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Abstract. We establish sharp weak type and logarithmic estimates for the

diameter of the stopped Brownian motion. By standard embedding theorems,
the results extend to the case of general real-valued martingales.

1. Introduction

Let (Ω,F ,P) be a probability space filtered by (Ft)t≥0, a nondecreasing sequence
of sub-σ-algebras of F . Let B = (Bt)t≥0 be a standard one-dimensional Brownian
motion with respect to (Ft)t≥0 and let

B∗t = sup
0≤s≤t

Bs, Bt∗ = inf
0≤s≤t

Bs

be the maximum and the minimum of B up to time t. We define the diameter of
the Brownian motion as the process (B∗t − Bt∗)t≥0. In the paper we compare the
sizes of a Brownian motion and its diameter, when both these processes are stopped
at a certain (arbitrary) stopping time τ . A problem of this type was considered
in the recent work of [4] by Dubins, Gilat and Meilijson. That paper contains the
proof of the estimate

(1.1) ||B∗τ −Bτ∗||1 ≤
√

3||Bτ ||2
for any stopping time τ of B satisfying Eτ <∞. Furthermore, it is shown that the
number

√
3 cannot be replaced by a smaller constant. There are several extensions

of (1.1) which might be of interest. The martingale maximal weak-type inequality
of Doob [3] implies that for any p ∈ [1,∞) and any τ ∈ Lp/2,

|| sup
0≤s≤τ

|Bs|||p,∞ := sup
λ>0

[
λpP( sup

0≤s≤τ
|Bs| ≥ λ)

]1/p ≤ ||Bτ ||p.
This gives the following estimate for the diameter:

(1.2) ||B∗τ −Bτ∗||p,∞ ≤ 2||Bτ ||p
for p and τ as above. Similarly, Doob’s moment bound yields

(1.3) || sup
0≤s≤τ

|Bs| ||p ≤
p

p− 1
||Bτ ||p,

for 1 < p ≤ ∞ and τ ∈ Lp/2, and hence implies the analogous inequality for the
diameter:

||B∗τ −Bτ∗||p ≤
2p

p− 1
||Bτ ||p.
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The following Hardy-Littlewood logarithmic estimate can be regarded as the limit
case p → 1+ of (1.3). As proved by Gilat [6] (consult also Peskir [8]), for K > 1
and any stopping time τ of B satisfying Eτ r/2 <∞ for some r > 1, we have

|| sup
0≤s≤τ

|Bs| ||1 ≤ KE|Bτ | log+ |Bτ |+M(K).

Here M(K) = 1+(eK(K−1))−1 is the best possible. This yields a related inequality
for a stopped diameter:

(1.4) ||B∗τ −Bτ∗||1 ≤ 2KE|Bτ | log+ |Bτ |+ 2M(K).

The principal purpose of the present paper is to establish sharp versions of the
inequalities (1.2) and (1.4). Let us start with the logarithmic estimate. Denote by
L(K) the smallest extended number L for which the inequality

(1.5) ||B∗τ −Bτ∗||1 ≤ KE|Bτ | log+ |Bτ |+ L

is valid for all stopping times τ of B satisfying Eτ r/2 < ∞ for some r > 1. Fur-
thermore, let

(1.6) c = (eK(K − 1))−1.

Theorem 1.1. If c+ 2 ≤ eK , then

(1.7) L(K) = log
2c(c+ 2)

c+ 1
−
√
c2 + 2c · arctan

√
c2 + 2c.

By standard embedding theorems of Dambis, Dubins and Schwarz (see [?], [5];
the monograph [10] is also a convenient reference), the result above extends to the
class of all real martingales starting from 0.

Theorem 1.2. Let c + 2 ≤ eK and let M be a cadlág (Fn)-martingale starting
from 0. Then

|| sup
t
Mt − inf

t
Mt||1 ≤ K sup

t
E|Mt| log+ |Mt|+ L(K),

and the constant L(K) is the best possible.

Let us stress here that we prove the above Hardy-Littlewood bounds for K
bounded away from 1: the condition c+2 ≤ eK can be rewritten as K ≥ K0, where
K0 = 1.215 . . . is the solution to 2 + (eK0(K0 − 1))−1 = eK0 . We believe that for
K ∈ (1,K0) the estimate (1.5) remains valid for some L <∞ not depending on τ ,
however, we do not know the value of L(K) in this case.

Concerning the weak-type estimate, we will establish the following statement.

Theorem 1.3. Let p ∈ [1, 2]. For any stopping time τ of B satisfying Eτp/2 <∞
we have

(1.8) ||B∗τ −Bτ∗||p,∞ ≤
(
p+ 2

2

)1/p

||Bτ ||p

and inequality is sharp.

As previously, the inequality above extends to the case of general martingales.

Theorem 1.4. Let p ∈ [1, 2]. For any cadlág (Fn)-martingale M starting from 0,

|| sup
t
Mt − inf

t
Mt||p,∞ ≤

(
p+ 2

2

)1/p

||M ||p
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and the constant
(
p+2

2

)1/p
is the best possible.

A few words about the proof and the organization of the paper. As we have
already mentioned, it suffices to focus on the estimates (1.5) and (1.8) only. We
start with the Hardy-Littlewood estimate. By standard means, it is reduced in
Section 2 to an optimal stopping problem. The solution to this problem is guessed
in the Section 3 and then rigorously verified in Section 4. The final part of the
paper is devoted to the weak-type estimate.

2. An optimal stopping problem

While studying the inequality (1.5), it is natural to consider the following optimal
stopping problem:

(2.1) U0 = sup
τ

EG(Bτ , B
∗
τ , Bτ∗),

where the gain function G is given by

G(x, y, z) = y − z −K|x| log+ |x|

for (x, y, z) ∈ A = {(x, y, z) : z ≤ x ≤ y}. Here the supremum is taken over all
stopping times τ of B such that τ belongs to some Lp/2, p > 1. In order to treat the
problem succesfully, we extend it so that the process ((Bt, B

∗
t , Bt∗))t≥0 can start

at the arbitrary points of A. This is straightforward: for (x, y, z) ∈ A,

(Bt, B
∗
t , Bt∗)

(x,y,z) = (x+Bt, y ∨ sup
0≤s≤t

(x+Bs), z ∧ inf
0≤s≤t

(x+Bs))

starts from (x, y, z), is Markov under P and hence Px,y,z =Law((Bt, B
∗
t , Bt∗)

(x,y,z)|P),
(x, y, z) ∈ A, is a Markovian family of probability measures on the canonical space.
Therefore we can now extend the optimal stopping problem (2.1) to

(2.2) U0(x, y, z) = sup
τ

Ex,y,zG(Bτ , B
∗
τ , Bτ∗).

As usual, we start the analysis by introducing the continuation set

C0 = {(x, y, z) ∈ A : U0(x, y, z) > G(x, y, z)}

and the stopping set

D0 = {(x, y, z) ∈ A : U0(x, y, z) = G(x, y, z)}.

From the general theory of optimal stopping for the Markov processes (see Chapter
I in [9]) we infer that the stopping time which gives equality in (2.2), should be
defined by

τD0
= inf{t : (Bt, B

∗
t , Bt∗) ∈ D0}.

Therefore we have reduced the problems (2.1) and (2.2) to determining the stop-
ping set D0 and the value function U0 outside D0. We see that the underlying
process, and hence also the optimal stopping problem, is three dimensional. As we
shall see, the solution to it is quite complicated.
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3. On the search for the function U0

The purpose of this section is to guess the formula of U0. Let us stress here that
all the calculations carried out below are based on a certain conjecture about the
form of the stopping set D0. The rigorous analysis of the optimal stopping problem
(2.2) is postponed to the next section.

To get some intuition and ideas, we look first at the inequality (1.1). Dubins,
Gilat and Meilijson study in [4] a related optimal stopping problem

U(x, y, z) = sup
τ

Ex,y,z
[
B∗τ −Bτ∗ − cB2

τ

]
= sup

τ
Ex,y,z [B∗τ −Bτ∗ − cτ ] , c > 0,

where the supremum is taken over all the stopping times of B satisfying Eτ < ∞,
and show that U(0, 0, 0) ≤ 3

4c ( this can be easily shown to be equivalent to (1.1)).
The optimal stopping rule can be carried out in two steps: first we wait until the
diameter of size 1/c is obtained; at this moment B must be either at its hitherto
maximum, or minimum. Then, if it is at its maximum, wait until the drawdown of
size 1/(2c) is obtained; if it is at its minimum, wait for the rise of size 1/(2c). Here
the drawdown and rise at time t are given by B∗t − Bt and Bt − Bt∗, respectively.
For details, we refer the interested reader to the paper [4].

It is natural to conjecture that in (2.2) we have a similar two-stage stopping
rule, which can roughly be implemented as follows. First step is to wait until the
diameter grows large, and the second one is to - depending on whether we are at the
maximum or at the minimum at the end of the first stage - wait until a drawdown
or rise of certain size is observed. In other words, we guess that the optimal rule
τD0

is of the following form. First let

(3.1) τ1 = inf{t : (B∗t , Bt∗) ∈ D1}

for some D1 ⊂ {(y, z) : y ≥ 0 ≥ z} to be determined, and

(3.2) τD0
= inf{t > τ1 : Bt ≤ α(B∗t , Bt∗)}

or

(3.3) τD0
= inf{t > τ1 : Bt ≥ β(B∗t , Bt∗)},

for some functions α, β on D1, satisfying α ≥ β, to be found. Here we take (3.2)
or (3.3) depending on whether Bτ1 = B∗τ1 or Bτ1 = Bτ1∗. In the remaining part of
this section we present some steps which lead to the explicit formula for the value
function U0, the continuation set C0 and the stopping set D0. In order to stress
that we deal with the candidates for these objects, we will omit the subscripts and
write U , C, D instead of U0, C0, D0. For the sake of clarity and convenience, we
have split the reasoning into a few numbered parts.

1◦. Here is some initial insight into D1 and the functions α, β, coming directly
from their definitions. First, it is clear that D1 should satisfy the condition that if
(y, z) ∈ D1, then (y′, z′) ∈ D1 for any y′ ≥ y, z′ ≤ z. The next observation is that
(−Bt)t≥0 is a Brownian motion and (−Bt)∗ = −Bt∗, (−Bt)∗ = −B∗t . Therefore
we must have that (y, z) ∈ D1 if and only if (−z,−y) ∈ D1 and, furthermore,
α(y, z) = −β(−z,−y) for all (y, z) ∈ D1. The symmetry of the Brownian motion
affects also the function U : since G(x, y, z) = G(−x,−z,−y), we must have, in
view of (2.2),

(3.4) U(x, y, z) = U(−x,−z,−y) for any (x, y, z) ∈ A.
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Note that in terms of D1, α, β, the stopping set and the continuation set become

D0 = {(x, y, z) : (y, z) ∈ D1 and α(y, z) ≥ x ≥ β(y, z)}, C0 = A \D0.

2◦. The optimal stopping problem (2.2) leads to the following free-boundary
problem (3.5) – (3.12) for the function U . First, by the definition of C and D, we
have

(3.5) U > G on C,

(3.6) U = G on D.

The next observation is that the Markov process (Bt, B
∗
t , Bt∗) can change in the

second or third coordinate only when it hits one of the planes x = y or x = z. It
is not optimal to stop there, unless y = 1 or z = −1 (in fact, as we will see below,
the points (1, 1, z) and (−1, y,−1) also belong to the continuation set). Indeed,
suppose that for some y, z not both equal to 0 and y 6= 1, the point (y, y, z) lies in
D and let ε be a small positive number. We have

lim
ε→0+

ε−1Ey,y,z(B∗ε2 − y) =

√
2

π

and

lim
ε→0+

ε−1Ey,y,z(Bε2∗ − z) = 0, lim
ε→0+

ε−1Ey,y,z(Bε2 log+Bε2 − y log+ y) = 0,

which gives U(y, y, z) ≥ Ey,y,zG(Bε2 , B
∗
ε2 , Bε2∗) > G(y, y, z) for small ε and hence

(y, y, z) lies in the continuation set. The points from the plane x = z are dealt with
in the same manner (or one can use the symmetry (3.4)). Thus we have proved
that α(y, z) < y and β(y, z) > −z for (y, z) ∈ D1, y 6= 1, z 6= −1. Hence, using
Markovian arguments (see [9]), we infer that U should satisfy

(3.7) Uy(y, y, z) = 0 for y ≥ 0 ≥ z,
and

(3.8) Uz(z, y, z) = 0 for y ≥ 0 ≥ z.
Off the planes x = y, x = z, the process (Bt, B

∗
t , Bt∗) changes only in the first

coordinate and hence its behavior is that of one-dimensional Brownian motion.
Therefore, again using Markovian arguments (see [9]), we see that the value function
U must satisfy the following conditions:

(3.9) U(·, y, z) : x 7→ U(x, y, z) is concave for any (y, z),

(3.10) Uxx(x, y, z) = 0 for (x, y, z) ∈ C, x /∈ {y, z}.
Now, before we proceed, it is convenient to fix (y, z) and look at the function
U(·, y, z). Observe that if (y, z) /∈ D1, then for any x ∈ [z, y] the point (x, y, z) lies
in the continuation set. As a consequence of (3.5) and (3.10), U(·, y, z) is linear
and strictly majorizes G(·, y, z) (see Figure 1). If (y, z) ∈ D1, then (x, y, z) ∈ C if
and only if x ∈ (α(y, z), y] or x ∈ [z, β(y, z)). Hence, by (3.5) and (3.10), U(·, y, z)
is linear on those intervals, and equals G(·, y, z) on [β(y, z), α(y, z)] (see Figures 2
and 3 below). It is clear that neither α nor β takes value in the interval (−1, 1):
this would contradict the concavity of U .

The next condition we impose comes from the following observation. It is clear
that if α(y, z) > 1, then, by (3.9), U(·, y, z) has continuous first derivative at
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Figure 1. The case (y, z) /∈ D1. All the points (x, y, z) lie in the
continuation set, so U > G.

α(y, z): indeed, otherwise (3.5) or (3.9) would not hold (see Figure 2). Therefore,
the following principle of smooth-fit is satisfied:

(3.11) Ux(x, y, z)−Gx(x, y, z)|x=α(y,z) = 0 for (y, z) ∈ D1, α(y, z) > 1,

and, by symmetry,

(3.12) Ux(x, y, z)−Gx(x, y, z)|x=β(y,z) = 0 for (y, z) ∈ D1, β(y, z) < −1.

Now, we will try to solve the free-boundary problem formulated above. In the
remaining four steps we will specify the functions α and U(·, y, z) on [α(y, z), y].

3◦ First let us focus on the set {(y, z) : α(y, z) > 1} (the situation is illustrated
on Figure 2). In view of (3.6), (3.10) and (3.11) we have, for x ≥ α(y, z),

U(x, y, z) = G(α(y, z), y, z) +Gx(α(y, z), y, z)(x− α(y, z))

= y − z −Kx[1 + logα(y, z)] +Kα(y, z).
(3.13)

Applying (3.7) gives

1− Kyαy(y, z)

α(y, z)
+Kαy(y, z) = 0

and we easily verify that α(y, z) = K−1
K y solves the equation. We assume that

this is the right formula for α on the set {(y, z) ∈ D1 : y > K/(K − 1)} (so that
α(y, z) > 1 here). This implies the following expression for U on this set:

(3.14) U(x, y, z) = Ky − z −Kx
[
1 + log

(
K − 1

K
y

)]
for x ≥ K − 1

K
y > 1.

4◦ Now suppose (y, z) ∈ D1 is such that α(y, z) = 1 (see Figure 3). Obviously,
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Figure 2. The case (y, z) ∈ D1, α(y, z) > β(y, z) = 1. Observe
U(·, y, z) is not of class C1 at 1, but has continuous derivative at
α(y, z).

Figure 3. The case (y, z) ∈ D1 and α(y, z) = β(y, z) = 1. U is
not of class C1 at 1
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we have y ≥ 1 and it follows from (3.6) and (3.10) that if x ∈ [1, y], then

U(x, y, z) =
y − x
y − 1

·G(1, y, z) +
x− 1

y − 1
· U(y, y, z)

=
y − x
y − 1

· (y − z) +
x− 1

y − 1
· U(y, y, z).

(3.15)

Using (3.7), we get

d

dy
U(y, y, z) = Ux(y, y, z) = −y − z

y − 1
+
U(y, y, z)

y − 1
.

Solving this differential equation gives

(3.16) U(y, y, z) = −(y − 1) log(y − 1) + 1− z − κ1(y − 1),

where κ1 is a real number. We expect y 7→ U(y, y, z) to be continuous, hence taking
y = K/(K − 1) and using the formula for U from the previous step, we obtain

κ1 = K − 1 + log(K − 1) = −1− log c.

To complete the description of α, we must consider the set where it takes values
not larger than −1. Here we make an assumption that the minimum of α equals
−1; as we will see in the next section, this leads to the condition c+2 ≤ eK . Hence,
suppose that (y, z) ∈ D1 and α(y, z) = −1. Then for x ∈ [−1, y] we have

Figure 4. The case (y, z) ∈ D1 and α(y, z) = β(y, z) = −1.
U(·, y, z) is not of class C1 at −1

(3.17) U(x, y, z) =
y − x
y + 1

· (y − z) +
x+ 1

y + 1
U(y, y, z)

and hence (3.7) implies

d

dy
U(y, y, z) = Ux(y, y, z) = −y − z

y + 1
+
U(y, y, z)

y + 1
.
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This gives

(3.18) U(y, y, z) = −(y + 1) log(y + 1)− 1− z + κ2(y + 1).

Now it is clear that the passage from α(y, z) = −1 to α(y, z) = 1 should take
place at such y0, for which U(·, y0, z) is constant and equal to G(1, y0, z) = y0 − z
(see Figures 3 and 4). Combining this with the right hand sides of (3.16) and
(3.18) yields y0 = c + 1 and κ2 = 1 + log(c + 2). Therefore (3.15) and (3.17)
give us the following expressions for U : if α(y, z) = 1 (that is, (y, z) ∈ D1 and
y ∈ [y0,K/(K − 1)]), then

(3.19) U(x, y, z) = y − z − (x− 1) log
y − 1

c
, x ∈ [1, y].

If α(y, z) = −1 (which is equivalent to (y, z) ∈ D1 and y < y0), then

(3.20) U(x, y, z) = y − z − (x+ 1) log
y + 1

c+ 2
, x ∈ [−1, y].

Using the condition (3.4), we obtain the formulae for U on the sets

{(x, y, z) : (y, z) ∈ D1, z ∈ [−K/(K − 1),−y0], x ∈ [z,−1]}

and

{(x, y, z) : (y, z) ∈ D1, z > −y0, x ∈ [z, 1]}.
5◦ The next step is to guess the set D1. Intuitively, the boundary of this set

should describe the passage from the situation illustrated on Figure 1 (no intersec-
tion with the stopping set, smooth U(·, y, z)) to the one from the Figures 3 and
4 (the one-point intersection with D, which is the only point where U(·, y, z) may
be not differentiable). Therefore it is natural to conjecture that (y, z) ∈ ∂D1 if
α(y, z) = ±1 and U(·, y, z) is of class C1, or

∂D1 = {(y, z) : α(y, z) = β(y, z) = ±1 and Ux(α(y, z)+, y, z) = Ux(β(y, z)−, y, z)}.

If α(y, z) = β(y, z) = −1, then we have, by (3.4), Ux(−1−, y, z) = −Ux(1+,−z,−y),
and hence, in view of (3.19) and (3.20), Ux(−1+, y, z) = Ux(−1−, y, z) reads
− log y−1

c = log −z+1
c+2 , or

(y − 1)(−z + 1) = c(2 + c).

A symmetric condition (corresponding to the case α(y, z) = β(y, z) = 1) reads
(y + 1)(−z − 1) = c(2 + c). Thus we have obtained

D1 = {(y, z) : min{(y − 1)(−z + 1), (y + 1)(−z − 1)} ≥ c(2 + c)}.

It is clear why we have taken the inequality “≥” in the definition above: see the
property of D1 formulated just at the beginning of 1◦. Before we proceed, let us
introduce the function s : [0, (c+ 1)2]→ R such that

(3.21) s(y) = sup{z : (y, z) ∈ D1}.

To gain some intuition about this function, pick y ∈ [0, (c+ 1)2]. Directly from the
definition of D1, we see that if z is close to 0, then (y, z) /∈ D1; however, there is a
level (which is precisely s(y)) below which the inclusion (y, z) ∈ D1 holds. To put
it in other words, s(y) is the smallest number such that if a trajectory of B up to
time t runs strictly between s(y) and y, then we have τ1 > t.



10 ADAM OSȨKOWSKI

It can be easily verified that

(3.22) s(y) =

{
−c(2 + c)(y + 1)−1 − 1 if y ∈ [0, c+ 1],

−c(2 + c)(y − 1)−1 + 1 if y ∈ [c+ 1, (c+ 1)2].

6◦ Finally, we will determine the expression for U on the set {(x, y, z) ∈ A :
(y, z) /∈ D1}. It turns out to be the most elaborate step. We start from the
observation that from (3.7), (3.8), (3.10) and Itô’s formula it is apparent that

(3.23) U(x, y, z) = Ex,y,zU(Bτ1 , B
∗
τ1 , Bτ1∗).

Now we will provide an expression for Uy. Fix (x, y, z) ∈ A and a > 0 such that
(y + a, z) /∈ D1. In order to compare U(x, y, z), U(x, y + a, z) and work under the
same probability P0,0,0, introduce the stopping times

σ1 = inf{t : (y ∨ (x+B∗t ), z ∧ (x+Bt∗)) ∈ D1},
σ2 = inf{t : ((y + a) ∨ (x+B∗t ), z ∧ (x+Bt∗)) ∈ D1}.

By (3.23), we have that U(x, y, z) = E0,0,0X and U(x, y + a, z) = E0,0,0Y , where

X = U(x+Bσ1
, y ∨ (x+B∗σ1

), z ∧ (x+Bσ1∗)),

Y = U(x+Bσ2 , (y + a) ∨ (x+B∗σ2
), z ∧ (x+Bσ2∗)).

Now consider the events A1 = {x + B∗σ1
< y}, A2 = {x + B∗σ2

> y + a} and
A3 = Ω\(A1∪A2) = {x+B∗σ1

≥ y, x+B∗σ2
≤ y+a}. On A1, the Brownian motion

x+B does not rise to y before (y ∨ (x+B∗), z ∧ (x+B∗)) reaches D1. Therefore
y ∨ (x + B∗σ1

) = y and hence z ∧ (x + Bσ1∗) = x + Bσ1∗ = s(y). In other words,
x + B reaches s(y) before it visits y, and hence it drops to s(y + a) before it rises
to y + a (see Figure 5); consequently, x+Bσ2 = s(y + a), so we have

(Y −X)IA1 = [U(s(y + a), y + a, s(y + a))− U(s(y), y, s(y))]IA1 .

Arguing as previously, we see that on A2, x + B hits y + a before s(y + a),
and therefore visits y before s(y). This implies that the random variables in
the definitions of σ1 and σ2 are the same, hence these stopping times are equal.

Figure 5. An example of a trajectory from A1. The Brownian
motion hits s(y) before it visits y.
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In consequence, we have X = Y on A2. To deal with A3, observe first that
P0,0,0(Y = U(s(y + a), y + a, s(y + a))|A3) = 1; indeed, x + B∗σ2

≤ y + a im-
plies x+B∗σ2

< y+a almost surely and hence, almost all trajectories from A3, visit
the point s(y+a) before y+a. To study X, we split A3 into two events. Introduce
an auxiliary stopping time η = inf{t : x + Bt ∈ {s(y + a), y}}, and note that the
set A3 is the sum of A4 = A3 ∩ {x+Bη = s(y + a)} and A5 = A3 ∩ {x+Bη = y}.
It is evident that we have

(3.24) A4 = {x+Bη = s(y + a), then x+B reaches y before s(y)}

A5 = {x+Bη = y, then x+B reaches s(y + a) before y + a}
By the strong Markov property, this gives

P0,0,0(A4) =
y − x

y − s(y + a)
· s(y + a)− s(y)

y − s(y)

and

P0,0,0(A5) =
x− s(y + a)

y − s(y + a)
· a

y + a− s(y + a)
.

Now we will let a→ 0+. From the above estimates it follows that

lim
a→0+

1

a
P0,0,0(A3) =

(y − x)s′(y+) + x− s(y)

(y − s(y))2
.

Moreover, it is evident that

lim
a→0+

1

a
E0,0,0XIA4

=
(y − x)s′(y+)

(y − s(y))2
U(y, y, s(y)),(3.25)

lim
a→0+

1

a
E0,0,0XIA5 =

x− s(y)

(y − s(y))2
U(s(y), y, s(y)).(3.26)

Indeed, to see (3.25), one must look carefully at (3.24) and (3). Having visited y, the
trajectory has an overwhelming probability of terminating at time σ1 somewhere
between y and y + a (the remaining trajectories must drop below s(y + a) before
they rise to y + a). The limit (3.26) holds for similar reasons.

Combining all the above facts together, we obtain

Uy(x, y+, z) = lim
a→0+

1

a
E(Y −X) = lim

a→0+

1

a
E [(Y −X)IA1

+ Y IA3
−XIA4

−XIA5
]

= P(A1) · d
+

dy
U(s(y), y, s(y)) +

(y − x)s′(y+) + x− s(y)

(y − s(y))2
U(s(y), y, s(y))

− (y − x)s′(y+)

(y − s(y))2
U(y, y, s(y))− x− s(y)

(y − s(y))2
U(s(y), y, s(y))

=
y − x
y − s(y)

d+

dy
U(s(y), y, s(y))

+
(y − x)s′(y+)

(y − s(y))2
[U(s(y), y, s(y))− U(y, y, s(y))]

=
y − x
y − s(y)

d+

dy
U(s(y), y, s(y))− (y − x)s′(y+)

y − s(y)
Ux(s(y), y, s(y))

=
y − x
y − s(y)

Uy(s(y), y, s(y)),
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where in the fifth passage we have used the fact that x 7→ U(x, y, s(y)) is linear on
[s(y), y] and in the latter one we have exploited (3.8). Now it follows from (3.4),
(3.19), (3.20) and (3.22) that Uy(s(y), y, s(y)) = 1 and hence

(3.27) Uy(x, y+, z) =
(y − x)(y + 1)

(y + 1)2 + c(2 + c)

if y ≤ c+ 1, and

(3.28) Uy(x, y+, z) =
(y − x)(y − 1)

(y − 1)2 + c(2 + c)

if y ≥ c+ 1. As

U(x, y, z) = U(x, s−1(z), z)−
∫ s−1(z)

y

Uy(x, t+, z)dt,

we are able to derive the formulae for U . By (3.19) and (3.20),

U(x, s−1(z), z) =

{
s−1(z)− z − (x+ 1) log( s

−1(z)+1
c+2 ) if s−1(z) ≤ c+ 1,

s−1(z)− z − (x− 1) log( s
−1(z)−1

c ) if s−1(z) ≥ c+ 1.

Therefore, if (y, z) /∈ D1 and y ≥ c+ 1, then

U(x, y, z) = y − z +
x− 1

2

[
log

(s−1(z)− 1)2 + c2 + 2c

(y − 1)2 + c(2 + c)
− 2 log

s−1(z)− 1

c

]
+
√
c2 + 2c

[
arctan

s−1(z)− 1√
c2 + 2c

− arctan
y − 1√
c2 + 2c

]
.

(3.29)

if (y, z) /∈ D1 and s−1(z) ≤ c+ 1, then

U(x, y, z) = y − z +
x+ 1

2

[
log

(s−1(z) + 1)2 + c2 + 2c

(y + 1)2 + c(2 + c)
− 2 log

s−1(z) + 1

c+ 2

]
+
√
c2 + 2c

[
arctan

s−1(z) + 1√
c2 + 2c

− arctan
y + 1√
c2 + 2c

]
.

(3.30)

Finally, if (y, z) /∈ D1 and y < c+ 1 < s−1(z), then

U(x, y, z) = y − z − (x− 1) log
s−1(z)− 1

c

+
x+ 1

2
log

2(c+ 1)(c+ 2)

(y + 1)2 + c2 + 2c
+
x− 1

2
log

(s−1(z)− 1)2 + c2 + 2c

2c(c+ 1)

+
√
c2 + 2c

[
arctan

s−1(z)− 1√
c2 + 2c

− arctan
y + 1√
c2 + 2c

]
+
√
c2 + 2c

[
arctan

√
c+ 2

c
− arctan

√
c

c+ 2

]
.

(3.31)
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As s−1(0) = (c+ 1)2, it follows from the latter formula, that

U(0, 0, 0) = log(c+ 2) +
1

2

[
log

2(c+ 1)(c+ 2)

c2 + 2c+ 1
− log

(c2 + 2c)2 + c2 + 2c

2c(c+ 1)

]
+
√
c2 + 2c · arctan

√
c2 + 2c = L(K).

(3.32)

Here we have used the identity

arctan
1√

c2 + 2c
= 2 arctan

√
c+ 2

c
− π

2
= arctan

√
c+ 2

c
− arctan

√
c

c+ 2
.

4. The proof of the LlogL inequality

The function U constructed in the previous section is the candidate for the
solution to the optimal stopping problem (2.2). First we will check that it solves
the free-boundary problem (3.5)–(3.12). In fact the only condition which needs
checking is the first one.

Lemma 4.1. The function U satisfies (3.5).

Proof. The majorization is valid on the set {(x, y, z) : (y, z) ∈ D1}: this follows
immediately from the construction. Suppose then, that (y, z) /∈ D1. In view of
(3.4), it suffices to show U(x, y, z) ≥ G(x, y, z) for nonnegative x. We have, by
(3.27) and (3.28),

Uy(x, y+, z) = 1 +
(−1− x)(y + 1)− c(2 + c)

(y + 1)2 + c(2 + c)
≤ 1,

if y ≤ c+ 1, and

Uy(x, y+, z) = 1 +
(1− x)(y − 1)− c(2 + c)

(y − 1)2 + c(2 + c)
≤ 1 +

y − 1− c(2 + c)

(y − 1)2 + c(2 + c)
≤ 1,

if y > c + 1. Therefore, for fixed x, z, the function y 7→ U(x, y, z) − G(x, y, z),
y ∈ [x, s−1(z)], is nonincreasing and

U(x, y, z)−G(x, y, z) ≥ U(x, s−1(z), z)−G(x, s−1(z), z) ≥ 0,

as (s−1(z), z) ∈ D1 and we have the majorization here. �

Lemma 4.2. The function U satisfies (3.6) – (3.12).

Proof. In fact, all these conditions follow immediately from the construction of U .
First, (3.6) is just a part of the definition of U . The equations (3.7) and (3.8) were
the key to determine the formula for U(y, y, z) and U(z, y, z); see steps 3◦, 4◦ and
6◦ above. Hence they hold true. The condition (3.9) requires checking only in the
case (y, z) ∈ D1, α(y, z) = β(y, z) = ±1; for example, if both α and β equal 1, then
all we need is to check the inequality for the one-sided derivatives of U(·, y, z): we
have

Ux(1−, y, z) = −Ux(−1+,−z,−y) = log
−z + 1

c+ 2
,

Ux(1+, y, z) = − log
y − 1

c
,

so Ux(1−, y, z) ≥ Ux(1+, y, z) follows at once from (y, z) ∈ D1. The equation (3.10)
is a consequence of (3.13), (3.15) and (3.17), which constitute the definition of U .
The validity of (3.11) and (3.12) is guaranteed by step 3◦. �
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We are ready to prove that U is the solution to the optimal stopping problem
(2.2).

Theorem 4.1. We have C = C0, D = D0 and U = U0.

Proof. First we approximate U by a sequence of smooth functions. For any ε > 0,
there is Uε : A → R of class C2 such that U = Uε on {(x, y, z) : y−x < ε or x−z <
ε}, for any y, z Uε(·, y, z) is concave and Uε ≤ U ≤ Uε+ε. By Itô’s formula applied
to Uε, we obtain

Uε(Bt, B
∗
t , Bt∗) = Uε(B0, B

∗
0 , B0∗) +

∫ t

0

Uεx(Bs, B
∗
s , Bs∗)dBs

+

∫ t

0

Uεy (Bs, B
∗
s , Bs∗)dB

∗
s +

∫ t

0

Uεz (Bs, B
∗
s , Bs∗)dBs∗

+
1

2

∫ t

0

Uεxx(Bs, B
∗
s , Bs∗)ds.

(4.1)

Note that the second integral vanishes. Indeed, the process B∗s changes only on the
plane x = y and Uεy equals zero there, by (3.7) and the fact that Uε = U on some
neighborhood of the plane. Similarly, the third integral is equal to 0. Furthermore,
the last integral is nonpositive, which is a consequence of the concavity of Uε(·, y, z)
for any (y, z).

Now let τ be a stopping time of B satisfying Eτp/2 < ∞ for some p > 1. By
the construction of Uε and (3.5), (3.6), we have Uε + ε ≥ U ≥ G, and hence (4.1)
yields

Ex,y,zG(Bτ∧t, B
∗
τ∧t, Bτ∧t∗)− ε ≤ Uε(x, y, z) ≤ U(x, y, z).

Now we infer from the Burkholder-Davis-Gundy inequality that Ex,y,zB∗τ , Ex,y,zBτ∗
and Ex,y,z sups≤τ |Bs| log+ |Bs| are finite. Hence, it suffices to let t → ∞ and use
the fact that τ and ε > 0 were arbitrary, to get U ≥ U0.

To prove the reverse estimate, we will use the stopping time τD. Clearly, we
have U = G ≤ U0 on D, so it remains to prove the inequality on the set C. We will
show that

(4.2) Ex,y,zτp/2D <∞ if p < K and (x, y, z) ∈ C.

Consider the stopping time

η = inf

{
t : Bt + (c+ 1)2 ≤ K − 1

K

(
B∗t − (c+ 1)2

)}
= inf

{
t : Bt + a ≤ K − 1

K

(
B∗t + a

)}
,

where a = (2K − 1)(c+ 1)2. By the results of Wang [12], we have Ex,y,zηp/2 <∞
if p < K. To relate this stopping time to τD, observe first, that η ≥ τ1. Indeed, we
have

B∗η ≥ (c+ 1)2 = s−1(0) ≥ s−1(Bη∗)

or

Bη∗ ≤ Bη ≤ −(c+ 1)2 ≤ s(0) ≤ s(B∗η)
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and it suffices to use (3.21). Now, note that on {Bτ1 = B∗τ1}, we have

Bη =
K − 1

K
(B∗η − (c+ 1)2)− (c+ 1)2

≤ −I{B∗
η<c+1} + I{c+1≤B∗

η≤K/(K−1)} +
K − 1

K
B∗ηI{B∗

η>K/(K−1)}

= α(B∗η , Bη∗),

which implies that τD ≤ η. Consequently, if p < K, Ex,y,zτp/2D I{Bτ1=B∗
τ1
} ≤

Ex,y,zηp/2 <∞. It can be proved similarly, using a ,,symmetric” stopping time

η = inf

{
t : Bt − (c+ 1)2 ≥ K − 1

K

(
Bt∗ + (c+ 1)2

)}
,

that Ex,y,zτDp/2I{Bτ1=Bτ1∗} <∞, thus establishing (4.2).

The next observation is that the process (BτD∧t, B
∗
τD∧t, BτD∧t∗) moves on the

set C, where the function U is of class C2. Hence, by Itô’s formula, for any t,

(4.3) Ex,y,zU(BτD∧t, B
∗
τD∧t, BτD∧t∗) = U(x, y, z).

By Burkholder-Davis-Gundy inequality, we have that B∗τD , BτD∗ belong to Lp, p <

K. In consequence, they are both integrable along with sup0≤s≤τD |Bs| log+ |Bs|.
Hence, by Lebesgue’s dominated convergence theorem, letting t→∞ yields

Ex,y,zG(BτD , B
∗
τD , BτD∗) = Ex,y,zU(BτD , B

∗
τD , BτD∗) = U(x, y, z),

that is, U0 ≥ U . This completes the proof. �

5. The weak type estimate

Now we deal with inequality (1.8). By homogeneity, it suffices to show that

P(B∗τ −Bτ∗ ≥ 1) ≤ p+ 2

2
E|Bτ |p

for any stopping time τ , for which Eτp/2 <∞. Therefore we are forced to consider
the following optimal stopping problem

(5.1) V (x, y, z) = supEx,y,zH(Bτ , B
∗
τ , Bτ∗), (x, y, z) ∈ A,

where supremum is taken over all stopping times τ of B as above and

H(x, y, z) = I{y−z≥1} −
p+ 2

2
|x|p.

It turns out that if p ∈ [1, 2], then the optimal strategy is to wait until the diameter
reaches 1: τ = inf{t : B∗t − Bt∗ ≥ 1} Since τ ≤ inf{t : sup0≤s≤t |Bs| = 1/2}, we
infer that τ is exponentially integrable and hence may be taken into account in
(5.1).

Lemma 5.1. Let v : A → R be given by v(x, y, z) = Ex,y,z|Bτ |p.
(i) We have

v(x, y, z) = (1− y)p(y − x) + (z + 1)p(x− z)

− x

p+ 1
[(1 + z)p+1 + (−z)p+1 − yp+1 − (1− y)p+1]

+
1

p+ 2
[(z + z)p+2 − (−z)p+2 − yp+2 + (1− y)p+2]

(5.2)
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if y − z < 1, and v(x, y, z) = |x|p for y − z ≥ 1.
(ii) We have the majorization

(5.3) v(x, y, z) ≤ 2

p+ 2
I{y−z<1} + |x|p.

Proof. (i) Fix (x, y, z) ∈ A. If y−z ≥ 1, then τ = 0, so v(x, y, z) = |x|p, as claimed.
Suppose that y − z < 1; then (5.2) can be verified with the use of Itô’s formula.
Indeed, if we denote the right-hand side by f(x, y, z), then

|Bτ |p = f(Bτ , B
∗
τ , Bτ∗) = f(x, y, z) +

∫ τ

0

∂f(Bu, B
∗
u, Bu∗)

∂x
dBu,

since the remaining integrals are zero (we have fxx = 0, fy(y, y, z) = 0 and
fz(z, y, z) = 0 for all x, y, z). Hence, it remains to take the expectation of both
sides and (5.2) follows.

We would like, however, to provide some arguments which have led us to the
right-hand side of (5.2). Suppose that y − z < 1. We see that Bτ takes values in
the set [y− 1, z]∪ [y, z+ 1] and has at most two atoms, at y− 1 and z+ 1. Indeed,
Bτ = y − 1 if and only if B reaches y − 1 before y, hence P(Bτ = y − 1) = y − x.
Similarly, P(Bτ = z + 1) = x − z. To find the density of the continuous part of
Bτ , we will use the following intuitive argument (which can be easily made precise
by approximation by a symmetric random walk). For w ∈ [y, z + 1), we see that
Bτ = w if the following two-step procedure takes place: first, B visits w− 1 before
w; then, it does not drop below w − 1 before it reaches w. As the probability of
the second step does not depend on w, we infer that the density of Bτ on [y, z + 1]
is of the form g(w) = κ(w − x), where κ is a certain constant. Similarly, we see
that the density of Bτ on [y − 1, z] is equal to g(w) = κ(x−w+ 1) (with the same
constant κ). The integral of g must be equal to 1 − (y − z), which yields κ = 1.
Having determined the distribution of Bτ , one easily verifies (5.2).

(ii) It suffices to prove (5.3) for y − z < 1. Since v(x, y, z) = v(−x,−z,−y), we
may assume that x is nonnegative. We have

vz(x, y, z) = x[−(1 + z)p + (−z)p + p(z + 1)p−1]

+ (1 + z)pz + (−z)p+1 − p(z + 1)p−1z

≥ x · (−z)p + (−z)p+1 ≥ 0,

which implies that it is enough to show the majorization for z = 0. Now we have

vy(x, y, 0) = x[p(1− y)p−1 + yp − (1− y)p]− p(1− y)p−1y + (1− y)py − yp+1.

Since vy(y, y, 0) = 0 and the expression in the square brackets is nonnegative, we
infer that vy(x, y, 0) ≤ 0 and therefore we reduce the proof of (5.3) to the case
x = y ≥ 0, z = 0. The inequality takes form

x− x

p+ 1
[1− xp+1 − (1− x)p+1] +

1

p+ 2
[1− xp+2 + (1− x)p+2]− 2

p+ 2
− xp ≤ 0

and is to be valid for x ∈ [0, 1]. Denoting the left hand side by F (x), we have
F (0) = 0 and hence it suffices to show that F is nonincreasing. We derive that

F ′(x) =
p

p+ 1
[1− (1− x)p+1] +

xp+1

p+ 1
− pxp−1 − x(1− x)p.



BROWNIAN MOTION 17

If x ≤ 1/2, then, using 1− (1− x)p+1 ≤ (p+ 1)x and xp+1 ≤ x(1− x)p we obtain

F ′(x) ≤ p(x− xp−1)− p

p+ 1
x(1− x)p < 0,

as p ∈ [1, 2]. If x > 1/2, then

F ′(x) ≤ p

p+ 1
+

1

p+ 1
− pxp−1 ≤ 1− p

2p−1
≤ 0,

where in the last passage we again used p ∈ [1, 2]. This completes the proof. �

Remark 1. Observe that inequality (5.3) fails to hold if p > 2. Therefore τ is not
optimal in this case.

Now we turn to the optimal stopping problem (5.1).

Theorem 5.1. We have

(5.4) V (x, y, z) =

{
1− p+2

2 v(x, y, z) if y − z < 1,

1− p+2
2 |x|

p if y − z ≥ 1.

Proof. We start from the observation that V (x, y, z) is not smaller than the right
hand side of (5.4). Indeed, this follows from the fact the latter equalsH(Bτ , B

∗
τ , Bτ∗)

and that τ has the necessary integrablility property. It remains to establish the
reverse estimate. If y−z > 1, then for any τ ∈ Lp/2 we have, by Burkholder-Davis-
Gundy inequality, Ex,y,z sups≤τ |Bs|p < ∞ and |x|p ≤ limt→∞ Ex,y,z|Bτ∧t|p =
Ex,y,z|Bτ |p. Hence

Ex,y,zH(Bτ , B
∗
τ , Bτ∗) ≤ 1− p+ 2

2
Ex,y,z|Bτ |p ≤ 1− p+ 2

2
|x|p.

Finally, suppose y−z < 1. We have that V ≥ H. We easily check that the function
V satisfies

(5.5) Vy(y, y, z) = Vz(z, x, z) = 0 for all y, z

and

(5.6) V (·, y, z) is concave for all y, z.

Therefore it follows from Itô’s formula and approximation argument that

V (Bt, B
∗
t , Bt∗) ≤ V (B0, B

∗
0 , B0∗) +

∫ t

0

Vx(Bs, B
∗
s , Bs∗)dBs,

Hence, for any stopping time τ ∈ Lp/2 of B, we have

Ex,y,zH(Bτ∧t, B
∗
τ∧t, Bτ∧t∗) ≤ Ex,y,zV (Bτ∧t, B

∗
τ∧t, Bτ∧t∗) ≤ V (x, y, z).

Now we let t → ∞. By Burkholder-Davis-Gundy inequality, sup0≤s≤τ |Bs belongs
to Lp, hence Lebesgue’s dominated convergence theorem together with the fact that
τ is arbitrary proves the claim. �

Proof of Theorem 1.3. This immediately follows from the theorem above and the
fact that V (0, 0, 0) = 0. �

There is a very interesting question about the sharp weak-type bound and the
optimal stopping strategy in the case p > 2. Summarizing, we see that the
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