
SHARP INEQUALITIES FOR SUMS OF NONNEGATIVE
RANDOM VARIABLES AND FOR A MARTINGALE

CONDITIONAL SQUARE FUNCTION

ADAM OSȨKOWSKI

Abstract. In the paper we prove weak-type and Φ-inequalities for the con-

ditional square function of a martingale. A related estimates for the sums of
nonnegative random variables and sums of their predictable projections are

established.

1. Introduction

Let (Ω,F ,P) = ([0, 1],B([0, 1]), | · |) be a probability space and (Fn) be a fil-
tration, that is, a nondecreasing sequence of sub-σ-fields of F . Throughout the
paper, f = (fn) will be a martingale adapted to (Fn) and taking values in a certain
separable Banach space (B, || · ||). Let df = (dfn) be the difference sequence of f ,
defined by fn =

∑n
k=0 dfk, n = 0, 1, . . .. Then S(f), the square function of f , and

s(f), the conditional square function of f , are given by

S(f) =

[ ∞∑
k=0

||dfk||2
]1/2

and s(f) =

[ ∞∑
k=0

E(||dfk||2|Fk−1)

]1/2

,

where F−1 = F0. We will also use the notation

Sn(f) =

[
n∑
k=0

||dfk||2
]1/2

and sn(f) =

[
n∑
k=0

E(||dfk||2|Fk−1)

]1/2

,

and, furthermore, we will write

||f ||p = sup
n
||fn||p = sup

n
(E||fn||p)1/p

and

||f ||p,∞ = sup
n
||fn||p,∞ = sup

n
sup
λ>0

λ(P(||fn|| ≥ λ)1/p,

where 0 < p ≤ ∞.
The purpose of this paper is to provide some sharp estimates involving the sizes

of a martingale, its square and conditionally square function. Let us start with
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related results from the literature. The sharp inequalities

||s(f)||p ≤
√
p

2
||f ||p,

||s(f)||p ≤
√
p

2
||S(f)||p,

(1.1)

for 2 ≤ p <∞, and

||f ||p ≤
√

2
p
||s(f)||p,

||S(f)||p ≤
√

2
p
||s(f)||p,

(1.2)

for 0 < p ≤ 2, were established by Wang [5] in the case when B is a Hilbert space.
Furthermore, the inequalities fail to hold for the remaining values of p; for example,
the inequality ||s(f)||p ≤ Cp||f ||p, with 0 < p < 2, is not valid in general with any
finite Cp, even for real-valued martingales. However, the following estimate was
established by Junge and Xu [4]: if 1 < p < 2 and f is real-valued, then, for some
absolute Cp,

(1.3) C−1
p ||f ||p ≤ inf

||s(g)||p +

∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑
k=0

|dhk|p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
p

 ≤ Cp||f ||p,
where the infimum runs over all possible decompositions of f as a sum f = g + h
of two martingales. This estimate can be seen as dual to the Burkholder-Rosenthal
inequality (see [1], [3], [4] for details)

(1.4) C−1
p ||f ||p ≤ max

||s(f)||p ,

∣∣∣∣∣∣
∣∣∣∣∣∣
( ∞∑
k=0

|dfk|p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
p

 ≤ Cp||f ||p, 2 ≤ p <∞.

In view of Burkholder-Davis-Gundy inequalities (consult [1]), bounds similar to
(1.3) and (1.4) are valid when ||f ||p is replaced by ||S(f)||p.

In the present paper we will study related inequalities, putting particular em-
phasis on the size of the constants. First, we determine the optimal constants in
the following weak-type estimate. It is convenient to formulate the result in the
case 0 < p ≤ 2 and 2 ≤ p < ∞ separately. Recall that a martingale f is condi-
tionally symmetric if for any n ≥ 0, the conditional distributions of dfn and −dfn
given Fn−1 coincide. In the results below, we also use the notion of convexity and
smoothness of a Banach space; for the definition, see Section 2 below.

Theorem 1.1. Suppose p belongs to the interval (0, 2] and f is a B-valued mar-
tingale.

(i) We have

(1.5) ||S(f)||p,∞ ≤ (Γ(p/2 + 1))−1/p||s(f)||p.
(ii) If B is a Hilbert space, then

(1.6) ||f ||p,∞ ≤ (Γ(p/2 + 1))−1/p||s(f)||p.
(iii) If B is (2, α)-smooth and f is conditionally symmetric, then

(1.7) ||f ||p,∞ ≤ (Γ(p/2 + 1))−1/p · α||s(f)||p.
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The inequalities (1.5) and (1.6) are sharp, even if B = R.

For 2 ≤ p <∞ we have the following.

Theorem 1.2. Suppose p belongs to the interval [2,∞) and f is a B-valued mar-
tingale.

(i) We have

(1.8) ||s(f)||p,∞ ≤
(p

2

)1/2−1/p

||S(f)||p.

(ii) If B is a Hilbert space, then

(1.9) ||s(f)||p,∞ ≤
(p

2

)1/2−1/p

||f ||p.

(iii) If B is (2, α)-convex and f is conditionally symmetric, then

(1.10) ||s(f)||p,∞ ≤
(p

2

)1/2−1/p

· 1
α
||f ||p.

The inequalities (1.8) and (1.9) are sharp, even if B = R.

The following sharp estimate for the tail of s(f) can be regarded as a version of
Theorem 1.2 in the case p =∞.

Theorem 1.3. Let f be a B-valued martingale.
(i) If ||S(f)||∞ ≤ 1, then for any λ > 0 we have

(1.11) P(s(f) ≥ λ) ≤ min(e1−λ2
, 1).

(ii) If B is a Hilbert space and ||f ||∞ ≤ 1, then for any λ > 0 we have

(1.12) P(s(f) ≥ λ) ≤ min(e1−λ2
, 1).

(iii) If B is a (2, α)-smooth and ||f ||∞ ≤ 1, then for any λ > 0 we have

(1.13) P(s(f) ≥ λ) ≤ min(e1−λ2/α2
, 1).

The inequalities (1.11) and (1.12) are sharp, even if B = R.

The theorem above can be used to provide the proof of the following well known
exponential inequality (see e.g. Garsia [2]). If f is a Hilbert-space-valued martingale
bounded by 1, and we integrate (1.12), we get, for any β < 1,

E exp
(
βs2(f)

)
≤ (2− β)e1−β

1− β
.

However, the bound on the right is not optimal. We determine it in the next result.

Theorem 1.4. Suppose Φ : [0,∞) → R is an increasing convex function and f is
a B-valued martingale.

(i) If ||S(f)||∞ ≤ 1, then

(1.14) EΦ(s2(f)) ≤
∫ ∞

0

Φ(t)e−tdt.

(ii) If B is a Hilbert space and ||f ||∞ ≤ 1, then

(1.15) EΦ(s2(f)) ≤
∫ ∞

0

Φ(t)e−tdt.
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(iii) If B is (2, α)-smooth and f is conditionally symmetric with ||f ||∞ ≤ 1, then

(1.16) EΦ(s2(f)) ≤
∫ ∞

0

Φ(tα)e−tdt.

The inequalities (1.14) and (1.15) are sharp, even if B = R.

The estimates (1.1) and (1.2) are accompanied by the inequalities for the sums
of nonnegative random variables (in fact we have the equivalence, see Theorem 2.1
below): if (en)∞n=0 is an adapted sequence of nonnegative random variables and
(E(en|Fn−1))∞n=0 stands for its predictable projection, then

||
∞∑
k=0

E(ek|Fk−1)||p ≤ p||
∞∑
k=0

ek||p, for 1 ≤ p <∞,

and

p||
∞∑
k=0

ek||p ≤ ||
∞∑
k=0

E(ek|Fk−1)||p, for 0 < p ≤ 1.

Furthermore, both inequalities are sharp (for details, see [5]). In the present paper
we have a similar situation: the inequalities formulated in Theorems 1.1, 1.2, 1.3 and
1.4 have their analogues for the sums of nonnegative random variables. Precisely,
we have the following.

Theorem 1.5. Let (en) be an adapted sequence of nonnegative random variables.
(i) If 0 < p ≤ 1, then

(1.17)

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

ek

∣∣∣∣∣
∣∣∣∣∣
p,∞

≤ (Γ(p+ 1))−1/p

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

E(ek|Fk)

∣∣∣∣∣
∣∣∣∣∣
p

and the constant (Γ(p+ 1))−1/p is the best possible.
(ii) If 1 ≤ p <∞ then

(1.18)

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

E(ek|Fk−1)

∣∣∣∣∣
∣∣∣∣∣
p,∞

≤ p1−1/p

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

ek

∣∣∣∣∣
∣∣∣∣∣
p

and the constant p1−1/p is the best possible.
(iii) If ||

∑∞
k=0 ek||∞ ≤ 1, then for any λ > 0 we have

(1.19) P(
∞∑
k=0

E(ek|Fk−1) ≥ λ) ≤ min(e1−λ, 1)

and the bound on the right is the best possible.
(iv) Suppose that Φ : [0,∞) → R is a convex and nondecreasing function. If

||
∑∞
k=0 ek||∞ ≤ 1, then

(1.20) EΦ

( ∞∑
k=0

E(ek|Fk−1)

)
≤
∫ ∞

0

Φ(t)e−tdt

and the bound on the right is the best possible.

A few words about the organization of the paper. In the next section we present
the method which allows us to obtain the announced estimates. Then, in Section
3, we make use of the technique and provide the proofs of the inequalities. In the
final section we prove that the constants in some of the estimates above can not be
replaced by smaller ones.
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2. On the method of proof

Let us first recall the notions of smoothness and convexity of Banach spaces. We
say that a Banach space B is (2, α)-smooth, if for any x, y ∈ B we have

||x+ y||2 + ||x− y||2 ≤ 2||x||2 + 2α||y||2.

We say that B is (2, α)-convex, if for any x, y ∈ B we have

||x+ y||2 + ||x− y||2 ≥ 2||x||2 + 2α||y||2.

To give some examples, Lp spaces are (2,
√
p− 1)-convex for p ≥ 2 and (2, 1/

√
p− 1)-

smooth for 1 < p ≤ 2. Any Hilbert space is (2, 1)-smooth and (2, 1)-convex.
We start with the following easy fact. Let I be a subinterval of [0,∞), containing

0. Recall that the martingale is simple if there isN such that dfN = dfN+1 = . . . = 0
almost surely and for any n ≥ 0, the variable fn is simple, i.e. takes only a finite
number of values.

Theorem 2.1. Let V : I × [0,∞)→ R be fixed. The following two statements are
equivalent.

(i) For any adapted finite sequence (en) (that is, satisfying 0 ≡ eN = eN+1 = . . .
for some N) of simple nonnegative random variables such that

∑∞
n=0 en ∈ I almost

surely, we have

(2.1) EV

( ∞∑
n=0

en,

∞∑
n=0

E(en|Fn−1)

)
≤ 0.

(ii) For any simple real valued martingale f satisfying S2(f) ∈ I almost surely,
we have

(2.2) EV (S2(f), s2(f)) ≤ 0.

Proof. The proof is just a matter of the substitution

(2.3) en = |dfn|2, n = 0, 1, 2, . . . .

One only needs to observe that, given (en) as in (i), there exists a martingale f for
which (2.3) is valid. For example, take a sequence (εn) of independent Rademacher
variables (also independent of (en)) and consider a conditionally symmetric mar-
tingale f defined by dfn = εn

√
en, n = 0, 1, 2, . . .. �

Now we turn to the description of the technique we will use to establish the
estimates formulated in the Introduction. The method converts the problem of
proving a given inequality to the problem of the construction of a certain special
function.

Theorem 2.2. Let I be a subinterval of [0,∞) such that 0 ∈ I and suppose that
U, V are functions from I × [0,∞) to R satisfying

(2.4) V (x, y) ≤ U(x, y), x ∈ I, y ≥ 0,

(2.5) U(· , y) : x 7→ U(x, y), x ∈ I, is concave for any y ≥ 0

and

(2.6) U(x+ d, y + d) ≤ U(x, y), for d ≥ 0, y ≥ 0 and x, x+ d ∈ I.

Then we have the following.
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(i) If (ek)∞k=0 is a sequence of simple nonnegative variables satisfying the condi-
tion

∑∞
k=1 ek ∈ I almost surely, then for any nonnegative integer n,

(2.7) EV

(
n∑
k=0

ek,

n∑
k=0

E(ek|Fk−1)

)
≤ U(0, 0).

(ii) If f is a simple B-valued martingale such that S(f) ∈ I almost surely, then
for any nonnegative integer n,

(2.8) EV
(
S2
n(f), s2

n(f)
)
≤ U(0, 0).

(iii) If B is a Hilbert space and f is a simple B-valued martingale such that
||f || ∈ I almost surely, then for any nonnegative integer n,

(2.9) EV
(
||fn||2, s2

n(f)
)
≤ U(0, 0).

(iv) If U(·, y) is nondecreasing for any y, B is (2, α)-smooth and f is a simple
B-valued conditionally symmetric martingale such that ||f || ∈ I almost surely, then
for any nonnegative integer n,

(2.10) EV
(
α−1||fn||2, s2

n(f)
)
≤ U(0, 0).

(v) If U(·, y) is nonincreasing for any y, B is (2, α)-convex and f is a simple
B-valued conditionally symmetric martingale such that ||f || ∈ I almost surely, then
for any nonnegative integer n,

(2.11) EV
(
α−1||fn||2, s2

n(f)
)
≤ U(0, 0).

Proof. By (2.4), it suffices to show the assertions with V replaced by U . Observe
that the assumption on the simplicity of (en) and f guarantee the integrability of
all the variables appearing in the above estimates.

(i) Denote F−1 = G−1 ≡ 0,

Fn =
n∑
k=0

ek and Gn =
n∑
k=0

E(ek|Fk−1), n = 0, 1, 2, . . . .

Since for any n ≥ 0 the variable Gn is Fn−1-measurable, we have, by (2.5) and
conditional Jensen’s inequality,

EU(Fn, Gn) = E
[
E
(
U(Fn, Gn)|Fn−1

)]
≤ E

[
EU
(
E(Fn|Fn−1), Gn

)]
.

The process (U(E(Fn|Fn−1), Gn))∞n=0 is a supermartingale with respect to (Fn−1).
Indeed, for n ≥ 0,

E[U(E(Fn+1|Fn), Gn+1)|Fn−1]

= E
[
U
(
E(Fn|Fn) + E(en+1|Fn), Gn + E(en+1|Fn)

)∣∣Fn−1

]
≤ E[U(E(Fn|Fn), Gn)|Fn−1]

≤ U(E(Fn|Fn−1), Gn),

(2.12)

where in the first estimate we have used (2.6) and the second one follows from (2.5)
and the conditional Jensen’s inequality. Thus

EU(Fn, Gn) ≤ EU(E(F0|F−1), G0) = EU(E(e0|F−1),E(e0|F−1)) ≤ U(0, 0),

in view of (2.6), and the estimate follows.
(ii) This is a consequence of Theorem 2.1.
(iii) We repeat the proof of (i), word by word, this time with the processes

Fn = ||fn||2 and Gn = s2
n(f), n = 0, 1, 2, . . .. The only fact we need is that if B
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is a Hilbert space, then E(Fn+1|Fn) = Fn + E(||dfn+1||2|Fn); therefore, (2.12) is
valid, with en+1 replaced by ||dfn+1||2, and the claim follows.

(iv), (v) We will only show (iv), the arguments leading to (v) are similar. Adding
the variable f−1 ≡ 0 if necessary, we may assume that f starts from 0. Clearly, we
will be done if we show that the process (U(α−1||fn||2, s2

n(f))) is a supermartingale
(with respect to the filtration (Fn−1)). To this end, fix n ≥ 1 and note that, by the
conditional symmetry of f ,

E[U(α−1||fn||2, s2
n(f))|Fn−1]

=
1
2

E[U(α−1||fn−1 + dfn||2, s2
n(f)) + U(α−1||fn−1 − dfn||2, s2

n(f))|Fn−1].
(2.13)

Now, by the concavity and monotonicity of U , we infer that there is a nonnegative
variable A = A(α−1||fn−1||2 + ||dfn||2, s2

n(f)) such that

E[U(α−1||fn−1 ± dfn||2, s2
n(f))|Fn−1] ≤ U(α−1||fn−1||2 + ||dfn||2, s2

n(f))

+A
[
α−1||fn−1 ± dfn||2 − (α−1||fn−1||2 + ||dfn||2)

]
.

Using the (2, α)-smoothness property of B,

A[α−1||fn−1 + dfn||2 + α−1||fn−1 − dfn||2 − 2(α−1||fn−1||2 + ||dfn||2)] ≤ 0,

so, by (2.13),

E[U(α−1||fn||2, s2
n(f))|Fn−1] ≤ E[U(α−1||fn−1||2 + ||dfn||2, s2

n(f))|Fn−1]

≤ E[U(α−1||fn−1||2, s2
n−1(f))|Fn−1]

= U(α−1||fn−1||2, s2
n−1(f)),

where in the second inequality we have exploited (2.6). The proof is complete. �

3. Proofs of the inequalities (1.5) – (1.20)

3.1. Weak type estimates.

Proof of the inequality (1.17). Using standard approximation arguments, we may
restrict ourselves to finite sequences (en) of simple nonnegative random variables.
We must show that for any λ > 0 and n = 0, 1, 2, . . .,

λpP(
n∑
k=0

ek ≥ λ) ≤ Γ(p+ 1)−1E

(
n∑
k=0

E(ek|Fk−1)

)p
.

By homogeneity, we may and will assume λ = 1; then the inequality can be written
in the form

E

[
1{Pn

k=0 ek≥1} − Γ(p+ 1)−1

(
n∑
k=0

E(ek|Fk−1)

)p]
≤ 0.

Now we will introduce the special functions Up, Vp : [0,∞)× [0,∞)→ R for which
the above inequality is of the form (2.7). Let

Vp(x, y) = 1{x≥1} − Γ(p+ 1)−1yp

and

Up(x, y) =

{
1− Γ(p+ 1)−1

[
(1− x)ey

∫∞
y
tpe−tdt+ xyp

]
if x < 1,

1− Γ(p+ 1)−1yp if x ≥ 1.
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Observe that Up(·, y) is nondecreasing for any fixed y. Therefore, by part (iv) of
Theorem 2.2, the proof will be complete if we show that the functions satisfy (2.4),
(2.5) and (2.6). To establish the majorization Vp ≤ Up, observe first that we have
equality if x ≥ 1. If x < 1, then the inequality can be written in the equivalent
form

(1− x)
(
ey
∫ ∞
y

tpe−tdt− yp
)
≤ Γ(p+ 1).

This holds true, since 1− x ≤ 1, the function H : [0,∞)→ [0,∞), given by

H(y) := ey
∫ ∞
y

tpe−tdt− yp = pey
∫ ∞
y

tp−1e−tdt

is nonincreasing: H ′(y) = p(p − 1)ey
∫∞
y
tp−2e−tdt < 0, and H(0) = Γ(p + 1).

The condition (2.5) is guaranteed by the fact that Up(·, y) continuous, linear and
increasing on [0, 1], and constant on [1,∞). Finally, to check (2.6), it suffices to
show that Upx(x, y) + Upy(x, y) ≤ 0 for x 6= 1, y > 0. This is clear for x > 1, while
for x < 1 we have that

Upx(x, y) + Upy(x, y) = Cp(p− 1)xey
∫ ∞
y

tp−2e−tdt ≤ 0. �

Proof of (1.5), (1.6) and (1.7). We may assume that the martingales we deal with
are simple. Now taking U = Up/2 and V = Vp/2 (with Up and Vp defined above)
turns (1.5), (1.6) and (1.7) into (2.8), (2.9) and (2.11), respectively - and the latter
three estimates are valid in view of Theorem 2.2. �

Proof of the inequality (1.18). As previously, we will deduce the estimate from The-
orem 2.2 applied to appropriate U and V . Let γ : [1− 1/p, 1)→ R be given by

γ(y) =
1
p

(p(1− y))−1/(p−1).

Consider the following subsets of [0,∞)× [0,∞):

D1 = [0,∞)× [0, 1− 1/p],

D2 = {(x, y) : x > γ(y) + y − 1, 1− 1/p < y < 1},
D3 = ([0,∞)× [0, 1)) \ (D1 ∪D2),

D4 = [0,∞)× [1,∞).

Define Up, Vp : [0,∞)× [0,∞)→ R by

Up(x, y) =


pp−1( y

p−1 )p−1[y − px] on D1,
1

p(1−y) [(p− 1)p−p/(p−1)(1− y)−1/(p−1) − px] on D2,

1− pp−1(1 + x− y)p on D3,

1− pp−1xp on D4

and Vp(x, y) = 1[1,∞)(y)− pp−1xp.
Arguing as previously, it suffices to show that for n = 0, 1, 2, . . .,

E

[
1{Pn

k=0 E(ek|Fk−1)≥1} − pp−1

(
n∑
k=0

ek

)p]
≤ 0.

This is precisely the estimate (2.7), for the above choice of the functions Up and
Vp. One easily verifies that Up(·, y) is nonincreasing for fixed y. Therefore, to
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complete the proof, in view of Theorem 2.2, it suffices to check that Up, Vp satisfy
the conditions (2.4), (2.5) and (2.6). To prove (2.4), observe that if (x, y) ∈ D1,
then

Upx(x, y)− Vpx(x, y) = pp

[
xp−1 −

(
y

p− 1

)p−1
]
,

which implies that

Up(x, y)− Vp(x, y) ≥ Up(y/(p− 1), y)− Vp(y/(p− 1), y) = 0.

If (x, y) ∈ D2, then

Upx(x, y)− Vpx(x, y) = − 1
1− y

+ ppxp−1.

Setting

x0 =
1
p

[p(1− y)]−1/(p−1),

we see that (x0, y) ∈ D2 and Up(x, y) − Vp(x, y) ≥ Up(x0, y) − Vp(x0, y) = 0. If
(x, y) belongs to D3, then Upx(x, y)− Vpx(x, y) = pp[xp−1 − (1 + x− y)p−1] < 0, so

Up(x, y)− Vp(x, y) ≥ Up(γ(y) + y − 1, y)− Vp(γ(y) + y − 1, y),

and the right hand side is nonnegative, as (γ(y) + y − 1, y) belongs to the closure
of D2, where we have already established the majorization. We complete the proof
of (2.4) noting that we have Up = Vp on D4. The condition (2.5) is apparent. To
establish (2.6) it suffices to prove that Upx +Upy ≤ 0 in the interiors D◦i of the sets
Di, i = 1, 2, 3, 4. The direct calculation shows that Upx(x, y) + Upy(x, y) equals

−pp(p− 1)2−pxyp−2 if (x, y) ∈ Do
1,

(1− y)−2[−x+ y − 1 + γ(y)] if (x, y) ∈ Do
2,

0 if (x, y) ∈ Do
3,

−ppxp−1 if (x, y) ∈ Do
4

and it is evident that all the expressions are nonpositive on the corresponding
sets. �

Proof of (1.8), (1.9) and (1.10). Theorem 2.2 applied to Up/2, Vp/2 gives us the
desired estimates under the additional assumption that the martingales are simple.
The general case follows by standard approximation. �

In the case p ≥ 2, we have the following extension of (1.10) to the case of general
martingales.

Corollary 3.1. Let p ≥ 2. If B is (2, α)-convex and f is a B-valued martingale,
then

(3.1) ||s(f)||p,∞ ≤ 2(p/2)1/2−1/pα−1||f ||p.

Proof. This can be proved using standard decoupling techniques. Consider the
probability space (Ω×Ω,F ⊗F ,P⊗ P) and let f ′, f ′′ be independent copies of f ,
given by f ′n(ω, ω′) = f ′′n (ω′, ω) = fn(ω′). Introduce the product filtration (F ′n) =
(Fn⊗Fn). Then h = f ′− f ′′ is a conditionally symmetric martingale with respect
to (F ′n) and it follows from the conditional Jensen’s inequality that

E(||dhn||2|F ′n−1) ≥ E(||dfn||2|Fn−1).
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Therefore

||s2(f)||p,∞ ≤ ||s2(h)||p,∞ ≤ p1−1/pα−1||h||p ≤ 2p1/2−1/pα−1||f ||p. �

3.2. The bounded case. Here we will study the versions of the estimates above
in the case p = ∞. We will only focus on the inequalities for the finite sums of
nonnegative simple random variables; as we have already seen, this easily extends
to the general sequences. Furthermore, the martingale versions follow immediately.

Proof of (1.19). For λ ≤ 1 the inequality is trivial, so we may assume that λ > 1.
Let U, V : [0, 1]× [0,∞)→ R be given by V (x, y) = 1{y≥λ} and

U(x, y) =


(1− x) exp(y + 1− λ), if y ≤ λ− 1,
(1− x)(λ− y)−1, if λ− 1 < y < x+ λ− 1,
1, if y ≥ x+ λ− 1.

It is straightforward to verify the conditions (2.4) and (2.5). Furthermore, (2.6)
follows from the continuity of U on [0, 1)× R and the fact that

Ux(x, y) + Uy(x, y) =


−x exp(y + 1− λ), if y < λ− 1,
(1− x− λ+ y)(λ− y)−2 if λ− 1 < y < x+ λ− 1,
0, if y > x+ λ− 1

is nonpositive. Hence, by Theorem 2.2, we have, for any n,

P(
n∑
k=0

E(ek|Fk−1) ≥ λ) ≤ e1−λ.

This yields (1.19). �

Proof of (1.20). With no loss of generality we may assume that Φ is of class C1.
The functions U, V : [0, 1]× [0,∞)→ R corresponding to our problem are given by
V (x, y) = Φ(y) and

U(x, y) = xΦ(y) + (1− x)ey
∫ ∞
y

e−zΦ(z)dz.

Since Φ is nondecreasing, we have

ey
∫ ∞
y

e−zΦ(z)dz ≥ ey
∫ ∞
y

e−zΦ(y)dz = Φ(y)

and (2.4) follows. For a fixed y, the function U(·, y) is linear, so (2.5) is satisfied.
Finally, to check (2.6), observe that if x, y, d are as assumed, then Ux(x, y)+Uy(x, y)
equals

x

[
Φ′(y) + Φ(y)− ey

∫ ∞
y

e−zΦ(z)dz
]

= x

[
Φ′(y)− ey

∫ ∞
y

e−zΦ′(z)dz
]
≤ 0,

where we have used integration by parts and the fact that Φ′ is nondecreasing.
Hence, by Theorem 2.2, for any n,

EΦ

(
n∑
k=0

E(ek|Fk−1)

)
≤
∫ ∞

0

Φ(t)e−tdt,

which is what we need. �
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We conclude this section presenting the result on Φ-inequalities for concave Φ.
The fact is well known and very easy to prove.

Theorem 3.2. Suppose Φ : [0,∞)→ R is a concave function.
(i) For any sequence (en)∞n=0 of nonnegative random variables, which satisfies

||
∑∞
n=0 en||∞ ≤ 1, we have

(3.2) EΦ

( ∞∑
n=0

E(en|Fn)

)
≤ Φ(1)

and the inequality is sharp.
(ii) For any B-valued martingale f satisfying ||S(f)||∞ ≤ 1 we have

(3.3) EΦ(s2(f)) ≤ Φ(1)

and the bound on the right is the best possible, even if B = R.
(iii) If B is a Hilbert space, then for any B-valued martingale f satisfying

||f ||∞ ≤ 1, we have

(3.4) EΦ(s2(f)) ≤ Φ(1)

and the bound on the right is the best possible, even if B = R.
(iv) If B is (2, α)-convex Banach space, then for any B-valued conditionally

martingale f satisfying ||f ||∞ ≤ 1, we have

(3.5) EΦ(s2(f)) ≤ Φ(α−1).

Proof. This is straightforward: the estimates follow from Jensen’s inequality and
the fact that if f is conditionally symmetric, then αEs2(f) ≤ limn→∞ E||fn||2 ≤ 1.
To see that the bounds in (3.2), (3.3), (3.4) are optimal, consider constant sequences
e0 = e1 = e2 = . . . ≡ 1, f0 = f1 = f2 = . . . ≡ 1. �

4. Sharpness

In this section we deal with the optimality of the constants appearing in the
inequalities established above. We will focus only on the martingale estimates; in
view of Theorem 2.1, this will show the sharpness of their analogues for the sums
of nonnegative random variables.

4.1. Sharpness of (1.5), (1.6). Let δ ∈ (0, 1) be fixed and let (Xn)∞n=0 be a
sequence of independent random variables sharing the same distribution given by

P(Xn = 1) = δ = 1− P(Xn = 0).

Furthermore, let (εn) be a sequence of independent Rademacher variables, inde-
pendent also of (Xn). Introduce the stopping time τ = inf{n : Xn = 1}, set
dfn = εnXn1{τ≥n}, n = 0, 1, 2, . . . and let (Fn) be the natural filtration of f . Then
f is a martingale (which is even conditionally symmetric), for which |fn| ↑ |f∞| ≡ 1
and S(f) ≡ 1 almost surely; hence ||f ||p,∞ = ||s(f)||p,∞ = 1. Furthermore, as
E(df2

n|Fn−1) = 1{τ≥n}EXn = δ1{τ≥n}, we have s2(f) = δ(τ + 1). Since τ has
geometric distribution, we have, for 0 < p ≤ 2,

||s(f)||pp =
∣∣∣∣s2(f)

∣∣∣∣p/2
p/2

= δ

∞∑
n=1

(δn)p/2(1− δ)n−1
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and we see that the right hand side, by choosing δ sufficiently small, can be made
arbitrarily close to

∫∞
0
tp/2e−tdt = Γ(p/2 + 1). This implies that the constant in

(1.5) and (1.6) is indeed the best possible.

4.2. Sharpness of (1.8) and (1.9). If p = 2, then the constant martingale f0 =
f1 = f2 = . . . ≡ 1 gives equality in (1.8) and (1.9). Suppose then, that p > 2. Let
δ ∈ (0, 1− 2/p), N be a positive integer and set

(4.1) r =
(
p− 2
pδ

)1/N

> 1.

Furthermore, assume that N is large enough to guarantee that q := (r − 1)(p −
2)/(2r) < 1. Consider a sequence (Xn)Nn=0 of independent random variables such
that

P
(
Xn =

2rnδ
p− 2

)
= q = 1− P(Xn = 0), n = 0, 1, 2, . . . ,

and XN ≡ 2/p. Let (εn)Nn=0 be a sequence of independent Rademacher variables,
independent also of (Xn). Set τ = inf{n : Xn 6= 0} and let dfn = εn

√
Xn1{τ≥n},

n = 0, 1, 2, . . . , N . We easily see that f is a conditionally symmetric martingale
satisfying |fN | = SN (f) =

√
Xτ . Therefore

||f ||pp = ||S(f)||pp =
N−1∑
n=0

(
2rnδ
p− 2

)p/2
(1− q)nq +

(
2
p

)p/2
(1− q)N

=
(

2δ
p− 2

)p/2
q

1− (rp/2(1− q))N

1− rp/2(1− q)
+
(

2
p

)p/2
(1− q)N .

(4.2)

On the other hand, it can be easily verified that E(df2
n|Fn−1) = (r−1)rn−1δ1{τ≥n}

for n < N and E(df2
N |FN−1) = 2/p1{τ=N}, so

s2(f) =
τ∧(N−1)∑
n=0

(r − 1)rn−1δ +
2
p

1{τ=N} =
δ

r
(r(τ+1)∧N − 1) +

2
p

1{τ=N}.

On the set {τ = N} we have, by (4.1),

s2(f) =
p− 2
pr
− δ

r
+

2
p
≥ 1− δ

r
,

so

P

(
s(f) ≥

(
1− δ
r

)1/2
)
≥ P(τ = N) = (1− q)N .

Hence

||f ||pp
||s(f)||pp,∞

=
||S(f)||pp
||s(f)||pp,∞

≤
(

r

1− δ

)p/2 ||f ||pp
(1− q)N

.

Now we will let N →∞ (so r tends to 1). We have

lim
N→∞

q

1− rp/2(1− q)
= lim
r→1

(
1− rp/2

(r − 1)(p− 2)
· 2r + rp/2

)−1

= −p− 2
2

and, by (4.1),

lim
N→∞

(1− q)N = lim
r→1

(
1− (r − 1)(p− 2)

2r

)log p−2
pδ / log r

=
(

pδ

p− 2

)(p−2)/2

.
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Therefore, again using (4.1),

lim
N→∞

||f ||pp
(1− q)N

=
(

2δ
p− 2

)p/2
·
(
−p− 2

2

)
·
(
p− 2
pδ

)(p−2)/2

+
(

2
p− 2

)p/2
· p− 2

2
·
(
p− 2
p

)p/2
+
(

2
p

)p/2
= − δ

(
2
p

)(p−2)/2

+
(

2
p

)p/2−1

.

Now if δ is taken sufficiently small, we see that for any κ > 0 the ratios ||f ||pp/||s(f)||p
and ||S(f)||pp/||s(f)||p can be made smaller than (2/p)p/2−1 + κ. This shows that
the constant (p/2)1/2−1/p is indeed the best possible in (1.8) and (1.9).

4.3. Sharpness of (1.11) and (1.12). If λ ≤ 1 then we have equalities if we take
e0 = e1 = e2 = . . . ≡ 1 and f0 = f1 = f2 = . . . ≡ 1. Suppose that λ > 1, take a
positive integer N and set δ = (λ2 − 1)/N . The example is similar to the one used
in Section 5.1. Let (Xn)Nn=0 be a sequence of independent random variables such
that

P(Xn = 1) = δ = 1− P(Xn = 0), n = 0, 1, 2, . . . , N − 1
and XN ≡ 1. Finally, let τ = inf{n : Xn = 1}, (εn) be a sequence of independent
Rademacher variables and dfn = εnXn1{τ≥n}, n = 0, 1, 2, . . . , N , dfn ≡ 0 for
n > N .

We easily check that ||f ||∞ = ||S(f)|| = 1 (in fact, for any 0 ≤ n ≤ N − 1,
Sn(f), |fn| ∈ {0, 1} and SN (f) = |fN | = 1 with probability 1). Moreover, we see
that E(df2

n|Fn−1) = δ1{τ≥n} almost surely for n < N and hence s2(f) = (τ + 1)δ ≤
λ − 1 < λ on τ < N ; on the other hand, as E(df2

N |FN−1) = 1 with probability 1,
we have s(f) = λ on {τ = N} and hence

P(s(f) ≥ λ) = (1− δ)N .

It suffices to note that the right hand side converges to e1−λ2
as N →∞. Therefore

(1.11) and (1.12) are sharp.

4.4. Sharpness of (1.14) and (1.15). For δ ∈ (0, 1), let f be a martingale as in
Subsection 5.1. We have ||f ||∞ = ||S(f)||∞ = 1,

EΦ(s2(f)) = δ

∞∑
n=1

Φ(δn)(1− δ)n,

which, if n is chosen sufficiently large, can be made arbitrarily close to
∫∞

0
Φ(t)e−tdt.

This shows the bounds in (1.14) and (1.15) are optimal.
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