is no. The reason is that for
p > 2 the function Φ(t) = |t|p does not satisfy the property (2.5). To see this, recall
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an elementary bound

|a+ b|p + |a− b|p ≥ 2|a|p + 2|b|p, a, b ∈ R,

with strict inequality if ab 6= 0. It yields

UΦ(x, 0) =
UΦ(x, 0) + UΦ(−x, 0)

2

=
1

2π

∫
R

∣∣ 2
π log |s|+ sgn s+ x

∣∣p +
∣∣ 2
π log |s|+ sgn s− x

∣∣p
s2 + 1

ds

>
1
π

∫
R

∣∣ 2
π log |s|+ sgn s

∣∣p + |x|p

s2 + 1
ds = UΦ(0, 0) + Φ(x).

It is not difficult to show that this implies that the best constant in the martingale
weak type inequality is strictly larger than(∫

R

|s+ 1|p

cosh(πs2 )
ds
)−1/p

,

if p > 2. Let us briefly explain this. For a fixed p > 2, there is ε > 0 for which the
set

C = {(x, y) ∈ S : UΦ(x, y) > UΦ(0, 0) + Φ(x− y) + ε}

is nonempty. Let B = (B(1), B(2)) be a two-dimensional Brownian motion starting
from (0, 0) and introduce the stopping time τ = inf{t : Bt ∈ C∪∂S}. Let Xt = B

(1)
τ∧t

and Yt = B
(2)
τ∧t for t ≥ 0. Then X and Y are orthogonal, since B(1) and B(2) are

independent. Moreover, [X,X]t = [B,B]τ∧t = τ ∧ t = [Y, Y ]t, so Y is differentially
subordinate to X. On the other hand, using Itô’s formula, EUΦ(Xt, Yt) = UΦ(0, 0)
for any t ≥ 0. Since τ is exponentially integrable, we may let t → ∞ and obtain
the equality

EUΦ(X∞, Y∞) = EUΦ(B(1)
τ , B(2)

τ ) = UΦ(0, 0).

Since UΦ(Bτ ) = (UΦ(0, 0) + ε)1{B(2)
τ <1} + Φ(B(1)

τ − B(2)
τ ), this can be rewritten in

the form

UΦ(0, 0) = (UΦ(0, 0) + ε)P(B(2)
τ < 1) + EΦ(B(1)

τ −B(2)
τ ),

or (∫
R

|s+ 1|p

cosh(πs2 )
ds
)

P(Y ∗ ≥ 1) = εP(Y ∗ < 1) + sup
t

EΦ(Xt − Yt).

But C has an empty intersection with a certain neighborhood of (0, 0); this implies
that τ > 0 almost surely and the three terms in the above equality are non-zero.
This shows that (2.22) fails to hold.

3. Weak type inequality for Hilbert transform

3.1. The periodic case. Let D denote the unit disc of R2. Suppose that u is
a harmonic function on D and let v = HTu be its conjugate. Here, as usual, we
identify a harmonic function on D with its radial limit on the unit circle T = {eiθ :
θ ∈ (−π, π]} ' (−π, π]. We havew that u, v satisfy Cauchy-Riemann equations and
v(0, 0) = 0. Let B be a two-dimensional Brownian motion starting from (0, 0) and
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let τ = inf{t : |Bt| ≥ 1} be the first exit time of B from D. Then the processes
X = (Xt)t≥0, Y = (Yt)t≥0 given by

Xt = u(Bτ∧t) + v(Bτ∧t) = u(0, 0) +
∫ t

0+

∇u(Bτ∧s) +∇v(Bτ∧s)dBs,

Yt = −u(Bτ∧t) + v(Bτ∧t) = −u(0, 0) +
∫ t

0+

∇u(Bτ∧s) +∇v(Bτ∧s)dBs,

are martingales. Furthermore, we have

[X,Y ]t = −u(0, 0)2 +
∫ t

0+

−|∇u(Bτ∧s)|2 + |∇v(Bτ∧s)|2ds

= −u(0, 0)2,

where the latter comes from Cauchy-Riemann equations. Thus, X and Y are
orthogonal. Similarly, we compute that for any t ≥ 0,

[X,X]t = u(0, 0)2 +
∫ t

0+

|∇u(Bτ∧s)|2 + |∇v(Bτ∧s)|2ds = [Y, Y ]t,

so Y is differentially subordinate to X. Moreover, we have v(0, 0) = 0, which
implies that X0 = −Y0. Since Bτ is distributed uniformly on T, we may write, by
(1.5),

1
2π
|{θ ∈ (−π, π] : |(I −HT)u(eiθ)| ≥ 1}| ≤ 1

2π
|{θ ∈ (−π, π] : |(u− v)(eiθ)| ≥ 1}|

= P(|Y∞| ≥ 1)

≤ KΦ sup
t

EΦ(Xt − Yt)

= KΦ

∫ π

−π
Φ(2|u(eiθ)|) dθ

2π
.

This completes the proof of (1.2).

3.2. The nonperiodic case. To deduce the estimates for the Hilbert transform
on the line, we use a standard argument known as ”blowing up the circle”, which
is due to Zygmund ([13], Chapter XVI, Theorem 3.8). Let f be a locally integrable
function on R, satisfying

(3.1)
∫

R
Φ(2f(x))dx <∞.

Note that in particular this implies
∫

R |f(x)|dx <∞. For a given positive integer n
and x ∈ R, put

gn(x) =
1

2πn

∫ πn

−πn
f(t) cot

x− t
2n

dt.

As shown in [13], we have gn → HRf almost everywhere as n→∞. On the other
hand, the function

x 7→ gn(nx) =
1
π

∫ π

−π
f(nt) cot

x− t
2

dt
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is precisely the periodic Hilbert transform of the function x 7→ f(nx), |x| ≤ π.
Therefore,

|{x ∈ (−πn, πn] : |f(x)− gn(x)| ≥ 1}| = n
∣∣{|x| ∈ (−π, π] : |(I −HT)f(nx)| ≥ 1}

∣∣
≤ nKΦ

∫ π

−π
Φ (2f(nx)) dx

= KΦ

∫ πn

−πn
Φ (2f(x)) dx

≤ KΦ

∫
R

Φ (2f(x)) dx.

Now let n→∞ to obtain

|{x ∈ R : |(I −HR)f(x)| > 1}| ≤ KΦ

∫
R

Φ (2f(x)) dx.

To obtain the stronger version of this estimate with a non-strict inequality on the
left-hand side, recall that Φ′ is concave on (0,∞): this is one of the assumptions
imposed in the definition of C. In consequence, for any t > 0 we have 2Φ′(t) ≥
Φ′(2t) + Φ′(0+), so integrating this from 0 to x > 0 gives

(3.2) Φ(2x) ≤ 4Φ(x) + 2Φ′(0+)x.

Now apply the inequality above to f/(1− ε), where 0 < ε < 1/2: we get

|{x ∈ R : |(I −HR)f(x)| > 1− ε}| ≤ KΦ

∫
R

Φ
(

2f(x)
1− ε

)
dx.

By (3.1) and (3.2), the right-hand side is finite; thus, if we let ε → 0 and use
Lebesgue’s dominated convergence theorem, we get (1.3).

Finally, observe that the weak type estimate for I − HR+ follows immediately
from the inequality we have just established. Indeed, given a locally integrable
function f on R+, it suffices to extend it to f̃ : R → R by setting f̃(x) = 0 for
x ≤ 0 and note that HR+f = HRf̃ ,

|{x ∈ R+ : |(I −HR+)f(x)| ≥ 1}| ≤ |{x ∈ R : |(I −HR)f̃(x)| ≥ 1}|.

3.3. Sharpness. We will prove that the constant KΦ is the best possible in the
weak type inequality for I − HR+ . This will clearly yield the optimality of this
constant also in the periodic and the martingale setting. Let G : D ∩H → H be
defined by G(z) = (1 + z)2/(4z). Then G is a conformal mapping, and hence so
is its inverse L. Consider another conformal map F from the unit disc D onto the
strip S, given by

F (z) =
2
π

log
[
iz − 1
z − i

]
+ i.

Let us list some properties of the above functions, which will be needed below.
First, observe that L maps [0, 1] onto {eiθ : 0 ≤ θ ≤ π}. To be more specific, for
x ∈ [0, 1] we have

(3.3) L(x) = eiθ, where θ ∈ (0, π) is uniquely determined by x = cos2(θ/2).

Moreover,

(3.4) L maps R \ [0, 1] onto (−1, 1).
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For example, for negative x,

(3.5) L(x) = 2x− 1 + 2
√
x2 − x.

Concerning F , we have that

(3.6) F maps the unit circle onto the boundary of S

and

(3.7) F maps (−1, 1) onto {ai : a ∈ (−1, 1)}.

Now we exhibit a family of examples for which the constant KΦ is asymptotically
attained. For any positive integer n, let Vn(z) = F (L2n(z − n)), z ∈ H, and

fn(x) =
1
2

[−ReVn(x) + ImVn(x)], x ≥ 0.

We have

(3.8) (I −HR+)fn(x) = (I −HR)fn(x) + (HR −HR+)fn(x).

Let us analyse the two terms on the right. Since Vn is conformal, we have ImVn =
HRReVn and ReVn = −HRImVn when restricted to R, so

(I −HR)fn(x) = fn(x)− 1
2

[−ImVn(x)− ReVn(x)] = ImVn(x).

However, (3.3) and (3.6) imply that Vn satisfies |ImVn(x)| = 1 for x ∈ [n, n + 1].
On the other hand, by (3.4) and (3.7), we see that ReVn(t) = 0 if t /∈ [n, n+ 1].

(HR −HR+)f(x) =
1
π

∫ 0

−∞

f(t)
x− t

dt =
1

2π

∫ 0

−∞

ImVn(t)
x− t

dt.

The next observation is that for z ∈ (−1, 1), we have an elementary bound

(3.9) |F (z)| =
∣∣∣∣ 2π log

(
−z + i

z − i

)∣∣∣∣ ≤ 2|z|.

Therefore, by (3.5),

|(HR −HR+)fn(x)| ≤ 1
2π

∫ 0

−∞

∣∣ImF (L2n(t− n))
∣∣

x− t
dt

≤ 1
2π

∫ 0

−∞

∣∣2L2n(t− n)
∣∣

x− t
dt ≤ 1

2π

∫ 0

−∞

|2L(t− n)|
x− t

dt→ 0,

as n → ∞. Thus we have shown that if x ∈ [n, n + 1], then the first term on the
right hand side of (3.8) is equal to ±1 and the second is arbitrarily small if n is
sufficiently large. Thus for any ε > 0,

(3.10) |{x ∈ R : |(I −HR+)fn(x)| ≥ 1− ε}| ≥ 1− ε,

for large n. Now, let us study the limit behavior of the right-hand side of (1.4).
As we have already observed, ReVn(x) = 0 for x /∈ [n, n + 1], which implies
fn(x) =ImVn(x) for these x and hence∫

R+

Φ(2|fn(x)|)dx =
∫

R+\[n,n+1]

Φ(|ImVn(x)|)dx+
∫ n+1

n

Φ(2|fn(x)|)dx.



16 ADAM OSȨKOWSKI

By the very definition of Vn and the inequality (3.9), the first term on the right can
be dealt with as follows:∫ n

0

Φ(|ImVn(x)|)dx =
∫ 0

−n
Φ(|ImF (L2n(x))|)dx ≤

∫ 0

−∞
Φ(|2L2n(x)|)dx

and the latter integral tends to 0 as n → ∞. This is a consequence of Lebesgue’s
dominated convergence theorem: indeed, L2n(x) ↓ 0 as n→∞ and x 7→ Φ(|2L2(x)|)
is integrable on (−∞, 0]. Similarly, one shows that

lim
n→∞

∫ ∞
n+1

Φ(|ImVn(x)|)dx = 0.

Furthermore,∫ n+1

n

Φ(2|fn(x)|)dx =
∫ 1

0

Φ
(
−ReF (L2n(x)) + ImF (L2n(x))

)
dx.

Now, by (3.3),∫ n+1

n

Φ(2|fn(x)|)dx =
1
2

∫ π

0

Φ
(
−ReF (e2niθ) + ImF (e2niθ)

)
sin θdθ

=
1
2

∫ 2nπ

0

Φ
(
−ReF (eiθ) + ImF (eiθ)

)
sin
(
θ

2n

)
dθ
2n

=
1
2

∫ 2π

0

Φ
(
−ReF (eiθ) + ImF (eiθ)

) n−1∑
k=0

sin
(
kπ

n
+

θ

2n

)
dθ
2n

=
1
2

∫ 2π

0

Φ
(
−ReF (eiθ) + ImF (eiθ)

) cos
(
θ−π
2n

)
2n sin

(
π
2n

)dθ

n→∞−−−−→ 1
2π

∫ 2π

0

Φ
(
−ReF (eiθ) + ImF (eiθ)

)
dθ

=
1

2π

[ ∫ ∞
0

Φ
(

2
π

log
(

sin θ
1− cos θ

)
+ 1
)
dθ

+
∫ ∞

0

Φ
(

2
π

log
(

sin θ
1− cos θ

)
− 1
)
dθ

]
=

1
π

[∫ ∞
0

Φ
(∣∣ 2
π log t+ 1

∣∣)
t2 + 1

dt+
∫ ∞

0

Φ
(∣∣ 2
π log t− 1

∣∣)
t2 + 1

dt

]
= K−1

Φ .

Combining this with (3.10) we see that the constant KΦ is indeed the best possible.
This completes the proof.

4. Weak type inequality for re-expansion operator

Recall the sine and cosine Fourier transforms Fs, Fc and the Laplace transform
L on the positive half line. Let us also introduce the complex Fourier transform F
on the closed upper halfplane H, given by

Ff(x, y) = Ff(z) =

√
2
π

∫
R+

f(t)eiztdt.
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Clearly, it suffices to prove the inequality (1.1) for f ∈ C∞0 (R+). The substitution
g = Fcf transforms this estimate into

(4.1) |{x ∈ R+ : |Fcg(x)−Fsg(x)| ≥ 1}| ≤ KΦ

∫
R+

Φ(2Fcg(x))dx.

The Fourier transform satisfies

(4.2) |Fg(z)| ≤ c

1 + |z|
, |(Fg)′(z)| ≤ c

1 + |z|2
.

for all z ∈ H and some absolute constant c depending only on g. Put

u(x, y) = ug(x, y) = ReFg(x, y) =

√
2
π

∫
R+

g(t) cos tx e−ytdt,

v(x, y) = vg(x, y) = ImFg(x, y) =

√
2
π

∫
R+

g(t) sin tx e−ytdt

(4.3)

and observe that we have, for all x, y ∈ R+,

u(x, 0) = Fcg(x), v(x, 0) = Fsg(x),

u(0, y) = Lg(y), v(0, y) = 0

and
ux(0, y) = 0, vx(0, y) = −(Lg)′(y).

Now we are ready to turn to the announced weak type estimate for re-expansion
operator.

4.1. Proof of (1.1). Arguing as in the proof of (1.5), it suffices to establish the
estimate for the elements of the class K. So, fix a ∈ [0,∞] and consider the
corresponding function Φa. Our argumentation will be based, as in the probabilistic
setting, on the properties of the special function Ua.

The first step is to approximate Ua by a sufficiently smooth function: below, we
will need the existence of the partial derivatives of the second order. To do this,
observe that the function x 7→ Uax(x,−x) + Uay(x,−x) is strictly increasing on
[0, 1); indeed, its derivative in the interior of this interval equals 2Uaxx(x,−x) > 0.
Furthermore, by Lemma 2.3, this function vanishes at 0. Thus Uax(1/2,−1/2) +
Uay(1/2,−1/2) > 0 and, in consequence, if δ ∈ (0, 1/2) is sufficiently small, then
for any point (r, s) from the unit ball of R2 we have

(4.4) Uax(1/2− δr,−1/2− δs) + Uay(1/2− δr,−1/2− δs) > 0.

Fix such a δ. Let h : R2 → [0,∞) be a C∞ function, supported on the unit ball
of R2 and satisfying

∫
R2 h = 1 and h(r, s) = h(−r,−s) for all r, s ∈ R. Define

U
(δ)
a : R2 → R by the convolution

U (δ)
a (x, y) =

∫
R2
Ua(x− δr, y − δs)h(r, s)drds.

Since Ua is continuous, an integration by parts gives

U (δ)
ax (x, y) =

∫
R×R

Uax(x− δr, y − δs)h(r, s)drds,

U (δ)
ay (x, y) =

∫
R×R

Uay(x− δr, y − δs)h(r, s)drds.
(4.5)
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Now, for a fixed g, recall u = ug, v = vg given by (4.3) and introduce G : H → R
by

G(x, y) = U (δ)
a (u(x, y) + v(x, y),−u(x, y) + v(x, y))− U (δ)(0, 0).

Applying Green’s formula for the region DR = {(x, y) ∈ R2 : x > R−1, y >
R−1, x2 + y2 < R2}, R > 1, we obtain∫∫

DR

y∆G(x, y)dxdy =
∮
∂DR

yGx(x, y) +G(x, y)− yGy(x, y) dσ(x, y).

Since Ua is subharmonic on R2, so are U
(δ)
a and G. Thus the double integral

above is nonnegative. Now let R → ∞ and use (4.2): the integral over the arc
{(x, y) : x > 0, y > 0, x2 + y2 = R2} tends to 0. Therefore, we get

0 ≤
∫ ∞

0

G(x, 0)dx−
∫ ∞

0

yGx(0, y) +G(0, y)− yGy(0, y)dy

=
∫ ∞

0

G(x, 0)dx−
∫ ∞

0

yGx(0, y)dy,
(4.6)

where in the latter passage we have used integration by parts. To deal with the
second integral on the right, note that

Gx(0, y) = U (δ)
ax (u(0, y) + v(0, y),−u(0, y) + v(0, y)) · (ux(0, y) + vx(0, y))

+ U (δ)
ay (u(x, y) + v(x, y),−u(x, y) + v(x, y)) · (−ux(0, y) + vx(0, y))

=−
[
U (δ)
ax (Lg(y),−Lg(y)) + U (δ)

ay (Lg(y),−Lg(y))
]
(Lg)′(y).

Therefore, integrating by parts yields∫ ∞
0

yGx(0, y)dy =
∫ ∞

0

Jδ(Lg(y))dy,

where

Jδ(x) =
∫ x

0

U (δ)
ax (t,−t) + U (δ)

ay (t,−t)dt

for x ∈ R. We will show that Jδ ≥ 0. By symmetry of Ua and h, it suffices to prove
this on [0,∞). Note that for any b ∈ R, the function r 7→ Uax(r+ b,−r) +Uay(r+
b,−r) is strictly increasing on [0, 1]. Therefore, if x ≤ 1/2, then

Uax(x− δr,−x− δs) + Uay(x− δr,−x− δs) ≥ Uax(−δr,−δs) + Uay(−δr,−δs)

and, by (4.5), Jδ(x) ≥ Jδ(0) = 0. On the other hand, if x ≥ 1/2 and x 6= 1 − δs,
then

Uax(x− δr,−x− δs) + Uay(x− δr,−x− δs) ≥ 0.

Indeed, if −x− δs < −1, then both sides are equal; if −x− δs > −1, then the left
hand side exceeds Uax(1/2 − δr,−1/2 − δs) + Uay(1/2 − δr,−1/2 − δs), which is
positive in virtue of (4.4). Thus, by (4.5), (Jδ)′(x) ≥ 0 and Jδ is a nonnegative
function. Plugging this into (4.6) yields

∫∞
0
G(x, 0)dx ≥ 0, or∫ ∞

0

U (δ)
a (Fcg(x) + Fsg(x),−Fcg(x) + Fsg(x))− U (δ)

a (0, 0)dx ≥ 0.
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However, by (2.5), we have

U (δ)
a (x, y) ≤

∫
R2

[
Ua(0, 0)1{|y−δs|<1} + Φa(x− y − δ(r − s))

]
g(r, s)drds

≤ Ua(0, 0)1{|y|<1+δ} + Φa(x− y) + a

∫
R2
δ|r − s|h(r, s)drds,

where in the second passage we have exploited mean value property together with
the fact that |Φ′a| ≤ a. Therefore

Ua(0, 0)|{x ≥ 0 : |(Fc −Fs)g(x)| ≥ 1 + δ}|

≤
∫

R+

Φa(2|Fcg(x)|) + aδ

∫
R2
|r − s|h(r, s)drds+ Ua(0, 0)− U (δ)

a (0, 0)

and lettting δ → 0 yields

|{x ≥ 0 : |(Fc −Fs)g(x)| > 1}| ≤ K−1
Φa

∫
R+

Φa(2|Fcg(x)|).

Applying this inequality to g/(1− ε) for 0 < ε < 1/2 and letting ε→ 0 strengthens
this bound to the form

|{x ≥ 0 : |(Fc −Fs)g(x)| ≥ 1}| ≤ K−1
Φa

∫
R+

Φa(2|Fcg(x)|).

The proof is complete.

4.2. Optimality of the constant. Fix ε > 0 and let f be a function on R+ such
that

|{x ≥ 0 : |(I −HR+)f(x)| ≥ 1− ε}| ≥ 1− ε
and ∫

R+

Φ(2|f(x)|)dx ≤ K−1
Φ + ε.

Such a function exists, by the reasoning presented in the previous section. For any
s > 0, let f (s) be given by

f (s)(x) = f(x− s)1{x≥s}, x ≥ 0.

We have that

|{x ≥ 0 :|(I −Π)f (s)(x)| ≥ 1− 2ε}|

= |{x ≥ 0 : |(I −HR+ −H1)f (s)(x) ≥ 1− 2ε|

≥ |{x ∈ R : |(I −HR+)f (s)(x)| ≥ 1− ε}| − |{x ≥ 0 : |H1f
(s)(x)| > ε}|

= |{x ∈ R : |(I −HR+)f(x)| ≥ 1− ε}| − |{x ≥ 0 : |H1f
(s)(x)| > ε}|

≥ 1− ε− ||H1f
(s)||1
ε

≥ 1− 2ε,

provided s is sufficiently large: this follows from the equalityH1f
(s)(x) = H1f(x+s)

for any x ≥ 0. On the other hand,∫
R+

Φ(2|f (s)(x)|)dx =
∫

R+

Φ(2|f(x)|)dx.

This shows that the constant KΦ is indeed the best possible.
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References
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