
ON THE BELLMAN FUNCTION OF NAZAROV, TREIL AND VOLBERG

RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI

ABSTRACT. We find the explicit formula for the Bellman function associated with the
dual bound related to the unconditional constant of the Haar system.

1. INTRODUCTION

Let h = (hn)n≥0 denote the standard Haar system on [0, 1). Recall that this fmaily of
functions is given by

h0 = [0, 1), h1 = [0, 1/2)− [1/2, 1),

h2 = [0, 1/4)− [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8)− [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1), . . .

where we have identified a set with its indicator function. A classical result of Schauder
[11] states that the Haar system forms a basis of Lp = Lp(0, 1), 1 ≤ p < ∞ (with the
underlying measure being the Lebesgue measure). That is, for every f ∈ Lp there is a
unique sequence a = (an)n≥0 of real numbers satisfying ||f −

∑n
k=0 akhk||p → 0. Let

βp(h) be the unconditional constant of h, i.e. the least extended real number β with the
following property: if n is a nonnegative integer and a0, a1, . . . , an are real numbers such
that ||

∑n
k=0 akhk||p ≤ 1, then

(1.1)

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∣∣∣∣∣
p

≤ β

for all choices of signs ε0, ε1, . . . , εn. Using Paley’s inequality [10], Marcinkiewicz [5]
proved that βp(h) < ∞ if and only if 1 < p < ∞. The precise value of βp(h) was
determined by Burkholder in [1]: we have

(1.2) βp(h) = p∗ − 1, 1 < p <∞,

where p∗ = max{p, p/(p − 1)}. Actually, the constant remains the same if we allow the
coefficients a0, a1, a2, . . . to take values in a Hilbert space H (cf. [2]). This result can
be further generalized: if (an)n≥0, (bn)n≥0 are sequences with H-valued terms satisfying
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|an| ≤ |bn| for each n, then

(1.3)

∣∣∣∣∣
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k=0
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p

≤ (p∗ − 1)

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

bkhk

∣∣∣∣∣
∣∣∣∣∣
p

, n = 0, 1, 2, . . . , 1 < p <∞,

and the constant p∗− 1 cannot be replaced by a smaller number. The original proof of this
fact exploits the properties of a certain special object, the associated Bellman function (for
details, see Burkholder [1, 2, 3]).

In the nineties, Nazarov, Treil and Volberg (cf. [7] and a preprint version of [8]) pro-
posed a different, dual approach to the above p∗ − 1 problems. Namely, they proved that
(1.2), (1.3) can be deduced from the existence of a function Bp defined on the set

D =
{

(ζ, η, Z,H) ∈ H ×H× [0,∞)× [0,∞) : Z ≥ |ζ|p, H ≥ |η|q
}
,

satisfying the following two conditions:
(I) We have 0 ≤ Bp(ζ, η, Z,H) ≤ (p∗ − 1)Z1/pH1/q on D.

(II) For any a± = (ζ±, η±, Z±, H±) ∈ D, we have the concavity-type condition

Bp

(
a− + a+

2

)
− Bp(a−) +Bp(a+)

2
≥
∣∣∣∣ζ+ − ζ−2

∣∣∣∣ ∣∣∣∣η+ − η−2

∣∣∣∣ .
The existence of such a function can be extracted from Burkholder’s works [1] and [2].
As shown later by Nazarov and Volberg [9] and Dragičević and Volberg [4], this special
object can be further exploited to yield interesting tight Lp bounds for various classes of
Fourier multipliers. There is an intriguing question about the explicit formulas for the
above functions Bp. What may be quite surprising, this problem has been solved so far
only in the particular case p = 2. For this value of the parameter p, Nazarov, Treil and
Volberg [7, 9] showed that

(1.4) B2(ζ, η, Z,H) =
√

(Z − |ζ|2)(H − |η|2)

works fine. The paper [7] contains also some attempts to find Bp explicitly for other
values of p, but with no success. Nevertheless, the authors managed to construct, for each
1 < p <∞, a function which satisfies (II) and a version of (I), in which p∗− 1 is replaced
by a slightly larger constant. The purpose of this note is to fill this gap and give an explicit
formula for Bp satisfying (I) and (II), for all 1 < p <∞.

Suppose that 1 < p ≤ 2 and introduce the function Bp : D → R as follows: if
|η|qZ ≥ |ζ|pH , then

Bp(ζ, η, Z,H) =
(H − |η|q)1/q(Z − |ζ|p)1/p

p− 1
.

On the other hand, if |η|qZ < |ζ|pH , then

Bp(ζ, η, Z,H) = γZ1/pH1/q − |ζ||η|Y,
where (γ, Y ), 0 ≤ Y < γ < (p− 1)−1 is the unique solution to the system of equations

(1.5)
(1− (p− 1)Y )(1 + Y )p−1

(1− (p− 1)γ)(1 + γ)p−1
=

Z

|ζ|p
,

Y (1 + Y )p−2

γ(1 + γ)p−2
=

(
|η|qZ
|ζ|pH

)1/q

(we will show the existence and the uniqueness of the pair (γ, Y ) later on).
Here is the precise statement of our main result. In what follows, q = p/(p−1) denotes

the harmonic conjugate to p.

Theorem 1.1. For any 1 < p ≤ 2, the function Bp satisfies (I) and (II). If p > 2, then the
function (ζ, η, Z,H) 7→ Bq(η, ζ,H,Z) satisfies (I) and (II).
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It is not difficult to check that when p = 2, we get the function (1.4): the system
(1.5) can be solved explicitly, and in both cases |η|2Z ≥ |ζ|2H , |η|2Z < |ζ|2H we get
the expression

√
(Z − |ζ|2)(H − |η|2). For other values of the parameter p, no compact

formula for Bp seems to exist.
A few words about the proof of the above statement are in order. One can establish

the theorem by the direct verification of the conditions (I) and (II), but this approach is
extremely technical, and it does not give the indication on how the special function was
constructed. Thus, to simplify and clarify the reasoning, we have decided to propose a
different proof. There is an abstract formula for a function satisfying the conditions (I)
and (II), due to Nazarov and Treil [7] (see also Nazarov and Volberg [9] and Dragičević
and Volberg [4]). We will derive the formula explicitly, actually with the use of a slightly
more general, probabilistic setting. This approach has also the advantage that it shows how
to handle complicated Bellman functions (i.e., depending on many variables) by solving
associated less dimensional problems.

We have organized the remainder of this paper as follows. In the next section we present
the abstract formula of Nazarov and Treil, for the function satisfying (I) and (II), and
express it in the probabilistic language of martingales. Section 3 contains some auxiliary
material: we establish there a family of auxiliary Lp estimates for martingales. The final
two sections are devoted to the proof of our main result, Theorem 1.1.

2. AN ABSTRACT FORMULA

Let us start with introducing the necessary notation. Let D denote the lattice of dyadic
subintervals of [0, 1). Given I ∈ D, its left and right halves will be denoted by I− and
I+, respectively. Furthermore, for I ∈ D and a locally integrable function ϕ on [0, 1),
we denote by ϕI the average of ϕ over I: ϕI = 1

|I|
∫
I
ϕ. For a fixed (ζ, η, Z,H) ∈ D,

consider all integrable ϕ, ψ on [0, 1) which satisfy ϕ[0,1) = ζ, ψ[0,1) = η, (|ϕ|p)[0,1) ≤ Z
and (|ψ|q)[0,1) ≤ H (it is not difficult to see that such functions exist). Then, as shown by
Nazarov and Treil [7], the function

(2.1) Bp(ζ, η, Z,H) =
1

4
sup

∑
I∈D

|ϕI+ − ϕI− ||ψI− − ψI+ ||I|

satisfies (I) and (II). Here the supremum is taken over all ϕ, ψ as above. We will show
that the function of Theorem 1.1 coincides with Bp. Observe that the roles of ϕ and ψ
are symmetric, and therefore we immediately see that Bp(ζ, η, Z,H) = Bq(η, ζ,H,Z) for
all (ζ, η, Z,H) ∈ D. Consequently, we will be done with Theorem 1.1 if we manage to
establish the equality Bp = Bp for 1 < p < 2.

Actually, it will be convenient for us to work with an appropriate probabilistic version of
(2.1). Assume that (Ω,F ,P) is a probability space, equipped with the filtration (Fn)n≥0, a
nondecreasing sequence of sub-σ-algebras ofF . Let f, g beH-valued martingales adapted
to (Fn)n≥0, and denote by (dfn)n≥0, (dgn)n≥0 the associated difference sequences:

df0 = f0, dfn = fn − fn−1, n = 1, 2, . . . ,

and similarly for dg. Following Burkholder [1], we say that g is differentially subordinate
to f , if for any n ≥ 0 we have |dgn| ≤ |dfn| almost surely.

The triple ([0, 1),B([0, 1)), | · |) forms a probability space and D gives rise to the corre-
sponding dyadic filtration (for each n, the σ-algebra Fn is generated by the Haar functions
h0, h1, . . ., hn). The adapted martingales in this special setting are called dyadic (or Haar)
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martingales. We easily check that the formula (2.1) can be rewritten as

Bp(ζ, η, Z,H) = supE
∞∑
n=1

|dfn||dhn|,

where the supremum is taken over the class of all dyadic martingales f = (fn)n≥0, h =
(hn)n≥0 such that f0 ≡ ζ, supn E|fn|p ≤ Z, h0 ≡ η and supn E|hn|q ≤ H . Let us
transform this formula to a more convenient form. First, note that we can write

Bp(ζ, η, Z,H) = supE
∞∑
n=1

〈dgn, dhn〉

(〈·, ·〉 is the scalar product in H), where the supremum is taken over all f , h as above
and all dyadic martingales g which are differentially subordinate to f . This can be further
simplified. Pick the martingales f , g, h as above, and note that the first two of them are
bounded in Lp, while the last one is bounded in Lq . Thus, using classical results from
the martingale theory, there are random variables f∞, g∞ and h∞ such that fn → f∞,
gn → g∞ in Lp and hn → h∞ in Lq . Thus, by the orthogonality of the martingale
differences, we get that

Bp(ζ, η, Z,H) = supE

〈 ∞∑
n=1

dgn,

∞∑
n=1

dhn

〉
= supE

〈
g∞ − g0, h∞ − h0

〉
= sup

{
E
〈
g∞, h∞〉 − 〈Eg∞,Eh∞〉

}
,

(2.2)

where the supremum is taken over all dyadic martingale triples (f, g, h) such that f0 ≡ ζ,
E|f∞|p ≤ Z, h0 ≡ η, E|h∞|q ≤ H and g is differentially subordinate to f . This formula
immediately shows that Bp(ζ, η, Z,H) = Bp(ζ, η, Z,H) if |ζ|p = Z or |η|q = H; indeed,
then the corresponding martingale (f or h) must be constant and hence Bp(ζ, η, Z,H) = 0.
Thus, in our considerations below, we will assume that the strict estimates |ζ|p < Z and
|η|q < H hold true. Another crucial observation, particularly helpful during the study of
lower bounds for Bp, is that in the above formula one can consider all (i.e., not necessarily
dyadic) martingales. This follows from the results of Maurey [6], see also Section 10 in
Burkholder’s paper [1].

The proof of Theorem 1.1 will rest on the careful analysis of the above formula for Bp.
It will consist of several ingredients, which are presented in the three sections below.

3. Lp BOUNDS FOR DIFFERENTIALLY SUBORDINATE MARTINGALES

We start with a family of certain auxiliary martingale inequalities. For fixed 1 < p < 2
and 0 < γ ≤ (p− 1)−1, introduce the function bp,γ : H×H → R by

bp,γ(x, y) =


(

γ

γ + 1

)p−2
(|x|+ |y|)p−1

(
|y| − |x|

p− 1

)
if |y| < γ|x|,

|y|p − (2− p)γp−1 + γp−2

p− 1
|x|p if |y| ≥ γ|x|.

It can be easily verified that bp,γ is of class C1 onH×H. We will establish the following
statement.
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Theorem 3.1. Suppose that f , g areH-valued martingales such that (f0, g0) ≡ (x, y) and
P(|dgn| ≤ |dfn|) = 1 for all n ≥ 1. Then for any p and γ as above we have

(3.1) E|gn|p ≤
(2− p)γp−1 + γp−2

p− 1
E|fn|p + bp,γ(x, y), n = 0, 1, 2, . . . .

To show this theorem, we will require the following properties of bp,γ .

Lemma 3.1. (i) There is an absolute constant cp,γ depending only on the parameters
indicated, such that

|bp,γ(x, y)| ≤ cp,γ(|x|p + |y|p)

and ∣∣∣∣∂bp,γ(x, y)

∂x

∣∣∣∣+

∣∣∣∣∂bp,γ(x, y)

∂y

∣∣∣∣ ≤ cp,γ(|x|p−1 + |y|p−1).

(ii) For any x, y ∈ H we have the majorization

(3.2) bp,γ(x, y) ≥ |y|p − (2− p)γp−1 + γp−2

p− 1
|x|p.

(iii) For any x, y, h, k ∈ H such that |k| ≤ |h|, the function

Fx,y,h,k(t) = bp,γ(x+ th, y + tk), t ∈ R,

is concave.

Proof. (i) This is straightforward: we leave the details to the reader.
(ii) Clearly, we may assume thatH = R and x, y ≥ 0. Furthermore, it suffices to show

the majorization for y < γx. Finally, by homogeneity, we may assume that x + y = 1.
Then the bound can be rewritten as(

γ

γ + 1

)p−2(
1− px

p− 1

)
− (1− x)p +

(2− p)γp−1 + γp−2

p− 1
xp ≥ 0

for x ≥ (γ + 1)−1. Denoting the left-hand side by G(x), we easily verify that G((γ +
1)−1) = G′((γ + 1)−1) = 0 and

G′′(x) = p(p− 1)xp−2

[
(2− p)γp−1 + γp−2

p− 1
−
(

1− x
x

)p−2]

≥ p(p− 1)xp−2
[

(2− p)γp−1 + γp−2

p− 1
− γp−2

]
= p(2− p)(γx)p−2(1 + γ) ≥ 0.

Thus, (3.2) follows.
(iii) The functionFx,y,h,k is of classC1, so we will be done if we check thatF ′′x,y,h,k(t) ≤

0 for t such that 0 < |y + tk| < γ|x+ th| or 0 < |x+ th| < |y + tk|/γ. In the first case,
we go back to Burkholder’s calculation (cf. page 17 in [3]): actually, the function

t 7→ (|x+ th|+ |y + tk|)p−1
(
|y + tk| − |x+ th|

p− 1

)
is concave on R for any x, y, h, k with |k| ≤ |h|. To handle F ′′x,y,h,k(t) for 0 < |x+ th| <
|y+ tk|/γ, note that we have the translation property Fx,y,h,k(t+ s) = Fx+th,y+tk,h,k(s)
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for all t, s ∈ R, and hence it is enough to study the sign of the second derivative at t = 0.
We compute that

d2

dt2

[
|y + tk|p − (2− p)γp−1 + γp−2

p− 1
|x+ th|p

] ∣∣∣∣∣
t=0

= p|y|p−2|k|2 + p(p− 2)|y|p−4〈y, k〉2

− (2− p)γp−1 + γp−2

p− 1

(
p(p− 2)|x|p−4〈x, h〉2 + p|x|p−2|k|2

)
.

(3.3)

Now, since p is smaller than 2, we immediately see that p|y|p−2|k|2 ≤ p(γ|x|)p−2|k|2,
p(p− 2)|y|p−4〈y, k〉2 ≤ 0 and

p(p− 2)|x|p−4〈x, h〉2 + p|x|p−2|k|2 ≥ p(p− 1)|x|p−2|h|2.

Hence the second derivative (3.3) is not larger than p(p − 2)γp−1|x|p−2|k|2 ≤ 0, and the
claim follows. �

We turn our attention to the main result of this section.

Proof of Theorem 3.1. There is a well-known procedure which enables the extraction of
(3.1) from the special function bp,γ . Fix f , g, n as in the statement. Of course we may and
do assume that E|fn|p < ∞, since otherwise the bound is trivial. Then E|fk|p < ∞ for
all 0 ≤ k ≤ n, and hence also dfk, dgk are p-integrable for these values of k. The key
observation is that by Lemma 3.1 (iii) and the smoothness of bp,γ , we have

bp,γ(fk+1, gk+1) = bp,γ(fk + dfk+1, gk + dgk+1)

≤ bp,γ(fk, gk) +

〈
∂bp,γ(fk, gk)

∂x
, dfk+1

〉
+

〈
∂bp,γ(fk, gk)

∂y
, dgk+1

〉
,

for k = 0, 1, 2, . . . , n− 1. Now by Lemma 3.1 (i) and the aforementioned p-integrability
of the differences of f and g, we see that both sides above are integrable. Taking expecta-
tion yields Ebp,γ(fk+1, gk+1) ≤ Ebp,γ(fk, gk) and hence, by (3.2),

E
[
|gn|p −

(2− p)γp−1 + γp−2

p− 1
|fn|p

]
≤ Ebp,γ(fn, gn)

≤ Ebp,γ(f0, g0) = bp,γ(x, y).

This is precisely the assertion of the theorem. �

Let us conclude this section by making a simple observation which will be needed later.
Namely, if the martingale f in Theorem 3.1 is assumed to be Lp bounded, then so is g and
we may let n→∞ in (3.1), obtaining

(3.4) E|g∞|p −
(2− p)γp−1 + γp−2

p− 1
E|f∞|p ≤ bp,γ(x, y).

4. PROOF OF Bp ≤ Bp
The purpose of this section is to deduce the above upper bound for Bp from Theorem

3.1. We start with three technical facts.

Lemma 4.1. Let 1 < p < 2 and fix (ζ, η, Z,H) ∈ D such that Z > |η|p, H > |η|q and
|η|qZ < |ζ|pH . Then there is a unique pair (γ, Y ) satisfying the system (1.5).
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Proof. It is convenient to split the reasoning into a few parts.
Step 1. Auxiliary functions. Consider κ, δ : [0,∞) → [0,∞) given by κ(t) = (1 −

(p− 1)t)(1 + t)p−1 and δ(t) = t(1 + t)p−2. A direct differentiation shows that

κ′(t) = −p(p− 1)t(1 + t)p−2 < 0, δ′(t) = (1 + t)p−3(1 + (p− 1)t) > 0

and
δ′′(t) = (p− 2)(1 + t)p−4(2 + (p− 1)t) < 0.

Step 2. An easy case. If |η| = 0, the assertion of the lemma is clear: the second equality
in (1.5) implies Y = 0, and plugging this into the first equation gives κ(γ) = |ζ|p/Z ∈
(0, 1). But, as we have observed above, κ is strictly decreasing and satisfies κ(0) = 1,
κ((p − 1)−1) = 0; thus the claim follows at once from Darboux property. Hence, from
now on, we may assume that η 6= 0.

Step 3. An extra function. As we have shown above, δ is strictly increasing; so, for a
given Y > 0 there is a unique G(Y ) > Y satisfying

δ(Y ) =

(
|η|qZ
|ζ|pH

)1/q

δ
(
G(Y )

)
.

Of course, G is a smooth function on (0,∞). Differentiating both sides above gives

G′(Y ) =
δ′(Y )

δ′(G(Y ))

(
|ζ|pH
|η|qZ

)1/q

,

and hence G′(Y ) > 1. Indeed, |ζ|pH/(|η|qZ) > 1 by the assumption of the lemma, and
δ′(Y )/δ′(G(Y )) > 1, because G(Y ) > Y and δ′′ < 0.

Step 4. Completion of the proof. The assertion of the lemma will follow if we show that
there is a unique Y > 0 for which G(Y ) < (p− 1)−1 and

F (Y ) := κ(Y )− Z

|ζ|p
κ(G(Y )) = 0.

However, we have

F ′(Y ) = κ′(Y )− Z

|ζ|p
κ′(G(Y ))G′(Y ) > κ′(Y )− Z

|ζ|p
κ′(G(Y )),

since G′(Y ) > 1 and κ′(G(Y )) < 0. Thus,

F ′(Y ) = −p(p− 1)Y (1 + Y )p−2

[
1− Z

|ζ|p

(
|ζ|pH
|η|qZ

)1/q
]
> 0

and it remains to note that limY→0 F (Y ) = 0 (since γ(Y ) → 0 as Y → 0), and F (Y ) is
positive when G(Y ) approaches (p− 1)−1. �

Lemma 4.2. Fix nonzero ζ, η ∈ H and two numbers Z, H satisfying Z > |ζ|p and
H > |η|q . Consider the function

L(γ, Y ) = −Y |η|+H1/q

((
γ

γ + 1

)p−2
(1 + Y )p−1

(
Y − 1

p− 1

)
+

(2− p)γp−1 + γp−2

p− 1

Z

|ζ|p

)1/p

,

defined for 0 ≤ Y ≤ γ ≤ (p − 1)−1, and assume that L attains its minimum at the point
(γ0, Y0).

(i) If |η|qZ ≥ |ζ|pH , then γ0 = Y0 = (p− 1)−1.
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(ii) If |η|qZ < |ζ|pH , then (γ0, Y0) is the unique solution to the system (1.5).

Proof. Observe first that L is continuous, so its minimum is attained and hence (γ0, Y0)
exists. A little computation shows that if Y lies in the interval [0, (p − 1)−1) and γ ∈
(Y, (p− 1)−1), then

∂L(γ, Y )

∂γ
= (2− p)γp−3(1− (p− 1)γ)

[
(1 + Y )p−1(1− (p− 1)Y )

(1 + γ)p−1(1− (p− 1)γ)
− Z

|ζ|p

]
= (2− p)γp−3(1− (p− 1)γ)

[
κ(Y )

κ(γ)
− Z

|ζ|p

]
,

where κ is the function introduced in the proof of Lemma 4.1. This function is decreasing
and vanishes at (p−1)−1, so for each Y as above there is a unique γ(Y ) ∈ (Y, (p−1)−1) at
which the partial derivative vanishes. Here the one-dimensional restriction γ 7→ L(γ, Y )
attains its minimum. Therefore, we have three possibilities for the location of (γ0, Y0).
Namely,

a) (γ0, Y0) = (γ(0), 0),
b) (γ0, Y0) = ((p− 1)−1, (p− 1)−1)

or

c) (γ0, Y0) lies in the triangle
{

(γ, Y ) : 0 < Y < γ < (p− 1)−1
}

.

However, the first possibility cannot occur. To see this, we compute that

∂L(γ, Y )

∂Y
= −|η|+H1/q

(
γ

γ + 1

)p−2
(1 + Y )p−2Y×

×
((

γ

γ + 1

)p−2
(1 + Y )p−1

(
Y − 1

p− 1

)
+

(2− p)γp−1 + γp−2

p− 1

Z

|ζ|p

)1/p−1

,

which becomes negative when Y → 0. Thus, b) or c) holds true.
If |η|qZ < |ζ|pH , we easily check that ∂L/∂Y is positive when γ, Y are sufficiently

close to (p−1)−1 and hence b) is impossible. Therefore, c) must hold and (γ0, Y0) satisfies

∂L(γ0, Y0)

∂γ
=
∂L(γ0, Y0)

∂Y
= 0.

One easily verifies that this condition is precisely (1.5).
It remains to consider the case |η|qZ ≥ |ζ|pH . Suppose that c) holds; then (γ0, Y0)

would have to satisfy (1.5). But the first equality in this system would imply γ0 > Y0
(by Z/|ζ|p > 1 and the aforementioned monotonicity of κ), while the second equality
would give γ0 ≤ Y0 (we have |η|pZ/(|ζ|qH) ≥ 1 and the function δ of Lemma 4.1 is
increasing). The contradiction shows that b) must be true, and this completes the proof of
the lemma. �

Finally, let us state a simple fact, the proof of which is left to the reader.

Lemma 4.3. The function

γ 7→ (2− p)γp−1 + γp−2

p− 1

is strictly decreasing on the interval (0, (p − 1)−1] and its value at (p − 1)−1 equals
(p− 1)−p.
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We proceed to the bound Bp ≤ Bp. Fix ζ, η ∈ H and Z > |ζ|p, H > |η|q , and pick
martingales f , g, h as in the definition of Bp(ζ, η, Z,H). Clearly, we may assume that
g0 ≡ 0 (the formula does not depend on the starting variable of g). By Hölder inequality,
we see that for any γ ∈ (0, (p− 1)−1] and any y ∈ H such that 〈y, η〉 = |y||η|, we have

E〈g∞, h∞〉 = −〈y, η〉+ E〈g∞ + y, h∞〉

≤ −|y||η|+ (E|g∞ + y|p)1/pH1/q

≤ −|y||η|+
(
E|g∞ + y|p − (2− p)γp−1 + γp−2

p− 1
(E|f∞|p − Z)

)1/p

H1/q

≤ −|y||η|+H1/q

(
bp,γ(ζ, y) +

(2− p)γp−1 + γp−2

p− 1
Z

)1/p

,

where in the last line we have used (3.4). It will be convenient to write bRp,γ to indicate that
we consider the function bp,γ defined on R×R. The above chain of inequalities, combined
with (2.2), implies that

Bp(ζ, η, Z,H)

≤ inf

{
−s|η|+H1/q

(
bRp,γ(|ζ|, s) +

(2− p)γp−1 + γp−2

p− 1
Z

)1/p
}
,

(4.1)

where the infimum is taken over all γ ∈ (0, (p−1)−1] and all s ≥ 0. The remainder of this
section is devoted to showing that this infimum is equal to Bp(ζ, η, Z,H). For the sake of
convenience and clarity, we have decided to split the reasoning into a few separate parts.

1◦ The case ζ = 0. Then we have bRp,γ(|ζ|, s) = sp. Furthermore,

(2− p)γp−1 + γp−2

p− 1
≥ (p− 1)−p for γ ∈ (0, (p− 1)−1],

by virtue of Lemma 4.3. Consequently, we see that the infimum in (4.1) equals

(4.2) inf
s≥0

(
−s|η|+H1/p(sp + (p− 1)−pZ)1/p

)
.

However, a straightforward analysis of a derivative shows that the expression in the paren-
theses attains its minimal value for s satisfying sp = (p−1)−p|η|qZ/(H−|η|q). Plugging
this s into the expression in (4.2), we get that the infimum equals

Z1/p(H − |η|q)1/q

p− 1
= Bp(0, η, Z,H).

2◦ The case ζ 6= 0, |ζ|pH ≤ |η|qZ. The function bRp,γ is homogeneous of order p. Take
|ζ| out from the expression on the right in (4.1). We get

Bp(ζ, η, Z,H)

≤ |ζ| inf

{
−Y |η|+H1/q

(
bRp,γ(1, Y ) +

(2− p)γp−1 + γp−2

p− 1

Z

|ζ|p

)1/p
}

= |ζ| inf w(γ, Y ),

(4.3)
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where the infimum is taken over the set {(γ, Y ) : γ ∈ (0, (p − 1)−1], Y = s/|ζ| ≥ 0}.
Let us analyze the function w separately on the following subsets of this domain:

S1 = {(γ, Y ) : 0 ≤ Y ≤ γ ≤ (p− 1)−1, Y < γ−1},
S2 =

{
(γ, Y ) : γ < min{Y, (p− 1)−1}

}
,

S3 = {(γ, Y ) : γ = (p− 1)−1, Y ≥ (p− 1)−1}.
First, note that the infimum in (4.3) cannot be attained at S1. This follows from Lemma 4.2
(i), since for Y ≤ γ we have w = L. On the other hand, the infimum cannot be attained
on S2 either. Indeed, for (γ, Y ) ∈ S2 we have

w(γ, Y ) = −Y |η|+H1/q

(
Y p +

(2− p)γp−1 + γp−2

p− 1

(
Z

|ζ|p
− 1

))1/p

,

which is strictly decreasing with respect to γ: see Lemma 4.3. Therefore, we see that
during the computation of the right-hand side of (4.3), we may assume that γ = (p− 1)−1

and Y ≥ (p − 1)−1. This leads us to the problem of finding the minimal value of the
function

(4.4) F (Y ) = −Y |η|+H1/q
(
Y p + (p− 1)−p (Z/|ζ|p − 1)

)1/p
on [(p−1)−1,∞). A straightforward analysis shows that this function attains its minimum
for

(4.5) Y = (p− 1)−1
(
Z − |ζ|p

H − |η|q
|η|q

|ζ|p

)1/p

(note that this value of Y is at least (p − 1)−1, by the assumption |ζ|pH ≤ |η|qZ). It
suffices to note that the minimum is precisely

(Z − |ζ|p)1/p(H − |η|q)1/q

p− 1
= B(ζ, η, Z,H).

3◦ The case ζ 6= 0, |η|qZ < |ζ|pH . We proceed as previously: observe that (4.3) holds
true, and let us try to analyze w on the sets

S1 = {(γ, Y ) : 0 ≤ Y ≤ γ ≤ (p− 1)−1},
S2 =

{
(γ, Y ) : γ < min{Y, (p− 1)−1}

}
,

S3 = {(γ, Y ) : γ = (p− 1)−1, Y > (p− 1)−1}
separately. On the first subset, we make use of Lemma 4.2: we have w = L, so by part
(ii) of that statement, the infimum (at least over S1) is attained at the point satisfying (1.5).
The same analysis as above shows that the set S2 does not contribute to the infimum.
Thus, all that remains is to check the behavior of w on S3, and this leads us to the function
F given by (4.4). However, this function is strictly increasing on [(p − 1)−1,∞) (since
|η|qZ < |ζ|pH , the point Y given by (4.5) lies below (p − 1)−1) and hence the claim
follows.

5. PROOF OF Bp ≥ Bp
We turn our attention to the proof of the lower bound for Bp, which will show that

the functions Bp and Bp actually coincide. This will be accomplished by constructing
appropriate examples. Fix a small δ > 0, numbers γ ∈ (0, (p − 1)−1), Y ∈ [0, γ)
and let (f, g) be a Markov martingale with values in [0,∞) × R, satisfying the following
conditions:
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(i) We have (f0, g0) ≡ (1, Y ).
(ii) A point of the form (x, y) with 0 < y < γx, leads to

(
x+y
γ+1 ,

γ(x+y)
γ+1

)
or to (x +

y, 0).
(iii) A point of the form (x, y) with −γx < y < 0, leads to

(
x−y
γ+1 ,

γ(−x+y)
γ+1

)
or to

(x− y, 0).
(iv) A point of the form (x, 0) leads to (x(1 + δ), δx), (x(1 + δ),−δx),

(
x
γ+1 ,

γx
γ+1

)
or to

(
x
γ+1 ,−

γx
γ+1

)
, with probabilities γ/(2γ + 2δ(γ + 1)), γ/(2γ + 2δ(γ + 1)),

δ(γ + 1)/(2γ + 2δ(γ + 1)) and δ(γ + 1)/(2γ + 2δ(γ + 1)), respectively.
(v) All the points not mentioned in (ii) and (iii) are absorbing.

We need not specify the probabilities in (ii) and (iii), they are uniquely determined by
the martingale property. To gain some intuition about this martingale pair, let us briefly
describe its behavior for Y > 0. The pair starts from (1, Y ) and then it moves along
the line of slope −1, either to the point on the line y = γx, or to the x-axis. If the first
possibility occurs, the pair stops; if it went to the x-axis (so it is at the point (1 + Y, 0)
at the moment), it continues its evolution as follows. We pick independently the random
slope s ∈ {−1, 1} (each choice has probability 1/2), and then move the pair (f, g) along
the line of slope s, either to the point on the line y = −sγx, or to the point (1 +Y + δ, δs).
If the pair visits the line y = −sγx, the evolution stops. Otherwise, the pair moves along
the line of slope −s, either to the line y = sγx or to (1 + Y + 2δ, 0). In the first case
the evolution stops, while in the second, we pick a new random slope s, and the pattern is
repeated.

Let us list several properties of (f, g), which follow directly from the above definition.
First, it is easy to see that |dgn| ≡ |dfn| for each n ≥ 1. Second, the above analysis
clearly shows that (f, g) converges almost surely to a random variable (f∞, g∞) satisfying
|g∞| = γf∞ almost surely. The final observation is that conditionally on the set {g1 =
0}, the random variable g∞ is symmetric, while on {g1 > 0}, the variable is equal to
γ(1 + Y )/(γ + 1). Consequently, we get

Eg∞|g∞|p−2 = E
{
E
[
g∞|g∞|p−2|g1

]}
=

(
γ(1 + Y )

γ + 1

)p−1
P
(
g1 =

γ(1 + Y )

γ + 1

)
= Y

(
γ(1 + Y )

γ + 1

)p−2
.

In what follows, we will require the asymptotic behavior of the p-th moment of f∞ as
δ → 0. It will be convenient to use the notation A ' B when limδ→0A/B = 1. Directly
from (i)-(v), we derive that P(f∞ ≥ (1 + Y )/(γ + 1)) = 1 and, for k ≥ 1,

P
(
f∞ ≥

1 + Y

γ + 1
(1 + 2δ)k

)
=

γ − Y
(1 + Y )(γ + δ(γ + 1))

Pk−1,

where

P =
γ + δ(γ − 1)

(1 + 2δ)(γ + δ(γ + 1)
.

Therefore, we have

P
(
f∞ =

1 + Y

γ + 1

)
' (γ + 1)Y

(1 + Y )γ
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and, for k ≥ 1,

P
(
f∞ =

1 + Y

γ + 1
(1 + 2δ)k

)
=

γ − Y
(γ + δ(γ + 1))(1 + Y )

Pk−1(1− P).

Consequently,

E|f∞|p '
(γ + 1)Y

(1 + Y )γ

(
1 + Y

γ + 1

)p
+

γ − Y
γ(1 + Y )

∞∑
k=1

(
1 + Y

γ + 1
(1 + 2δ)k

)p
Pk−1(1− P)

' Y

γ

(
1 + Y

γ + 1

)p−1
+

(
1 + Y

γ + 1

)p−1
γ − Y
γ2

· 2δ
∞∑
k=1

[
(1 + 2δ)p−1(γ + δ(γ − 1))

γ + δ(γ + 1)

]k−1
' Y

γ

(
1 + Y

γ + 1

)p−1
+

(
1 + Y

γ + 1

)p−1
γ − Y
γ
×

× 2δ

γ(1− (1 + 2δ)p−1) + δ(γ + 1)− δ(γ − 1)(1 + 2δ)p−1

' Y

γ

(
1 + Y

γ + 1

)p−1
+

γ − Y
γ(1− γ(p− 1))

(
1 + Y

γ + 1

)p−1
=

(
1 + Y

γ + 1

)p−1
1− (p− 1)Y

1− (p− 1)γ
.

Here in the third passage we have used the fact that γ < (p − 1)−1: this guarantees that
the geometric series converges and the martingale f is bounded in Lp.

Equipped with the above facts concerning (f, g), we are ready to prove the estimate
Bp ≥ Bp. Pick (ζ, η, Z,H) ∈ D with Z > |ζ|p, H > |η|q and assume first that |η|qZ <
|ζ|pH . Let us decrease Z and H a little: that is, choose Z̄ ∈ (|ζ|p, Z) and H̄ ∈ (|η|q, H)
for which the condition |η|qZ̄ < |ζ|pH̄ is still satisfied. Let γ, Y be the numbers coming
from the system (1.5) (with the parameters ζ, η, Z̄ and H̄). Put f = ζf, g = |ζ|η′g and let
h be the martingale adapted to the filtration of f and g, with the terminal value h∞ given
by

h∞ = g∞|g∞|p−2 ·
(
H̄|ζ|p

Z̄γp

)1/q

η′.

Here η′ = η/|η| if η 6= 0, and 0′ is an arbitrary vector of length 1. Since g∞ belongs
to Lp, the martingale h is bounded in Lq . We have Ef∞ = ζEf∞ = ζ; furthermore,
as δ approaches 0, the p-th moment E|f∞|p converges to Z̄ (by the above calculation).
Therefore, we have E|f∞|p ≤ Z for sufficiently small δ. Next,

Eh =

(
H̄|ζ|p

Z̄γp

)1/q

Y

(
γ(1 + Y )

1 + γ

)p−2
η′ =

H̄1/q|ζ|p/q

Z̄1/q

Y (1 + Y )p−2

γ(1 + γ)p−2
η′ = |η|η′ = η,

where in the third passage we have exploited (1.5). Furthermore, we have

E|h|q =
H̄|ζ|p

Z̄γp
E|g∞|p

δ→0−−−→ H̄|ζ|p

Z̄
·
(

1 + Y

γ + 1

)p−1
1− (p− 1)Y

1− (p− 1)γ
= H̄,
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and hence E|h|q ≤ H if δ is small enough. Therefore, by the very definition of Bp,

B(ζ, η, Z,H) ≥ E〈g∞, h∞〉 − 〈Eg∞,Eh∞〉

= E|g∞|p · |ζ|
(
H̄|ζ|p

Z̄γp

)1/q

− |ηζ|Y.

However, as we have already observed above, E|g∞|p converges to Z̄γp/|ζ|p as δ → 0.
This implies

Bp(ζ, η, Z,H) ≥ Z̄γp

|ζ|p
|ζ|
(
H̄|ζ|p

Z̄γp

)1/q

− |ηζ|Y = Bp(ζ, η, Z̄, H̄),

and letting Z̄ → Z, H̄ → H gives the desired bound Bp(ζ, η, Z,H) ≥ Bp(ζ, η, Z,H).
Finally, we turn our attention to the case |η|qZ ≥ |ζ|pH . As previously, we slightly

decrease Z and H: pick Z̄ ∈ (|ζ|p, Z), H̄ ∈ (|η|q, H) such that |η|qZ̄ ≥ |ζ|pH̄ . We will
need the following modification of the above exemplary martingale pair (f, g). Let Y be
the number given by (4.5) (with Z, H replaced by Z̄, H̄), fix γ < (p− 1)−1 and take

ε = (1− (p− 1)γ) · Y (1 + γ)p−1

(1 + Y )p

(
Z̄

|ζ|p
− 1

)
.

Let (f, g) be a martingale satisfying
(i) (f0, g0) = (1, Y ),

(ii) At the first step, the pair moves to (1− ε, Y + ε) or to (1 + Y, 0).
(iii) Starting with the second step, the pair moves according to the rules (ii)-(v) listed

in the previous case.
We easily see that the condition |dgn| = |dfn|, n ≥ 1, is satisfied. Now, put f = ζf,
g = |ζ|η′g and let h be the martingale with the terminal random variable

h∞ = Y −1(Y + ε)2−pg∞|g∞|p−2η.

We have Ef∞ = ζEf∞ = ζ and, by the above definition of ε,

E|f∞|p =
Y

Y + ε
|ζ|p(1− ε)p +

ε

Y + ε
|ζ|p (1 + Y )p

(1− (p− 1)γ)(1 + γ)p−1
→ Z̄,

as δ → 0 and γ → (p− 1)−1. Next, we check that

Eh∞ =
Y

Y + ε
· Y + ε

Y
η = η

and, by (4.5),

E|h∞|q = |η|qY −q(Y + ε)(2−p)qE|g∞|p →
|η|p

Y p

[
Y p + γp

(
Z̄

|ζ|p
− 1

)]
= |η|p +

(p− 1)−p
(
Z̄/|ζ|p − 1

)
|η|p

Y p
= H̄,

as δ → 0 and γ → (p− 1)−1. Consequently, since Z̄ < Z and H̄ < H , we can write, for
δ sufficiently small and γ sufficiently close to (p− 1)−1,

B(ζ, η, Z,H) ≥ E〈g∞, h∞〉 − 〈Eg∞,Eh∞〉

= |ζ||η| (Y + ε)2−p

Y
E|g∞|p − |ζ||η|Y.
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Letting δ → 0 and γ → (p−1)−1 (then ε→ 0), we see that the latter expression converges
to
|ζ||η|
Y p−1

[
Y p + (p− 1)−p

(
Z̄

|ζ|p
− 1

)]
− |ζ||η|Y =

|ζ||η|(p− 1)−p(Z̄/|ζ|p − 1)

Y p−1
.

Plugging the formula (4.5) for Y we obtain Bp(ζ, η, Z,H) ≥ Bp(ζ, η, Z̄, H̄). It remains
to let Z̄ → Z and H̄ → H to complete the proof.
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