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Abstract. We study a weighted maximal weak type inequality for Haar mul-

tipliers which can be regarded as a dual problem of Muckenhoupt and Whee-
den. More precisely, if Tε is the Haar multiplier associated with the sequence ε

with values in [−1, 1] and Mr is the r-maximal operator, then for any weight

w and any function f on [0, 1) we have

w ({x ∈ [0, 1) : |Tεf(x)| ≥ Mrw(x)}) ≤ Cr

∫ 1

0
|f |dx,

for some constant Cr depending only on r. We also show that the analogous

result does not hold if we replace Mr by the dyadic maximal operator Md.

The proof rests on Bellman function method: using this technique we establish
related weighted Lp estimates for p close to 1, and then deduce the main result

by extrapolation arguments.

1. Introduction

In 1971, Fefferman and Stein established the following weighted version of the
weak-type (1,1) estimate for the Hardy-Littlewood maximal operator M on Rn:

w
(
{x ∈ Rn : Mf(x) ≥ 1}

)
≤ c

∫
Rn
|f |Mwdx,

where w is a nonnegative locally integrable function, w(E) =
∫
E
wdx and c depends

only on the dimension n. A few years after that Muckenhoupt and Wheeden con-
jectured that an analogous bound holds true if one replaces the maximal operator
on the left-hand side by an arbitrary Calderón-Zygmund singular integral operator
T ; that is, there is a finite constant c depending only on n and T such that

(1.1) w
(
{x ∈ Rn : Tf(x) ≥ 1}

)
≤ c

∫
Rn
|f |Mwdx.

There is a weaker statement involving A1 weights. Recall that w satisfies Mucken-
houpt’s condition A1 if there is a finite constant K such that Mw ≤ Kw almost
everywhere; the smallest K enjoying this property is denoted by [w]A1 and called
the A1 characteristics of w. For A1 weights w, (1.1) would imply

(1.2) w
(
{x ∈ Rn : Tf(x) ≥ 1}

)
≤ c[w]A1

∫
Rn
|f |dx,

which is called the weak conjecture of Muckenhoupt and Wheeden. Both problems
remained open for a long time, and there were many attempts which led to some
partial results in this direction. Chanillo and Wheeden showed in [3] that (1.1) is
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true if T is replaced by the Paley-Littlewood square function. Buckley [1] showed
that both conjectures are true for weights of the form wδ(x) = |x|−d(1−δ), 0 < δ < 1.
As far as we know, the best positive result in this direction is that of Pérez, who
showed that if M2 denotes the second iteration of M , then

λw
({
x ∈ Rd : Tf(x) ≥ λ

})
≤ c||f ||L1(M2w).

In fact, the paper [10] contains a stronger statement in which the operator M2 is
replaced by the smaller object ML(logL)ε (we refer the reader to the paper for the
necessary definitions). Consult also the recent works of Lerner, Ombrosi and Pérez
[6, 7] for further results on various forms of (1.2). In 2010, both Muckenhoupt-
Wheeden conjectures were finally shown to be false, as they do not hold true for
n = 1 and T being the Hilbert transform. See the counterexamples by Reguera [11]
and Reguera and Thiele [12], consult also an unpublished manuscript of Nazarov,
Reznikov, Vasyunin and Volberg [9]. The latter work contains also related results
for Haar multipliers. Let h = (hn)n≥0 stand for the usual, unnormalized Haar
system on [0, 1):

h0 = [0, 1), h1 = [0, 1/2)− [1/2, 1),

h2 = [0, 1/4)− [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8)− [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1),

and so on, where we have identified a set with its indicator function. The collection
of all intervals appearing in the above definition will be called the dyadic lattice
of [0, 1). For a given integrable function f =

∑∞
n=0 anhn on [0, 1), let its maximal

function Mdf be given by supN≥0 |fN |, where fN =
∑N
n=0 anhn is the projection of

f onto the space generated by the first N + 1 Haar functions. For a given sequence
ε = (εn)n≥0 of real numbers, we define the associated Haar multiplier T = Tε by
T (
∑∞
n=0 anhn) =

∑∞
n=0 εnanhn. The aforementioned result of [9] asserts that for

any c > 0 there is an A1 weight w, a function f on [0, 1) and a sequence ε with
values in {−1, 1} such that the corresponding operator Tε satisfies

w
(
{x ∈ [0, 1) : Tεf(x) ≥ 1}

)
> c[w]A1

∫ 1

0

|f |Mdwdx.

On the other hand, there is a finite universal c such that

w
(
{x ∈ [0, 1) : Tεf(x) ≥ 1}

)
≤ c[w]A1 log1/7(1 + [w]A1)

∫ 1

0

|f |Mdwdx.

In this paper we will be mostly interested in estimates dual to (1.1) and (1.2).
Such inequalities appeared in the works of Lerner, Ombrosi and Pérez [5] in the
context of singular integral operators: the strong version is

(1.3) w ({x ∈ Rn : |Tf(x)| ≥Mw(x)}) ≤ c
∫
Rn
|f |dx,

where w is an arbitrary weight, T is a Calderón-Zygmund operator and c depends
only on T and the dimension. The weaker inequality concerns A1 weights and reads

(1.4) w ({x ∈ Rn : |Tf(x)| ≥ w(x)}) ≤ c[w]A1

∫
Rn
|f |dx,
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where T and c are as above. To see the duality between these bounds and (1.1),
suppose that (1.1) holds true for some T and apply the extrapolation theorem of
Cruz-Uribe and Pérez [4]. We get that for any 1 < p <∞ there is a constant Cn,p
depending only on the parameters indicated such that∫

Rn
|Tf |pwdx ≤ Cn,p

∫
Rn
|f |p

(
Mw

w

)p
wdx

for all f and w. Then by duality we get∫
Rn

(
|T ∗f |
Mw

)p′
wdx ≤ Cn,p

∫
Rn

(
|f |
w

)p′
wdx,

where p′ = p/(p− 1) ∈ (1,∞). Thus (1.3) can be regarded as a limiting weak-type
(1,1) version, as p→∞, of this estimate (applied to the operator T ∗).

The question about the validity of the inequality (1.3) and (1.4) seems to be open
at the moment. In [5], Lerner, Ombrosi and Pérez proved the following weaker form
of (1.3): there is a constant c depending only on n and T such that

w
(
{x ∈ Rn : |Tf(x)| ≥M3w(x)}

)
≤ c

∫
Rn
|f |dx

(here M3 is the third iteration of the Hardy-Littlewood maximal operator). The
purpose of this paper is to study the dual inequalities in the context of Haar mul-
tipliers. Our first result is the following.

Theorem 1.1. For any c, there is a weight w, a function f on [0, 1) and a sequence
ε with values in {−1, 1} such that the associated Haar multiplier Tε satisfies

(1.5) w ({x ∈ [0, 1) : |Tεf(x)| ≥Mdw(x)}) > c

∫ 1

0

|f |dx.

Our second result is positive and shows that (1.3) holds true if we increase the
operator Md a little bit. In what follows, for any r > 1 we define the r-maximal
operator by Mrw = (Mdw

r)1/r.

Theorem 1.2. For any r > 1 there is a constant Cr depending only on r such
that for any weight w, any function f on [0, 1) and any sequence ε with values in
[−1, 1], the associated Haar multiplier Tε satisfies

(1.6) w ({x ∈ [0, 1) : |Tεf(x)| ≥ Mrw(x)}) ≤ Cr
∫ 1

0

|f |dx.

The above statements do not answer the question about the validity of (1.4) for
Haar multipliers. Though we believe that the inequality does not hold, we have
been unable to prove this rigorously.

We establish Theorem 1.1 in the next section, by providing a family of appro-
priate examples. Section 3 is devoted to the proof of Theorem 1.2: we will exploit
the so-called Bellman function method and deduce the validity of (1.6) from the
existence of a certain special function, involving appropriate majorization and con-
cavity. This is quite different from the argumentation used in [5]-[7], which exploits
delicate boundedness properties of the Hardy-Littlewood maximal operator and
Rubio de Francia algorithm.

2. A counterexample

For the sake of clarity, we have decided to split the construction into two parts.
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2.1. A building block. Fix an arbitrary odd number L = 2`+1 ≥ 3 and consider
a function F on [0, 1) given by

F =

∞∑
n=0

anhn.

Here the coefficients ak ∈ {0, 1} are defined inductively as follows: a0 = 1 and, if

Fk−1 =
∑k−1
n=0 anhn ∈ {0, L} on the support of hk, then ak = 0; otherwise, ak = 1.

Next, put

G =

∞∑
k=0

εkakhk,

where ε0 = 0 and, for k ≥ 1, the term εk = 1 when one of the following conditions
is true:

(i) we have Gk−1 < 0 and Fk−1 > 1 on the support of hk;
(ii) we have Gk−1 ≥ 0 and Fk−1 = 1 on the support of hk.

If neither of the above holds, we set εk = −1. Clearly, by the very definition, we
see that G = TF for a Haar multiplier T with coefficients ε0, ε1, ε2, . . ..

The pair (F,G) has a very nice interpretation in terms of martingales, which we
will describe now, for the convenience of the reader. If we treat ([0, 1),B(0, 1), | · |)
as a probability space equipped with the dyadic filtration, then ((Fn, Gn))n≥0 is a
Markov martingale taking values in the set{

(k,m) ∈ Z× Z : k ≥ 0, k + |m| ∈ {1, 3, 5, . . . , L}
}
,

with the distribution uniquely determined by the following requirements:

(i) We have (F0, G0) ≡ (1, 0).
(ii) Any point of the form (1, k) with k = 0, 2, 4, . . . , L− 3 leads to (0, k − 1)

or to (2, k + 1). Any point of the form (1, k) with k = −2,−4, . . . , 3 − L
leads to (0, k + 1) or to (2, k − 1).

(iii) The point (1, L − 1) leads to (0, L) or to (2, L − 2). The point (1, 1 − L)
leads to (0,−L) or to (2, 2− L).

(iv) Any point of the form (k,m) with k ∈ {2, 3, . . . , L−1} andm ∈ {0, 1, . . . , L−
k} leads to (k− 1,m+ 1) or to (k+ 1,m− 1). Any point of the form (k,m)
with k ∈ {2, 3, . . . , L−1} and m ∈ {−1,−2, . . . , k−L} leads to (k−1,m−1)
or to (k + 1,m+ 1).

(v) All the remaining states are absorbing: once the process gets to such a
state, it stays there forever.

In (ii), (iii) and (iv), each possibility has probability 1/2. See the Figure 1 for the
graph of transities for L = 7.

In what follows, we will need a small, but crucial modification of the pair (F,G)
(after which it will no longer be a Markov process). Namely, let us take a look at
the dyadic interval

I = {s ∈ [0, 1) : F0(s) = 1, F1(s) = 2, F2(s) = 1, F3(s) = 2, . . . , FL−1(s) = 1}.

Directly from the above definition it follows that G0 = 0, G1 = 1, G2 = 2, . . . ,
GL−1 = L− 1 on I. The modification is that we set F ≡ 1 and G ≡ L− 1 on I. In
the language of the Haar expansion, this amounts to cutting off all the coefficients
for which the corresponding Haar functions have their support contained in I. This
modification also has a clear probabilistic interpretation: we stop the martingale
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Figure 1. The evolution of the process (F,G) in the case L = 7.
The dots stand for the elements of the state space, while the arrows
indicate possible movements between the states.

pair (F,G) after L − 1 steps if it moved according to the trajectory described in
the above definition of I.

Let us gather some facts which follow from the above construction. First, observe
that the function F takes values in the set {0, 1, L} and hence

1 = ||F ||L1 = 1 · |{F = 1}|+L · |{F = L}| = |I|+L|{F = `}| = 21−L+L|{F = L}|,
so |{F = L}| = L−1(1−21−L). Next, observe that on I we have G = L−1 = 2` and
MdF = max{F0, F1, . . . , FL−1} = 2. Consequently, |{G ≥ `MdF}| ≥ |I| = 21−L.
Finally, we will use the notation Z[0,1) = {F = 0} and P[0,1) = {F = L}; note that
each of these sets is a countable union of dyadic intervals.

In what follows, we will need a version of the above construction on an arbitrary
dyadic interval I. This version is obtained by taking an increasing affine mapping S
from I onto [0, 1) and setting F I = F ◦S, GI = G◦S. The pair (F I , GI) inherits all
the crucial properties. In particular, we see that G = TF for some Haar multiplier
T , and

|{GI ≥ `MdF}| ≥ 21−L|I|.
We will also use the notation ZI = {F I = 0} and PI = {F I = L}; as previously,
each of these sets is a countable union of dyadic intervals.

2.2. Proof of (1.5). Now we provide the final counterexample. The appropri-
ate function f =

∑∞
k=0 akhk : [0, 1) → [0,∞) and the associated function g =∑∞

k=0 αkakhk, with αk ∈ {−1, 1}, will be obtained as the result of several modifi-
cations with the use of the building block described previously.
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Step 1. Our starting point is to take a0 = a1 = 1/2, a2 = a3 = . . . = 0 and
α0 = 1, α1 = −1, α3 = α4 = . . . = 1. Then, clearly, f ∈ {0, 1}.

Step 2. On the set where f = 0, we do not change anything. Let us look at the
interval {f = 1} = [0, 1/2). Here we let (f, g)|[0,1/2) be equal to (F [0,1/2), G[0,1/2)).

Since (f1, g1) = (1, 0) = (F
([0,1/2)
0 , G

[0,1/2)
0 ), this is well-defined and hence

f =

∞∑
k=0

akhk, g =

∞∑
k=0

αkakhk,

for some real numbers a0, a1, a2, . . . and α0, α1, α2, . . .. Furthermore, since the
coefficients ε1 ,ε2, . . . appearing in the definition of G took values in {−1, 1}, we
see that the sequence (αk)k≥0 consists of signs only. Finally, note that

(2.1) Mdf ≤ L on [0, 1)

and
|g| ≥ `Mdf on the set {f = 1}.

Step 3. We know that the interval [0, 1) splits into the sum of three sets: {f = 0},
{f = 1} and {f = L}. On the first two of these sets the construction is over;
however, on the third we will change f a little bit. Namely, directly from §2.1,
the set {f = L} is a countable union of pairwise disjoint dyadic intervals J1, J2,
. . .. We modify the pair (f, g) on each Jm by putting (f, g)|Jm = (LF Jm , LGJm),
m = 1, 2, . . .. This makes sense, since before the modification we had (f, g) =

(L, 0) = (LF Jm0 , LGJm0 ) on each Jm. Now, by the structure of the Haar system, we
easily see that f and g still admit the representation

(2.2) f =

∞∑
k=0

akhk, g =

∞∑
k=0

αkakhk,

for some real numbers a0, a1, a2, . . . ∈ {0, 1} and some signs α0, α1, α2, . . ..
Observe that

(2.3) Mdf ≤ L2 on [0, 1)

and, by (2.1),
|g| ≥ `Mdf on {f = 1} ∪ {f = L}.

For completeness, let us write formally what happens in the k-th turn.

Step k. The interval [0, 1) splits into the sum of the sets {f = 0}, {f = 1},
{f = L}, . . ., {f = Lk−3} and {f = Lk−2}. We do not change f on the first k − 1
sets. The last set is a union of dyadic intervals, denoted again by J1, J2, . . .. On
each Jm we set (f, g)|Jm = (Lk−2F Jm , Lk−2GJm), m = 1, 2, . . .. It is easy to check
that after this modification, (2.2) are still valid and we have

Mdf ≤ Lk−1 on [0, 1)

and
|g| ≥ `Mdf on{f = 1} ∪ {f = L} ∪ . . . ∪ {f = Lk−2}.

Let us carry over K steps. We get a pair (f, g) which satisfies the formulas (2.2)
and hence there is a Haar multiplier T with coefficients belonging to {−1, 1} such
that g = Tf . Take w = `f . Then the left-hand side of (1.5) equals∫ 1

0

`fχ{|g|≥`Mdf}ds =

∫ 1

0

`fds−
∫ 1

0

`fχ{f=LK}ds,
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since

[0, 1) = {f = 0} ∪ {f = 1} ∪ {f = L} ∪ . . . ∪ {f = LK}
= {f = 0} ∪ {|g| ≥ `Mdf} ∪ {f = LK}.

Hence ∫ 1

0

wχ{|g|≥Mdw}dx =

∫ 1

0

`fds− `Lk|f = LK |

=

∫ 1

0

`fds− `Lk|F = L|K

= `

∫ 1

0

fds− `(1− 21−L)K

K→∞−−−−→ `

∫ 1

0

fds.

But ` was an arbitrary number. Thus, for any positive constant c as in (1.5), we
pick ` > c and take sufficiently large K to obtain a function and a Haar multiplier
for which the desired inequality is satisfied.

3. Proof of Theorem 1.2

For fixed 1 < p < 2 and α ∈ (0, 1), consider a function Up,α : R2 × (0,∞)2 → R,
given by

Up,α(x, y, u, v) = (x2 +y2)p/2(u∨v)−α(p−1)− 21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)
|x|pu−α(p−1).

Observe that Up,α satisfies

(3.1) Up,α(x, y, u, u) ≤ 0 if |y| ≤ |x|.
Indeed, we have (u ∨ v)−α(p−1) ≤ u−α(p−1), (x2 + y2)p/2 ≤ 2p/2|x|p ≤ 2|x|p and

21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)
≥ 2.

Furthermore, we have (x2 + y2)p/2 ≥ |y|p, which implies

(3.2) Up,α(x, y, u, v) ≥ |y|pv−α(p−1) − 21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)
|x|pu−α(p−1)

provided v ≥ u. The main property of Up,α is the following concavity-type condi-
tion.

Theorem 3.1. Suppose that (x, y, u, v) ∈ R2 × (0,∞)2 satisfies u ≤ v. Then for
any h, k ∈ R such that |k| ≤ |h| and any ` ∈ (−u, u) we have

(3.3) 2Up,α(x, y, u, v) ≥ Up,α(x− h, y − k, u− `, v) + Up,α(x+ h, y + k, u+ `, v).

Proof. Fix x, y, u, v and consider the function G : [0, 1]→ R given by

G(t) = ((x+ th)2 + (y + tk)2)p/2v−α(p−1)

− 21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)
|x+ th|p(u+ t`)−α(p−1).

This is almost Up,α(x + th, y + tk, u + t`, v); the only difference is that instead

of ((u + t`) ∨ v)−α(p−1), we have a somewhat simpler (and larger) term v−α(p−1)
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appearing in G. Therefore, the claim will follow if we prove that G(1) +G(−1) ≤
2G(0), and this will be accomplished by showing that G is concave. Since G is
of class C1, it is enough to prove that G′′(t) ≤ 0 for all t ∈ (0, 1) such that the
second derivative exists. To ease the computations, note that G is a difference of
two terms; let us analyze each term separately. First compute that

d

dt

(
(x+ th)2 + (y + tk)2

)p/2
= p
(
(x+ th)2 + (y + tk)2

)p/2−1[
(x+ th)h+ (y + tk)k

]
Therefore, differentiating once again, we get

d2

dt2
(
(x+ th)2 + (y + tk)2

)p/2
= p(p− 2)

(
(x+ th)2 + (y + tk)2

)p/2−2[
(x+ th)h+ (y + tk)k

]2
+ p
(
(x+ th)2 + (y + tk)2

)p/2−1
(h2 + k2).

This, after some manipulations, can be expressed as I1 + I2 + I3, where

I1 = p((x+ th)2 + (y + tk)2)p/2−2((p− 1)(x+ th)2 + (y + tk)2)h2,

I2 = 2p(p− 2)(x+ th)(y + tk)((x+ th)2 + (y + tk)2)p/2−2hk

≤ p(2− p)((x+ th)2 + (y + tk)2)p/2−1h2,

I3 = p((x+ th)2 + (y + tk)2)p/2−2((x+ th)2 + (p− 1)(y + tk)2)k2

≤ p((x+ th)2 + (y + tk)2)p/2−2((x+ th)2 + (p− 1)(y + tk)2)h2.

This implies

d2

dt2
(
(x+ th)2 + (y + tk)2

)p/2 ≤ 2p((x+ th)2 + (y + tk)2)p/2−1h2.

Furthermore, we have v ≥ u ≥ (u+ t`)/2 and hence

d2

dt2
(
(x+ th)2 + (y + tk)2

)p/2
v−α(p−1)

≤ 21+α(p−1)p((x+ th)2 + (y + tk)2)p/2−1(u+ t`)−α(p−1)h2.

(3.4)

Next, let us handle the second “part” of G. If x+ th 6= 0, we compute that

(3.5)
d2

dt2
(
|x+ th|p(u+ t`)−α(p−1)

)
=
〈
A(h, `), (h, `)

〉
,

where the 2× 2 matrix A = (Aij)
2
i,j=1 has the entries

A11 = p(p− 1)|x+ th|p−2(u+ t`)−α(p−1),

A12 = A21 = −αp(p− 1)|x+ th|p−1(u+ t`)−α(p−1)−1 sgn(x+ th),

A22 = α(p− 1)(α(p− 1) + 1)|x+ th|p(u+ t`)−α(p−1)−2.

We have A11 > 0 and detA > 0, so A is nonnegative-definite. Actually, this will
still be true if replace A11 by γA11, with

γ =
αp

α(p− 1) + 1
,
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since then the determinant of the matrix vanishes. Therefore, we may write

d2

dt2
(
|x+ th|p(u+ t`)−α(p−1)

)
≥ (1− γ)A11h

2

=
p(p− 1)(1− α)

α(p− 1) + 1
|x+ th|p−2(u+ t`)−α(p−1)h2.

(3.6)

Combining this inequality with (3.4), we obtain the desired bound G′′(t) ≤ 0. This
proves the claim. �

The function Up,α leads to the following Lp estimate related to (1.6).

Theorem 3.2. Let 1 < p < 2 and r > 1. For any weight w, any function f on
[0, 1) and any sequence ε with values in [−1, 1], the associated multiplier T satisfies

(3.7)

∣∣∣∣∣∣∣∣ TfMrw

∣∣∣∣∣∣∣∣
Lp(Mrw)

≤
(

21+(p−1)/r(p+ r − 1)

(r − 1)(p− 1)

)1/p ∣∣∣∣∣∣∣∣ fw
∣∣∣∣∣∣∣∣
Lp(w)

.

Proof. By a straightforward approximation, we may and do assume that w > 0.
Let g = Tf and put α = 1/r. The assertion is equivalent to∫ 1

0

|g(s)|p(Mrw)1−p(s)ds ≤ 21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)

∫ 1

0

|f(s)|pw1−p(s)ds

or, if we consider the weight w̃ = wr,∫ 1

0

|g(s)|p(Mdw̃)−α(p−1)(s)ds ≤ 21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)

∫ 1

0

|f(s)|pw̃−α(p−1)(s)ds.

We will first show this in the case when f and w̃ (and hence also g) have finite
expansion in the Haar system, i.e.,

f = fN =

N∑
k=0

akhk, w̃ = w̃N =

N∑
k=0

bkhk

for some integer N and some coefficients a0, a1, . . ., aN , b0, b1, . . ., bN . By (3.2),
this will follow once we have proved that∫ 1

0

Up,α

(
fN , gN , w̃N , max

0≤m≤N
w̃m

)
ds ≤ 0.

Note that the integrand makes sense: we have w̃N > 0 and max0≤m≤N w̃m > 0 by
the positivity of w which we have assumed at the beginning. We will show first
that for each n = 0, 1, . . . , N − 1 we have∫ 1

0

Up,α

(
fn, gn, w̃n, max

0≤m≤n
w̃m

)
ds

≥
∫ 1

0

Up,α

(
fn+1, gn+1, w̃n+1, max

0≤m≤n+1
w̃m

)
ds.

(3.8)

Let I be the support of hn+1. The pairs fn, fn+1; gn, gn+1; w̃n, w̃n+1; and
max0≤m≤n w̃m, max0≤m≤n+1 w̃m coincide outside I, so we must show the appro-
priate inequality for the integrals over I. However, fn, gn, w̃n and max0≤m≤n w̃m
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are constant on I; denoting the appropriate values by x, y, u and v, we easily see
that (3.8) is equivalent to

|I|Up,α(x, y, u, v) ≥ |I|
2
Up,α(x− an+1, y − εn+1an+1, u− bn+1, v)

+
|I|
2
Up,α(x+ an+1, y + εn+1an+1, u+ bn+1, v).

This follows directly from (3.3). Thus, (3.8) holds true and hence∫ 1

0

Up,α

(
fN , gN , w̃N , max

0≤m≤N
w̃m

)
ds ≤

∫ 1

0

Up,α(f0, g0, w̃0, w̃0)ds

= Up,α(a0, ε0a0, b0, b0).

The latter expression is nonpositive, due to (3.1), and hence (3.7) holds true for
functions with finite expansions. The passage to the general case exploits a simple
limiting argument. Let f =

∑∞
k=0 akhk, w̃ =

∑∞
k=0 bkhk be arbitrary. By what we

have just proved,∫ 1

0

|
n∑
k=0

εkakhk|p(Mdw̃)−α(p−1)ds

≤
∫ 1

0

|
n∑
k=0

εkakhk|p
(

sup
0≤m≤n

m∑
k=0

bkhk

)−α(p−1)

ds

≤ 21+α(p−1)(α(p− 1) + 1)

(1− α)(p− 1)

∫ 1

0

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
p( n∑

k=0

bkhk

)−α(p−1)

ds.

However, the function (x, u) 7→ |x|pu−α(p−1) is convex on R× (0,∞): see (3.5) and
use the fact that the matrix A appearing there is nonnegative-definite. Further-
more, the pair (

∑n
k=0 akhk,

∑n
k=0 bkhk) is the projection of (f, w̃) on the subspace

generated by the first n+ 1 Haar functions. Therefore, by Jensen’s inequality,∫ 1

0

∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
p( n∑

k=0

bkhk

)−α(p−1)

ds ≤
∫ 1

0

|f |pw̃−α(p−1)ds.

It remains to plug this into the previous estimate, let n → ∞ and use Fatou’s
lemma on the left-hand side. �

We will also need the following simple lemma concerning the Haar system.
Roughly speaking, it asserts that any Haar function hi can be replaced, in dis-
tribution, by sums of Haar functions with arbitrarily large indices and arbitrar-
ily small coefficients. For any J ⊂ N and any nonnegative integer K, we set
J(K) = {j ∈ J : j ≤ K}.

Lemma 3.3. Let I be a dyadic subinterval of [0, 1)and fix positive integers M , N .
Then there is a set J ⊂ {N,N + 1, N + 2, . . .} such that for each j ∈ J , the support
of hj is contained in I, the sums∑

j∈J(K)

M−1hj , K = 1, 2, . . . ,
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take values in [−1, 1], and∣∣∣∣∣∣
s :

∑
j∈J

M−1hj(s) = 1


∣∣∣∣∣∣ =
|I|
2
,

∣∣∣∣∣∣
s :

∑
j∈J

M−1hj(s) = −1


∣∣∣∣∣∣ =
|I|
2
.

Proof. This is straightforward. By the structural, dilation properties of the Haar
system we may assume that I = [0, 1). Let (cn)n≥0 be a sequence defined induc-
tively by

c0 = 1, cn =

{
0 if

∑n−1
j=0 cjM

−1hj ∈ {−1, 1} on the support of hn,

1 otherwise.

It is easy to see that for each n, the sum
∑n
j=0 cjM

−1hj takes values in [−1, 1] and

converges, as n → ∞, to a function taking values ±1 only (on the sets of measure
equal to 1/2). This is precisely the claim. �

By a simple inductive argument, the above statement implies the following.

Corollary 3.4. Fix a positive integer M . Then there is a sequence (dk)∞k=1 with
values in [−M−1,M−1] and a sequence N0, N1, N2, . . ., Nn of integer-valued func-
tions on [0, 1) such that N0 ≡ 0, N0 < N1 < . . . < Nn on [0, 1) and

H̃n =

h0,

N1∑
k=1

dkhk,

N2∑
k=N1+1

dkhk, . . . ,

Nn∑
k=Nn−1+1

dkhk


has the same distribution as Hn = (h0, h1, h2, . . . , hn). That is, for any Borel subset
B of Rn+1,

|{s ∈ [0, 1) : H̃n(s) ∈ B}| = |{s ∈ [0, 1) : Hn(s) ∈ B}|.

Furthermore, each sum
∑`
k=Nj−1+1 dkhk (where Nj−1 + 1 ≤ ` ≤ Nj) takes values

in the interval [−1, 1].

Equipped with the above facts, we are ready to establish Theorem 1.2. Actually,
we will be able to show a whole family of inequalities (1.6) (indexed by p ∈ (1, 2)).

Theorem 3.5. Let r > 1 and 1 < p < 2. Then for any weight w and any function
f : [0, 1)→ R we have

w({s ∈ [0, 1) : |Tεf(s)| ≥ Mrw(s)}) ≤
(

1 +
21+(2p−1)/r(p+ r − 1)

(r − 1)(p− 1)

)
||f ||L1 .

(3.9)

Proof. We may assume that f , w have finite Haar expansions

f =

n∑
k=0

akhk, w =

n∑
k=0

bkhk.

Furthermore, we may assume that w is bounded away from 0: there is η > 0 such
that w ≥ η almost surely. Let us also fix δ ∈ (0, η).

The remainder of the proof splits into two major parts.

Step 1. Reduction to functions having small Haar coefficients. Since f , w have
finite Haar expansions, the function w̃ = wr also has this property: w̃ =

∑n
k=0 ckhk:

indeed, w̃ is measurable with respect to the σ-algebra generated by h0, h1, . . ., hn.
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Fix a large positive integer M and let (dk)∞k=1, 0 = N0 < N1 < . . . < Nn be the
sequences guaranteed by Corollary 3.4. Put

F = a0h0 +

n∑
j=1

Nj∑
k=Nj−1+1

ajdkhk, W = b0h0 +

n∑
j=1

Nj∑
k=Nj−1+1

bjdkhk

and

W̃ = W r = c0h0 +

n∑
j=1

Nj∑
k=Nj−1+1

cjdkhk.

Since (ak), (bk), (ck) are finite sequences, they are bounded and hence, increasing M

if necessary, we may and do assume that the Haar coefficients of F , W and W̃ (ex-
cept for the first ones!) are smaller in absolute value than δ. By the above corollary,

we see that the distribution of the function ((F0,W0, W̃0), (FN1
,WN1

, W̃N1
), . . .,

(FNn ,WNn , W̃n)) is the same as that of ((f0, w0, w̃0), (f1, w1, w̃1), . . . , (fn, wn, w̃n)).
In particular, this implies the existence of a sequence β = (βk)∞k=0 with values in
[−1, 1] such that TβF has the same distribution as Tεf (where ε is an arbitrary
sequence with values in [−1, 1]).

As we shall see, it suffices to study (3.9) for these new functions F , TβF and W .
To this end, we will need to compare the r-maximal functions Mrw and MrW .
For any integer k we have w̃k+1 ≤ 2w̃k almost everywhere, since w is a nonnegative
function. Indeed, if I is a dyadic subinterval of [0, 1] of measure 2−k−1 and J is the
parent of I, that is, I is the left- or the right half of J , then

w̃k+1|I =
1

|I|

∫
I

w̃dx ≤ 1

|I|

∫
J

w̃dx =
2

|J |

∫
J

w̃dx = 2w̃k|J = 2w̃k|I .

Therefore, W̃Nk+1
≤ 2W̃Nk almost everywhere, by the equality of distributions

of the sequences (w̃0, w̃1, . . . , w̃n) and (W̃0, W̃N1
, . . . , W̃Nn). In consequence (see

the last sentence of the above corollary), for almost all s and any ` ∈ [Nk(s) +

1, Nk+1(s)], we have W̃`(s) ≤ 2W̃Nk(s) and hence

MrW (s) = sup
`

((W r)`)
1/r(s) ≤ 21/r sup

k
((W r)Nk)1/r(s).

The above considerations imply the following upper bound for the left-hand side of
(3.9): ∫ 1

0

w1{|Tεf |≥Mrw}ds =

∫ 1

0

W1{|TβF |≥supk((W r)Nk )1/r}ds

≤
∫ 1

0

W1{|TβF |≥2−1/rMrW}ds.

Hence we need to provide an appropriate bound for the latter expression, which
concerns functions/weights with small Haar coefficients.

Step 2. An extrapolation and stopping-time arguments. Let τ : [0, 1)→ N∪{∞}
be given by

τ(s) = inf{n : |Fn(s)| > Wn(s)},



MUCKENHOUPT-WHEEDEN CONJECTURE 13

with the usual convention inf ∅ =∞. We have∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrW (s)}ds

=

∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrW (s), τ(s)<∞}ds

+

∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrW (s),τ(s)=∞}ds.

(3.10)

Let us handle each term on the right separately. We have∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrW (s), τ(s)<∞}ds ≤
∫ 1

0

W (s)1{τ(s)<∞}ds

=

∞∑
n=0

∫ 1

0

W (s)1{τ(s)=n}ds

=

∞∑
n=0

∫ 1

0

Wn(s)1{τ(s)=n}ds,

where in the last line we have used the fact that the set {τ(s) = n} is measurable
with respect to the σ-algebra generated by h0, h1, . . ., hn. But on this set we have
|Fn(s)|/Wn(s) > 1, so

∞∑
n=0

∫ 1

0

Wn(s)1{τ(s)=n}ds ≤
∞∑
n=0

∫ 1

0

|Fn(s)|1{τ(s)=n}ds

≤
∞∑
n=0

∫ 1

0

|F (s)|1{τ(s)=n}ds ≤
∫ 1

0

|F (s)|ds.

To deal with the second term in (3.10), consider the “stopped” function F τ given
by F τ (s) = Fτ(s)(s). Then Tβ(F τ ) = (TβF )τ : both sides define a “truncated”
version of TβF in which the summation runs over all indices smaller than τ . One
easily checks that we have the pointwise bound MrW

τ ≤MrW , so∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrW (s),τ(s)=∞}ds

≤
∫ 1

0

W (s)1{|TβF τ (s)|≥2−1/rMrW τ (s),τ(s)=∞}ds

≤
∫ 1

0

W (s)1{|TβF τ (s)|≥2−1/rMrW τ (s)}ds

=

∫ 1

0

W τ (s)1{|TβF τ (s)|≥2−1/rMrW τ (s)}ds

≤
∫ 1

0

MrW
τ (s)1{|TβF τ (s)|≥2−1/rMrW τ (s)}ds

≤ 2p/r
∫ 1

0

|TβF τ (s)|p

(MrW τ (s))p−1
ds,
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for any p ∈ (1, 2). Thus, by (3.7),∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrw(s),τ(s)=∞}ds

≤ 21+(2p−1)/r(p+ r − 1)

(r − 1)(p− 1)

∫ 1

0

|F τ (s)|
(
|F τ (s)|
W τ (s)

)p−1

ds.

However, combining the definition of τ with the inequality W ≥ η and the fact that
the Haar coefficients of F and W are smaller than δ, we get

|F τ (s)|
W τ (s)

≤
|Fτ(s)−1(s)|+ δ

|Wτ(s)−1| − δ
≤
Wτ(s)−1(s) + δ

Wτ(s)−1(s)− δ
≤ 1 +

2δ

η − δ
.

Furthermore, we have
∫ 1

0
|F τ (s)|ds ≤

∫ 1

0
|F (s)|ds, by Jensen’s inequality. Putting

all the above facts together, we get

(3.11)

∫ 1

0

W (s)1{|TβF (s)|≥2−1/rMrW (s)}ds ≤ Cp,r
∫ 1

0

|F (s)|ds,

where

Cp,r = 1 +
21+(2p−1)/r(p+ r − 1)

(r − 1)(p− 1)

(
1 +

2δ

η − δ

)p−1

.

It remains to let δ → 0 to get the claim. �
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