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Abstract. We determine the optimal constants in the weak type (p, q) in-
equalities involving a martingale, its square and conditional square function.

As an application, we present related bounds for predictable projections of
adapted sequences of random variables and certain estimates related to Khint-
chine inequalities.

1. Introduction

Let (Ω,F , P) be a probability space, filtered by (Fn)n≥0, a non-decreasing family
of sub-σ-fields of F . Throughout the paper, f = (fn)n≥0 will stand for a martingale
adapted to (Fn)n≥0 and taking values in a certain separable Hilbert space H with
norm | · | and scalar product 〈·, ·〉. Let df = (dfn)n≥0 denote the difference sequence
of f , defined by the equations fn =

∑n
k=0 dfk, n = 0, 1, 2, . . .. Then S(f), the

square function of f , and s(f), the conditional square function of f , are given by

S(f) =

[

∞
∑

k=0

||dfk||2
]1/2

and s(f) =

[

∞
∑

k=0

E(||dfk||2|Fk−1)

]1/2

.

Here and below, F−1 is assumed to be equal to F0. We will also use the notation

Sn(f) =

[

n
∑

k=0

||dfk||2
]1/2

and sn(f) =

[

n
∑

k=0

E(||dfk||2|Fk−1)

]1/2

,

and, furthermore, when 0 < p < ∞, we will write

||f ||p = sup
n

||fn||p = sup
n

(E||fn||p)1/p,

||f ||p,∞ = sup
n

||fn||p,∞ = sup
n

sup
λ>0

λ
[

P(||fn|| ≥ λ)
]1/p

.

and define the norms ||S(f)||p, ||S(f)||p,∞ and ||s(f)||p, ||s(f)||p,∞ analogously.
The purpose of this paper is to determine optimal constants in some inequali-

ties involving f , S(f) and s(f). We begin with recalling related results from the
literature. The sharp estimates

||s(f)||p ≤
√

p

2
||f ||p, ||s(f)||p ≤

√

p

2
||S(f)||p,(1.1)
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for 2 ≤ p < ∞, and

||f ||p ≤
√

2

p
||s(f)||p, ||S(f)||p ≤

√

2

p
||s(f)||p,(1.2)

for 0 < p ≤ 2, were established by [21], who also showed that the inequalities fail
to hold for the remaining values of p, even if the martingales are assumed to be
real-valued. However, [12] proved that if 1 < p < 2 and f is real-valued, then, for
some absolute Cp,

(1.3) C−1
p ||f ||p ≤ inf







||s(g)||p +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∞
∑

k=0

|dhk|p
)1/p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p







≤ Cp||f ||p,

where the infimum runs over all possible decompositions of f as a sum f = g +h of
two martingales. This estimate can be regarded as a dual version of the Burkholder-
Rosenthal inequality (see [2], [11], [12] for details): for 2 ≤ p < ∞,

(1.4) C−1
p ||f ||p ≤ max







||s(f)||p ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∞
∑

k=0

|dfk|p
)1/p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p







≤ Cp||f ||p.

By Burkholder-Davis-Gundy inequalities (see [2]), the above bounds are still valid
(possibly with different Cp) when ||f ||p is replaced by ||S(f)||p. The best constants
in the related weak type (p, p) estimates were found by [16]: for 0 < p ≤ 2,

||f ||p,∞ ≤
(

Γ
(p

2
+ 1
))−1/p

||s(f)||p,

||S(f)||p,∞ ≤
(

Γ
(p

2
+ 1
))−1/p

||s(f)||p.
(1.5)

On the other hand, if 2 ≤ p < ∞,

||s(f)||p,∞ ≤
(p

2

)1/2−1/p

||S(f)||p, ||s(f)||p,∞ ≤
(p

2

)1/2−1/p

||f ||p.

We will study such estimates in the case when the weak moments on the left and
the strong moments on the right are of different order. For 0 < q ≤ p < ∞, let

Kp,q =











1 if q ≤ 2 ≤ p,
(

Γ
(

p
2 + 1

))−1/p
if 0 < q ≤ p < 2,

∞ if 2 < q ≤ p < ∞,

Lp,q =















1 if q ≤ 2 ≤ p,

∞ if 0 < q ≤ p < 2,
(

q
2

)1/2−1/p
(

p−q
p−2

)(p/2−1)(1/q−1/p)

if 2 < q ≤ p < ∞,

The result of the paper can be stated as follows.

Theorem 1.1. For any 0 < q ≤ p < ∞ and any H-valued martingale f we have

(1.6) ||f ||q,∞ ≤ Kp,q||s(f)||p, ||S(f)||q,∞ ≤ Kp,q||s(f)||p.
and

(1.7) ||s(f)||q,∞ ≤ Lp,q||f ||p, ||s(f)||q,∞ ≤ Lp,q||S(f)||p.
The constants Kp,q, Lp,q are the best possible, even when H = R.
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To complete the description of the optimal constants, note that if q > p, then
the inequalities (1.6), (1.7) do not hold in general with any finite Kp,q, Lp,q, even
in the real-valued case. This can be seen, for example, by considering a constant
martingale f0 = f1 = f2 = . . . with f0 ∈ Lp \ Lq,∞.

The estimates (1.6) and (1.7) will be established in the next section. Our ap-
proach is based on a certain version of Burkholder’s method which relates the
validity of a given martingale inequality to the existence of a certain special func-
tion (see e.g. [4], [16] and [21]). In Section 3 we construct examples to show the
optimality of the constants Kp,q and Lp,q. The final part of the paper contains
some applications.

2. Proof of (1.6) and (1.7)

2.1. Proof of (1.6). It suffices to establish the estimate for q ≤ 2. If p ≥ 2, then

||f ||q,∞ ≤ ||f ||q ≤ ||f ||2 = ||s(f)||2 ≤ ||s(f)||p = Kp,q||s(f)||p,
with a similar reasoning for ||S(f)||q,∞ ≤ Kp,q||s(f)||p. If p < 2, then by (1.5),

||f ||q,∞ ≤ ||f ||p,∞ ≤
(

Γ
(p

2
+ 1
))−1/p

||s(f)||p = Kp,q||s(f)||p

and the analogous argumentation gives the second bound in (1.6).

2.2. Proof of (1.7). As previously, we may focus on the case 2 < q ≤ p, since for
other choices of p and q the bound is trivial. The key ingredient of the proof is the
following related estimate; we shall see later how to deduce (1.7) from it.

Theorem 2.1. Suppose that p > 2 and λ ∈ [0, 1 − 2/p]. Then for any H-valued
martingale f we have

P(s(f) ≥ 1) ≤
(p

2

)p/2−1

(1 − λ)p/2||f ||pp +

(

p

p − 2

)p/2−1

λp/2,

P(s(f) ≥ 1) ≤
(p

2

)p/2−1

(1 − λ)p/2||S(f)||pp +

(

p

p − 2

)p/2−1

λp/2.

(2.1)

Both estimates are sharp, even in the real-valued setting.

Here by sharpness we mean that neither of the constants (p/2)p/2−1(1 − λ)p/2,
(p/(p − 2))p/2−1λp/2 can be replaced by a smaller number. Fix p and λ as in the
statement and put r = p/2. Let γ = γp,λ : [1 − (r(1 − λ))−1, 1) → R be given by

γ(y) = (r(1 − λ))−r/(r−1)(1 − y)−1/(r−1)

and introduce the subsets D1, D2, . . ., D5 of [0,∞) × [0,∞) by setting

D1 =
{

(x, y) : y ≤ 1 −
(

r(1 − λ)
)−1

, x ≤ y(r − 1)−1 + λ
(

(1 − λ)(r − 1)
)−1
}

,

D2 =
{

(x, y) : 1 −
(

r(1 − λ)
)−1

< y < 1, y − 1 + γ(y) < x < γ(y)
}

,

D3 =
{

(x, y) : 1 −
(

r(1 − λ)
)−1

< y < 1, x ≤ y − 1 + γ(y)
}

,

D4 = [0,∞) × [1,∞),

D5 = [0,∞) × [0,∞) \
(

D1 ∪ D2 ∪ D3 ∪ D4

)

.

See Figure 1 below.
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Figure 1. The regions D1–D5.

Now, define U = Up,λ : [0,∞) × [0,∞) → R by

U(x, y) =































(

r((1 − λ)y + λ)/(r − 1)
)r−1(

(1 − λ)(y − rx) + λ
)

if (x, y) ∈ D1,
(

r(1 − y)
)−1[

(r − 1)γ(y) − rx
]

if (x, y) ∈ D2,

1 − rr−1(1 − λ)r(1 + x − y)r if (x, y) ∈ D3,

1 − rr−1(1 − λ)rxr if (x, y) ∈ D4,

−rr−1(1 − λ)rxr if (x, y) ∈ D5

and let V = Vp,λ : [0,∞)× [0,∞) → R be given by V (x, y) = 1{y≥1}− rr(1−λ)rxr.
Let us study the key properties of the functions we have just introduced.

Lemma 2.2. (i) The function U is continuous on [0,∞) × [0,∞). Furthermore,
Ux is continuous on (0,∞)×(0,∞) and Uy is continuous on (0,∞)×((0,∞)\{1}).

(ii) For any fixed y, the function U(·, y) is concave on [0,∞).
(iii) For any y ≥ 0, the function t 7→ U(t, y + t) is nonincreasing on [0,∞).
(iv) We have the majorization U ≥ V .

Proof. (i) One easily checks the continuity of U . Next, denoting by Ao the interior
of a set A, we derive that

Ux(x, y) =



















−rr(r − 1)1−r(1 − λ)
(

(1 − λ)y + λ
)r−1

if (x, y) ∈ Do
1,

−(1 − y)−1 if (x, y) ∈ Do
2,

−rr(1 − λ)r(1 + x − y)r−1 if (x, y) ∈ Do
3,

−rr(1 − λ)rxr−1 if (x, y) ∈ Do
4 ∪ Do

5,

Uy(x, y) =























rr(1−λ)2

r−1

(

(1−λ)y+λ
r−1

)r−2 [

y − (r − 1)x + λ
1−λ

]

if (x, y) ∈ Do
1,

(1 − y)−2
(

γ(y) − x
)

if (x, y) ∈ Do
2,

rr(1 − λ)r(1 + x − y)r−1 if (x, y) ∈ Do
3,

0 if (x, y) ∈ Do
4 ∪ Do

5,
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and it remains to verify that the derivatives match appropriately at the common
boundaries of the sets Di. The details are left to the reader.

(ii) The concavity with respect to x is evident if we restrict ourselves to the
interiors of Di. Since Ux is continuous, the property follows.

(iii) Directly from the above formulas for the partial derivatives, we have that

Ux(x, y) + Uy(x, y) =























−rr(1 − λ)2
(

(1−λ)y+λ
r−1

)r−2

x if (x, y) ∈ Do
1,

(1 − y)−2(y − 1 + γ(y) − x) if (x, y) ∈ Do
2,

0 if (x, y) ∈ Do
3,

−rr(1 − λ)rxr−1 if (x, y) ∈ Do
4 ∪ Do

5

and all the expressions are easily seen to be nonpositive.
(iv) Fix x > 0 and consider the function y 7→ U(x, y)− V (x, y). It is easy to see

that Uy is nonnegative on its domain, so it suffices to prove that U(x, 0)−V (x, 0) ≥ 0
and U(x, 1) − V (x, 1) ≥ 0. In both cases we obtain the equality. �

Proof of (2.1). It suffices to focus on the first estimate. To deduce the second
one, we proceed as follows. For any H-valued martingale f , consider a sequence
F = (Fn)n≥0, taking values in ℓ2(H), given by the formula

Fn = (df0, df1, df2, . . . , dfn, 0, 0, . . .), n = 0, 1, 2, . . . .

Then F is also a martingale and satisfies |Fn| = Sn(f) and s(F ) = s(f) almost
surely. Thus, the second bound in (2.1) is a consequence of the first one.

With no loss of generality, we may assume that ||f ||p < ∞; otherwise, there is
nothing to prove. This assumption will guarantee the integrability of the random
variables appearing below. The key part of the proof is to show that the sequence
(U(|fn|2, s2

n(f)))∞n=0 is a supermartingale. To do this, fix n ≥ 0 and write

E
[

U(|fn+1|2, s2
n+1(f))|Fn

]

= E
[

U(|fn|2 + 2〈fn, dfn+1〉 + |dfn+1|2, s2
n+1(f))|Fn

]

.

However,

|fn|2 + 2〈fn, dfn+1〉 + |dfn+1|2

=
{

|fn|2 + E(|dfn+1|2|Fn)
}

+
{

2〈fn, dfn+1〉 + |dfn+1|2 − E(|dfn+1|2|Fn)
}

and the expression in the second parentheses has zero expectation with respect to
Fn. Thus, using properties (ii) and (iii) of Lemma 2.2, we see that

E
[

U(|fn+1|2, s2
n+1(f))|Fn

]

≤ E

[

U
(

|fn|2 + E(|dfn+1|2|Fn), s2
n(f) + E(|dfn+1|2|Fn)

)

|Fn

]

≤ E
[

U
(

|fn|2, s2
n(f)

)

|Fn

]

= U
(

|fn|2, s2
n(f)

)

,

which is the desired supermartingale property. Combining this with the majoriza-
tion U ≥ V , we get that for any n,

EV (|fn|2, s2
n(f)) ≤ EU(|fn|2, s2

n(f)) ≤ EU(|f0|2, s2
0(f)).

By property (iii), U(|f0|2, s2
0(f)) = U(|f0|2, |f0|2) ≤ U(0, 0) almost surely. Plugging

this into the preceding estimate and using the definition of V , we obtain

P(sn(f) ≥ 1) ≤
(p

2

)p/2−1

(1 − λ)p/2||f ||pp +

(

p

p − 2

)p/2−1

λp/2.
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Next, fix ε > 0 and note that {s(f) ≥ 1} ⊆ ⋃∞
n≥0 {sn(f) ≥ 1 − ε}. The events on

the right are nondecreasing (with respect to n), so applying the above estimate to
the martingale f/(1 − ε), we get

P (s(f) ≥ 1) ≤ lim
n→∞

P (sn(f) ≥ 1 − ε)

≤
(p

2

)p/2−1 (1 − λ)p/2

(1 − ε)p
||f ||pp +

(

p

p − 2

)p/2−1

λp/2.

It suffices to use the fact that ε was arbitrary. �

Proof of (1.7). Again, we focus on the estimate involving f ; the second inequality,
between S(f) and s(f), is obtained similarly or by the use of the ℓ2(H)-valued
martingale F as above. We will prove that

(2.2) P(s(f) ≥ 1)1/q ≤ Lp,q||f ||p,
which yields the claim by homogenization. If ||f ||p ≥ 1, this is obvious (a little
calculation shows that Lp,q ≥ 1), so we may assume that ||f ||p < 1. It is easy to
check that the right-hand side of (2.1), as a function of λ, attains its minimum at

λ =
(p − 2)||f ||2p/(p−2)

p

2 + (p − 2)||f ||2p/(p−2)
p

,

which lies in [0, 1 − 2p−1] (since ||f ||p ≤ 1). Plugging this value of λ in (2.1) gives

P(s(f) ≥ 1) ≤
pp/2−1||f ||p−q

p

(2 + (p − 2)||f ||2p/(p−2)
p )p/2−1

· ||f ||qp.

A standard analysis shows that the maximum of the function G, given by

G(t) =
pp/2−1tp−q

(2 + (p − 2)2p/(p−2))p/2−1
, t ≥ 0,

is equal to Lq
p,q; therefore, we obtain

P(s(f) ≥ 1) ≤ G(||f ||p)||f ||qp ≤ Lq
p,q||f ||qp,

which is (2.2). �

3. Sharpness

3.1. Sharpness of (1.6). If q ≤ 2 ≤ p, then equality holds in both estimates for
the martingale f0 = f1 = f2 = . . . ≡ 1. If 2 < q ≤ p, then neither of the inequalities
holds with a finite constant. Indeed, take f such that f0 ≡ 0,

P(f1 = −1) = P(f1 = 1) = κ = 1 − P(f1 = 0)

for some κ ∈ (0, 1/2), and set df2 = df3 = . . . ≡ 0. Then s(f) = (E|f1|2)1/2 =
(2κ)1/2 almost surely (here and in all the examples below, we consider the natural
filtration of f). Therefore,

||f ||q,∞ ≥ (P(|f1| ≥ 1))1/q = (2κ)1/q = (2κ)1/q−1/2||s(f)||p
with the same bound for ||S(f)||q,∞. Since the constant in front of ||s(f)||p explodes
as κ → 0, we see that Kp,q = ∞ is the best. Finally, when 0 < q ≤ p < 2, fix
δ ∈ (0, 1) and let (Xn)∞n=0 be a sequence of independent random variables such that

P(Xn = 1) = δ = 1 − P(Xn = 0).
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Furthermore, let (εn)n≥0 be a sequence of independent Rademacher variables, in-
dependent also of (Xn). Introduce the stopping time τ = inf{n : Xn = 1} and
set dfn = εnXn1{τ≥n}, n = 0, 1, 2, . . .. Then f is a martingale such that |fn| ↑
|f∞| ≡ 1 and S(f) ≡ 1 almost surely, so in particular ||f ||q,∞ = ||S(f)||q,∞ = 1.
Furthermore, as E(df2

n|Fn−1) = 1{τ≥n}EXn = δ1{τ≥n}, we have s2(f) = δ(τ + 1).
But τ has geometric distribution, so for 0 < p ≤ 2,

||s(f)||pp =
∣

∣

∣

∣s2(f)
∣

∣

∣

∣

p/2

p/2
= δ

∞
∑

n=1

(δn)p/2(1 − δ)n−1

and we see that the right hand side, by choosing δ sufficiently small, can be made
arbitrarily close to

∫∞

0 tp/2e−tdt = Γ(p/2 + 1). This completes the proof.

3.2. Sharpness of (2.1). It suffices to show the sharpness for λ lying in the interior
of [0, 1 − 2/p], the case λ ∈ {0, 1− 2/p} follows easily from the limiting procedure.
Fix a positive integer N and let δ > 0 be determined by Nδ = 1 − 2(p(1 − λ))−1.
Consider a sequence X1, X2, . . ., XN+1 of independent random variables such that

pn := P

(

Xn =
2nδ

p − 2
+

2λ

(1 − λ)(p − 2)

)

= 1 − P(Xn = 0) =
(p − 2)(1 − λ)δ

2(n(1 − λ)δ + λ)

for n = 1, 2, . . . , N , and put XN+1 ≡ 1− 2
p(1−λ) . Next, let ε1, ε2, . . . , εN+1 be inde-

pendent Rademacher variables, independent also from the sequence (Xn)N+1
n=1 . Let

τ = inf{n : Xn 6= 0} and define f = (fn)N+1
n=0 by f0 ≡ 0 and dfn = εn

√
Xn1{τ≥n},

n = 1, 2, . . . , N + 1. We easily compute that for each n = 1, 2, . . . , N we have
E(|dfn|2|Fn−1) = δ on {τ ≥ n}. To gain some intuition about f , let us look at
the behavior of (f2, s2(f)). This pair starts from (0, 0) and moves vertically for a
number of steps. Then at time τ it leaves the y-axis and jumps to the point

(

2τδ

p − 2
+

2λ

(1 − λ)(p − 2)
, τδ

)

if τ ≤ N , or to (2(p(1 − λ))−1, 1) if τ = N + 1, where it stays forever. Derive that

P(s(f) ≥ 1) = P(τ = N + 1) = P(Xn = 0 for n = 1, 2, . . . , N)

=

N
∏

n=1

(

1 − (p − 2)(1 − λ)δ

2(n(1 − λ)δ + λ)

)

= exp

(

−
N
∑

n=1

(p − 2)(1 − λ)δ

2(n(1 − λ)δ + λ)

)

· κ1

= exp

(

−p − 2

2

∫ N(1−λ)δ+λ

λ

x−1dx

)

· κ2

= exp

(

−p − 2

2

∫ 1−2/p

λ

x−1dx

)

κ2 =

(

λp

p − 2

)p/2−1

· κ2,

where κi = κi(δ, λ) are error terms converging to 1 as δ → 0, i = 1, 2. Arguing
similarly and using elementary bound 1− x ≤ e−x, we obtain the estimate

P

(

|fN+1|2 =
2nδ

p − 2
+

2λ

(1 − λ)(p − 2)

)

≤ (p − 2)δ

2(nδ + λ/(1 − λ))

[

λ + (1 − λ)δ

n(1 − λ)δ + λ

]p/2−1
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for n = 1, 2, . . . , N (the event under the probability is just {τ = n}), and

P

(

|fN+1|2 =
2

p(1 − λ)

)

≤
[

p(λ + (1 − λ)δ)

p − 2

]p/2−1

.

Note that this time no error terms κi are involved. Consequently,

||f ||pp = || |fN+1|2 ||p/2
p/2

≤
N
∑

n=1

(

2nδ

p − 2
+

2λ

(1 − λ)(p − 2)

)p/2

· (p − 2)δ

2(nδ + λ/(1 − λ))

[

λ + (1 − λ)δ

n(1 − λ)δ + λ

]p/2−1

+

(

2

p(1 − λ)

)p/2

·
[

p(λ + (1 − λ)δ)

p − 2

]p/2−1

.

It is easy to see that all the terms under the sum are equal and hence

||f ||pp ≤ N · (p − 2)(1 − λ)δ

2λ

(

2(λ + (1 − λ)δ)

(p − 2)(1 − λ)

)p/2

+

[

2λ

(1 − λ)(p − 2)

]p/2
p − 2

pλ

=

(

2λ

(1 − λ)(p − 2)

)p/2−1

.

Now plug the above expressions for P(s(f) ≥ 1) and ||f ||pp into (2.1) and let δ → 0:
in the limit both sides become equal. Finally, observe that Sn(f) = |fn| for each
n, which implies that the second estimate in (2.1) is also sharp.

3.3. Sharpness of (1.7). If q ≤ 2 ≤ p, both sides are equal for the martingale
f0 = f1 = f2 = . . . ≡ 1. If 0 < q ≤ p < 2, no finite Lp,q suffices: take f0 = 0
and let f1 = f2 = . . . be a mean-zero random variable which belongs to Lp \ L2.
Then s(f) = ∞ and ||f ||p = ||S(f)||p < ∞, which enforces Lp,q = ∞. Finally, for
2 < q ≤ p, take the example from the previous section, with λ = 1 − q/p. Then

(P(s(f) ≥ 1))1/q

||f ||p
=

(P(s(f) ≥ 1))1/q

||S(f)||p
≥

((

p−q
p−2

)p/2−1

κ2

)1/q

((

2(p−q)
q(p−2)

)p/2−1 )1/p
= Lp,q · κ1/q

2

and letting δ → 0 we get the optimality of Lp,q. The proof is complete.

4. Further remarks and applications

4.1. On the control of ||f ||p over P(s(f) ≥ 1). Our starting point is the following
problem for the distribution function of s(f) (a version of it, concerning martingale
transforms, was studied in depth by [3] and [5]. See also [4]). Suppose that t ∈ [0, 1]
is a fixed number and consider the class of those H-valued martingales f , which
satisfy P(s(f) ≥ 1) ≥ t. How small can ||f ||p be? The precise answer is contained
in the following statement.

Theorem 4.1. If P(s(f) ≥ 1) ≥ t, then

(4.1) ||f ||p ≥







0 if 0 < p < 2,
(

2t2/(p−2)

p−(p−2)t2/(p−2)

)1/2−1/p

if p ≥ 2.

The constant on the right is the best possible. The same statement holds true if we
replace ||f ||p by ||S(f)||p.
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Proof. The estimate (4.1) is obvious for 0 < p < 2, so it suffices to prove it for
p ≥ 2. By (1.7), we have

||f ||p ≥ L−1
p,q P(s(f) ≥ 1)1/q ≥ L−1

p,qt
1/q.

The latter expression, considered as a function of q, attains its maximum for q =
p− t2/(p−2)(p− 2), and the extremal value is precisely the right-hand side of (4.1).
To see that the bound is optimal, it suffices to take a closer look at the examples
presented in Section 3 above. We leave the details to the reader. �

There is a dual result, which can be proved by analogous reasoning, applied to
(1.6).

Theorem 4.2. Suppose that f is an H-valued martingale such that P(|fn| ≥ 1) ≥ t
for some n. Then

||s(f)||p ≥







(

t
Γ(p/2+1)

)1/p

if 0 < p ≤ 2,

0 if p > 2.

The constant on the right is the best possible. The same statement holds true if we
replace the assumption by P(S(f) ≥ 1) ≥ t.

4.2. Sharp bounds for nonnegative random variables and their predictable

projections. There is an interesting connection between the square function in-
equalities studied above and the estimates for sums of nonnegative random vari-
ables. To be more precise, suppose that (en)n≥0 is an adapted sequence of non-
negative and integrable random variables and let (E(en|Fn−1))n≥0 be the sequence
of corresponding predictable projections (we set F−1 = F0). The problem of com-
paring various norms of these two sequences, with the emphasis on the sizes of
the constants involved, has gained a considerable interest in the literature and has
been applied in several areas of mathematics, including probability theory, har-
monic analysis and mathematical finance. See e.g. [1], [6], [7], [8], [14], [15], [17],
[20] and [21].

Let us relate this subject with the inequalities of the previous sections. We say
that a sequence (en)n≥0 is simple, if it is finite and each term takes only a finite
number of values. In the statement below, the filtration is to vary as well as the
probability space.

Theorem 4.3. Fix V : [0,∞)× [0,∞) → R. The following statements are equiva-
lent.

(i) For any adapted simple sequence (en)n≥0 of nonnegative random variables we
have

(4.2) EV

(

∞
∑

n=0

en,

∞
∑

n=0

E(en|Fn−1)

)

≤ 0.

(ii) For any adapted, simple, real-valued martingale f we have

(4.3) EV (S2(f), s2(f)) ≤ 0.

Proof. To get (i)⇒(ii), apply the substitution en = |dfn|2, n = 0, 1, 2, . . .. To
obtain (ii)⇒(i), use the martingale with the difference sequence (εn

√
en)n≥0, where

ε0, ε1, ε2, . . . are independent, adapted Rademacher variables, independent also
from (en)n≥0 (it may be necessary to enlarge the probability space and the filtration
to get such a sequence). �
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Now, observe that the estimate P(S(f) ≥ 1) ≤ (Γ(p/2 + 1))−1||s(f)||pp (valid for
p ≤ 2) and the second inequality in (2.1) (valid for p ≥ 2) are of the form (4.3).
Therefore, using the above theorem and repeating the reasoning from Sections 2
and 3, we obtain the following statement.

Theorem 4.4. Let (en)n≥0 be a sequence of adapted, nonnegative and integrable
random variables. Then for any 0 < q ≤ p < ∞ we have the sharp inequalities

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

en

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,∞

≤ K2
2p,2q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

E(en|Fn−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

E(en|Fn−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,∞

≤ L2
2p,2q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

en

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

.

It is also easy to obtain the corresponding versions of Theorems 4.1 and 4.2. We
omit the straightforward details.

4.3. A bound related to Khintchine’s inequality. Khintchine’s inequality (see
[13]) plays a fundamental role in the both commutative and non-commutative prob-
ability theory, geometry of Banach spaces, harmonic analysis and many other areas
of mathematics. The problem of determining the optimal (or almost optimal)
constants in this classical estimate and its various versions has interested many
mathematicians (see e.g. [9], [10], [18] and [19]). The estimates of the previous
sections can be used to obtain the following result in this direction. Suppose that
(an)n≥0 is a predictable sequence of random variables, taking values in a Hilbert
space H, and let ε0, ε1, ε2, . . . be an adapted sequence of independent Rademacher
variables, independent also from (an)n≥0. Then the process f = (

∑n
k=0 akεk)n≥0

is a martingale and its conditional square function equals s(f) =
(
∑∞

k=0 |ak|2
)1/2

.
Applying inequalities (1.6) and (1.7), we get the following.

Theorem 4.5. Let (an)n≥0 and (εn)n≥0 be as above. Then for 0 < q ≤ p < ∞ we
have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=0

akεk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,∞

≤ Kp,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∞
∑

k=0

|ak|2
)1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∞
∑

k=0

|ak|2
)1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q,∞

≤ Lp,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=0

akεk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

.

Similarly, one can state the appropriate versions of Theorems 4.1 and 4.2. We
omit the formulation, leaving it to the interested reader.
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