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ADAM OSȨKOWSKI

Abstract. Let X = (Xt)t≥0 be a bounded martingale and let Y = (Yt)t≥0 be

differentially subordinate to X. We prove that if 1 ≤ p <∞ and W = (Wt)t≥0

is an Ap weight of characteristic [W ]Ap , then

||Y ||Lp,∞(W ) ≤ Cp[W ]Ap ||X||L∞(W ).

The linear dependence on [W ]Ap is shown to be the best possible. The proof

exploits a weighted exponential bound which is of independent interest. As an

application, a related estimate for the Haar system is established.

1. Introduction

Let (Ω,F ,P) be a complete probability space, filtered by (Ft)t≥0, a nondecreas-
ing right-continuous family of sub-σ-fields of F , such that F0 contains all events
of probability 0. Let X = (Xt)t≥0, Y = (Yt)t≥0 be adapted, uniformly integrable
martingales taking values in Rν , ν ≥ 1. We also impose the usual regularity as-
sumptions on the paths of these processes, i.e., we assume that X and Y possess
right-continuous trajectories that have limits from the left. Next, we denote by
X∗ = sups≥0 |Xs| the maximal function of X. The symbol [X,X] will stand for
the square bracket of X: see e.g. Dellacherie and Meyer [3] for the definition in the
case when X is real-valued, and extend to the above vector setting by the formula
[X,X]t =

∑ν
n=1[Xn, Xn]t, where Xn is the n-th coordinate of X. Following Wang

[6] and Bañuelos and Wang [1], we say that Y is differentially subordinate to X, if
the process ([X,X]t − [Y, Y ]t)t≥0 is almost surely nonnegative and nondecreasing
as a function of t.

The differential subordination implies many interesting martingale inequalities;
consult the monograph [5] for almost up-to-date exposition of results in this di-
rection. In [6], Wang proved that if X is bounded almost surely by 1 and Y is
differentially subordinate to X, then we have the estimate

(1.1) P(Y ∗ ≥ λ) ≤ C(λ) :=


1 if 0 < λ ≤ 1,

λ−2 if 1 < λ ≤ 2,

e2−λ/4 if λ > 2.

Furthermore, for each λ > 0 the constant cannot be improved. In particular, this
implies the weak-type bound

(1.2) ||Y ∗||Lp,∞ ≤ Kp||X||L∞ , 1 ≤ p <∞,
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with the optimal constant equal to

Kp =

{
1 if 1 ≤ p < 2,(
ppe2−p/4

)1/p
if p ≥ 2.

Here, as usual, the weak p-th norm is given by ||ξ||Lp,∞ = supλ>0

[
λpP(|ξ| ≥ λ)

]1/p
.

The estimate (1.1) was obtained with the use of certain special functions constructed
by Burkholder in [2]. More precisely, it was shown that for each λ > 0 there is a
function Uλ : Rν × Rν → R satisfying the following conditions:

(i) We have 1{|y|≥λ} ≤ Uλ(x, y) ≤ 1.
(ii) For any Rν-valued martingales X, Y such that X is bounded by 1 and Y

is differentially subordinate to X, the process (Uλ(Xt, Yt))t≥0 is a super-
martingale with Uλ(X0, Y0) ≤ C(λ) almost surely.

The purpose of this paper is to study weighted versions of the inequalities (1.1)
and (1.2). Assume that W = (Wt)t≥0 is a positive, continuous-path and uniformly
integrable martingale of mean 1; this process will be called a weight. It defines
a new probability measure on (Ω,F) by W (A) := EW1A. Let 1 < p < ∞ be a
fixed parameter. Following Izumisawa and Kazamaki [4], we say that W satisfies
Muckenhoupt’s condition Ap, if

[W ]Ap
:= sup

τ

∣∣∣∣∣∣∣∣E[{Wτ/W∞
}1/(p−1)∣∣Fτ]p−1

∣∣∣∣∣∣∣∣
∞
<∞,

where the supremum is taken over the class of all adapted stopping times τ . There
are also versions of this condition for p = 1: W is an A1 weight if there is a constant
c such that W ∗ ≤ cW almost surely; the least c with this property is denoted by
[W ]A1 .

We will establish the following result.

Theorem 1.1. Suppose that X, Y are Rν-valued martingales such that X is bounded
by 1 and Y is differentially subordinate to X. Then for any 1 ≤ p < ∞ and any
Ap weight W we have the estimate

(1.3) W (Y ∗ ≥ 1) ≤ 4C(λ)1/(6[W ]Ap ), λ > 0.

As a consequence, we get the following weak-type bound.

Theorem 1.2. Suppose that X, Y are Rν-valued martingales such that Y is dif-
ferentially subordinate to X. Then for any 1 ≤ p < ∞ and any Ap weight W we
have the estimate

(1.4) ||Y ∗||Lp,∞(W ) ≤ cp[W ]Ap
||X||L∞(W ),

where cp = 6pe−1(4e)1/p. The linear dependence on the characteristic [W ]Ap is
optimal for each p.

As an application, we will deduce the corresponding weak-type estimate for the
Haar system. Let h = (hn)n≥0 be the family of functions given by h0 = χ[0,1),

h1 = χ[0,1/2) − χ[1/2,1), and if n > 1, then hn(t) = h1(2kt − `) where n = 2k + `.
Given a weight w (i.e., a positive, integrable function with integral equal to 1) on
[0, 1) and 1 < p <∞, we say that w belongs to the (dyadic) class Ap, if

[w]Ap := sup

(
1

|I|

∫
I

wds

)(
1

|I|

∫
I

w1/(1−p)ds

)p−1

<∞,



WEIGHTED INEQUALITIES 3

where the supremum is taken over the family of all dyadic subintervals of [0, 1)
(that is, all intervals of the form [k2−n, (k+ 1)2−n), where k ∈ {0, 1, 2, . . . , n− 1}
and n = 0, 1, 2, . . .). Furthermore, w is a (dyadic) A1 weight, if there is a finite
constant c ≥ 1 such that Mw ≤ cw almost everywhere; here M is the dyadic
maximal operator, defined by

Mw(x) = sup
1

|I|

∫
I

wds

and the supremum is taken over all dyadic subintervals of [0, 1) containing x. The
smallest constant c with the above property is called the A1 characteristic of w and
is denoted by [w]A1

.
We will prove the following statement.

Theorem 1.3. Let a0, a1, a2, . . ., b0, b1, b2, . . . be arbitrary sequences of elements
of Rν such that |an| ≥ |bn| for all n. Then for any 1 ≤ p < ∞ and any Ap weight
w we have

(1.5)

∣∣∣∣∣
∣∣∣∣∣M
( ∞∑
n=0

bnhn

)∣∣∣∣∣
∣∣∣∣∣
Lp,∞(w)

≤ κp[w]Ap

∣∣∣∣∣
∣∣∣∣∣
∞∑
n=0

anhn

∣∣∣∣∣
∣∣∣∣∣
L∞(w)

,

where κp depends only on p. The linear dependence on the Ap characteristic is
optimal for each p.

The main result of this paper is the exponential bound (1.3). It will be proved
with the use of Burkholder’s method (sometimes called in the literature the Bellman
function method): we will construct a certain special function of three variables
and deduce the exponential bound from the size and concavity properties of this
function. This is done in the next section; we also establish the estimate (1.4) there.
The final part is devoted to the study in the context of Haar functions.

2. On inequalities (1.3) and (1.4)

It is convenient to split the material into two parts.

2.1. A special function and its properties. Let c ≥ 1 and 1 < p < ∞ be
fixed numbers. Introduce the parameters a = 3/4, α = 1− 1/(2c), β = 1/(6c) and
consider the domain

Dp,c = {(w, v, z) ∈ R3
+ : 1 ≤ wvp−1 ≤ c}.

Define B = Bp,c : Dp,c → R by the formula

B(w, v, z) =

(
wvp−1 − a

)α
vp−1

zβ .

We will need the following properties of this object.

Lemma 2.1. For any (w, v, z) ∈ Dp,c we have

(2.1)
1

4
wzβ ≤ B(w, v, z) ≤ wzβ .

Proof. We must show that

1

4
≤ (wvp−1 − a)α

wvp−1
≤ 1.
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Observe that the function t 7→ (t− a)α/t is increasing: indeed, we have(
(t− a)α

t

)′
=

(t− a)α−1((α− 1)t+ a)

t2
≥ 0.

Therefore, it is enough to check that 1/4 ≤ (1− a)α and (c− a)α/c ≤ 1. The first
estimate is clear, since 1−a = 1/4 and α ∈ (0, 1). To show the second, we consider
two cases: if c−a ≥ 1, then (c−a)α ≤ c−a ≤ c; if c−a ≤ 1, then (c−a)α ≤ 1 ≤ c.
This completes the proof. �

The key property of B is given in the next statement.

Lemma 2.2. The Hessian matrix of −B is nonnegative-definite on Dp,c. (That is,
the function −B is a locally convex function).

Proof. For brevity, set ϕ(t) = (t − a)α for t ≥ a; we will also write t = wvp−1

to shorten the notation. The proof rests on Sylvester’s criterion. First, note that
Bww(w, v, z) = vp−1ϕ′′(t)zβ is negative, because ϕ is concave. Next, since

Bwv(w, v, z) = (p− 1)wvp−2ϕ′′(t)zβ

and

Bvv(w, v, z) = p(p− 1)v−p−1ϕ(t)zβ − p(p− 1)wv−2ϕ′(t)zβ

+ (p− 1)2w2vp−3ϕ′′(t)zβ ,

we derive that

det

[
Bww Bwv
Bvw Bvv

]
= p(p− 1)v−2

[
ϕ(t)− tϕ′(t)

]
ϕ′′(t)z2β .

However, ϕ(t)− tϕ′(t) = (t−a)α−1(t(1−α)−a) is negative when t ≤ c; this shows
that the above determinant is positive (since (w, v) ∈ Dp,c). It remains to show
that the determinant of the full Hessian is nonpositive:

det

 Bww Bwv Bwz
Bvw Bvv Bvz
Bzw Bzv Bzz

 ≤ 0.

Add to the second column the first column multiplied by −(p− 1)w/v; then add to
the second row the first row multiplied by −(p− 1)w/v. Then the above inequality
amounts to saying that the determinant

det

 vp−1ϕ′′(t)zβ 0 βϕ′(t)zβ−1

0 p(p− 1)v−p−1(ϕ(t)− tϕ′(t))zβ −β(p− 1)v−pϕ(t)zβ−1

βϕ′(t)zβ−1 −β(p− 1)v−pϕ(t)zβ−1 β(β − 1)v−p+1ϕ(t)zβ−2


is nonpositive. It is easy to see that the powers of z and v appearing above do not
affect the sign of the determinant; in other words, we must show that

det

 ϕ′′(t) 0 βϕ′(t)
0 p(p− 1)(ϕ(t)− tϕ′(t)) −β(p− 1)ϕ(t)

βϕ′(t) −β(p− 1)ϕ(t) β(β − 1)ϕ(t)


= −(β − 1)p(tϕ′(t)− ϕ(t))ϕ(t)ϕ′′(t) + βp(ϕ′(t))2(tϕ′(t)− ϕ(t))

− β(p− 1)ϕ2(t)ϕ′′(t) ≤ 0,
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or, after some manipulations,

(β − 1)(1− α)((α− 1)t+ a) + βα((α− 1)t+ a) + β
p− 1

p
(1− α)(t− a) ≤ 0.

It is easy to see that it suffices to show the bound for p → ∞ and t = c; then the
estimate is the strongest and reads

β ≤ (1− α)((α− 1)c+ a)

αa
.

Plugging the values of α, β and a prescribed at the beginning, we get the desired
assertion. �

2.2. Proof of (1.3) and (1.4). Any A1 weight automatically belongs to all Ap
classes, p > 1, and we have [W ]Ap

≤ [W ]A1
. Thus we may assume that p > 1

in our considerations below. We will use the following useful interpretation of Ap
weights. Fix such a weight W and let c = [W ]Ap

. Furthermore, let V = (Vt)t≥0 be

the martingale given by Vt = E(W
1/(1−p)
∞ |Ft), t ≥ 0. Note that Jensen’s inequality

implies WτV
p−1
τ ≥ 1 almost surely; furthermore, the Ap condition is equivalent to

the reverse bound

WτV
p−1
τ ≤ c with probability 1.

In other words, an Ap weight of characteristic equal to c gives rise to a two-
dimensional martingale (W,V ) taking values in the domain Dp,c. In addition, this
martingale terminates at the lower boundary of this domain: W∞V

p−1
∞ = 1 almost

surely. A nice feature is that this is a full characterization: given any martingale
pair (W,V ) (with continuous-path W of mean 1) taking values in Dp,c and termi-
nating at the set wvp−1 = 1, one easily checks that its first coordinate is an Ap
weight with [W ]Ap ≤ c.

We are ready for the proof of the main estimate (1.3). Let X, Y , W be martin-
gales as in the statement of Theorem 1.1 and, given λ > 0, let Uλ : Rν×Rν → R be
the special function of Burkholder [2], with the properties listed in the introductory
section. Then the process Zt = Uλ(Xt, Yt) is a supermartingale; let Z = Z0+M+A
be the Doob-Meyer decomposition for Z (cf. [3]). Let us also consider the auxiliary
process ξt = (Wt, Vt, Zt), t ≥ 0, where V is given as above, and let c = [W ]Ap . The
function B = Bp,c is of class C∞ (more precisely, it extends to a C∞ function on
some open set containing Dp,c), so we are allowed to apply Itô’s formula to obtain

B(ξt) = I0 + I1 + I2 + I3/2 + I4,

where

I0 = B(ξ0),

I1 =

∫ t

0

Bw(ξs−)dWs +

∫ t

0

Bv(ξs−)dVs +

∫ t

0

Bz(ξs−)dMs,

I2 =

∫ t

0

Bz(ξs−)dAs,

I3 =

∫ t

0

D2B(ξs−)d[W,V c, Zc]s,

I4 =
∑

0<s≤t

[
B(ξs)−B(ξs−)−Bv(ξs−)∆Vs −Bz(ξs−)∆Zs

]
,
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where I3 is the abbreviated form of the sum of all the second-order terms. Note
that in I4 there are no terms −Bw(ξs−)∆Ws, since the weight W is assumed to have
continuous paths. Let us analyze the summands I0− I4. By the right inequality in
(2.1), we have

I0 ≤W0Z
β
0 = W0Uλ(X0, Y0)β ≤W0C(λ)β .

The stochastic integrals in I1 have expectation zero. The process A coming from
the Doob-Meyer decomposition is nonincreasing and Bz ≥ 0, so the term I2 is
nonpositive. We also have I3 ≤ 0, which follows directly from Lemma 2.2 and a
standard approximation of the integrals by Riemann-type sums (see e.g. [6] for a
similar reasoning). Finally, each summand appearing in I4 is nonpositive, which is
the consequence of concavity of B inside its domain. Putting all the above facts
together, we obtain EB(ξt) ≤ C(λ)βEW , which combined with the left inequality
from (2.1) gives

W (|Yt| ≥ λ) = EWt1{|Yt|≥λ} ≤ EWtU(Xt, Yt)
β ≤ 4EB(ξt) ≤ 4C(λ)βEW.

To pass from Y to Y ∗, we exploit a well-known stopping time argument. Fix
ε ∈ (0, λ) and let τ = inf{t : |Yt| ≥ λ − ε}. Since {Y ∗ ≥ λ} ⊆ {τ < ∞}, we may
write

W (Y ∗ ≥ λ) ≤ lim
t→∞

W (|Yτ∧t| ≥ λ− ε) ≤ 4C(λ− ε)βEW0.

We have EW0 = 1, by the very definition of a weight. Letting ε → 0 and using
the fact that the function λ 7→ C(λ) is continuous, we get the desired exponential
estimate (1.3).

Now the proof of (1.4) is straightforward. By homogeneity, we may assume that
||X||L∞(W ) = 1. Then we use (1.3) and the elementary estimate C(λ) ≤ e1−λ ≤
e1/β−λ to get

λpw(Y ∗ ≥ 1) ≤ λpC(λ)β · 4EW ≤ λpe−λβ · 4e.
Optimizing the right-hand side over λ, we obtain the weak-type inequality (1.4).

3. Inequalities for the Haar system

3.1. Proof of (1.5). As in the probabilistic context, we may and do assume that p
is strictly larger than 1. Fix two sequences (an)n≥0, (bn)n≥0 as in the statement of
Theorem 1.3. We will embed the functions f =

∑∞
n=0 anhn, g =

∑∞
n=0 bnhn, w =∑∞

n=0 cnhn and w1/(1−p) =
∑∞
n=0 dnhn into certain continuous-time martingales

satisfying differential subordination. To this end, first we rewrite the formulas for f
and g in terms of the Rademacher sequence r1 = h1, r2 = h2+h3, r3 = h4+h5+h6+
h7, . . .. Let (Gn)n≥1 be the filtration generated by (rn)n≥1. Then there are (Gn)-
predictable sequences (ān)n≥1, (b̄n)n≥1, (c̄n)n≥1 and (d̄n)n≥0 (the first two of which
take values in Rν) such that |b̄n| ≤ |ān| almost surely and f = a0 +

∑∞
n=1 ānrn,

g = b0 +
∑∞
n=1 b̄nrn, w = c0 +

∑∞
n=1 c̄nhn and w1/(1−p) = d0 +

∑∞
n=1 d̄nhn. In

particular, the predictability implies that for each n, the variables ān, b̄n, c̄n and
d̄n are functions of r1, r2,. . ., rn−1:

ān = ān(r1, r2, . . . , rn−1), b̄n = b̄n(r1, r2, . . . , rn−1)

and similarly for c̄n and d̄n. Now let (Bt)t≥0 be a standard Brownian motion start-
ing from 0 and let (τn)n≥0 be a sequence of stopping times of B given inductively
by τ0 ≡ 0 and

τn+1 = inf{t > τn : |Bt −Bτn | = 1}.
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Then (Bτn+1
− Bτn)n≥0 is a sequence of independent Rademacher variables, so

has the same distribution as the sequence (rn)n≥1 considered above. Define the
processes X = (Xt)t≥0, Y = (Yt)t≥0, W = (Wt)t≥0 and V = (Vt)t≥0 by the
formulas

Xt = a0 +

∞∑
k=1

ān(Bτ1 −Bτ0 , . . . , Bτn−1
−Bτn−2

)(Bτn∧t −Bτn−1∧t),

Yt = b0 +

∞∑
k=1

b̄n(Bτ1 −Bτ0 , . . . , Bτn−1
−Bτn−2

)(Bτn∧t −Bτn−1∧t),

Wt = c0 +

∞∑
k=1

c̄n(Bτ1 −Bτ0 , . . . , Bτn−1
−Bτn−2

)(Bτn∧t −Bτn−1∧t),

Vt = d0 +

∞∑
k=1

d̄n(Bτ1 −Bτ0 , . . . , Bτn−1
−Bτn−2

)(Bτn∧t −Bτn−1∧t).

Then Y is differentially subordinate to X (which follows directly from the assump-
tion |bn| ≤ |an| for each n). Furthermore, the pair (W,V ) terminates at the set
{(x, y) : xyp−1 = 1} (since the pair (w,w1/(1−p)) takes its values there). Now we
will show that

(3.1) the pair (W,V ) takes values in {(x, y) : 1 ≤ xyp−1 ≤ max{2p−1, 2}[w]Ap
},

which will imply the Ap property of W . To check this, observe that the distribution

of (Wτn , Vτn) is the same as that of (
∑n
k=0 c̄krk,

∑n
k=0 d̄krk) = E((w,w1/(1−p))|Gn)

and hence, by the Ap property of w, is concentrated on {(x, y) ∈ R2
+ : 1 ≤

xyp−1 ≤ [w]Ap}. Let us look at the behavior of the pair (W,V ) on the interval
[τn, τn+1] for some fixed n. Suppose that (Wτn , Vτn) = (x, y); then (Wτn+1

, Vτn+1
) ∈

{(x+, y+), (x−, y−)}, where 1 ≤ x±y
p−1
± ≤ [w]Ap

and (x− + x+)/2 = x, (y− +
y+)/2 = y. Furthermore, on the interval [τn, τn+1], the pair (W,V ) moves along
the line segment joining (x−, y−) and (x+, y+). Therefore, to show (3.1), it is
enough to establish the following statement.

Lemma 3.1. Assume that c > 1 and suppose that points P , Q and R = (P +Q)/2
lie in the set {(x, y) : 1 ≤ xyp−1 ≤ c}. Then the whole line segment PQ is contained
within {(x, y) : 1 ≤ xyp−1 ≤ max{2p−1, 2}c}.

Proof. Using a simple geometrical argument, it is enough to consider the case when
the points P and R lie on the curve wvp−1 = c (the upper boundary of {(x, y) :
1 ≤ xyp−1 ≤ c}) and Q lies on the curve wvp−1 = 1 (the lower boundary of the
set). Then the line segment RQ is contained within {(x, y) : 1 ≤ xyp−1 ≤ c}, and
hence also within {(x, y) : 1 ≤ xyp−1 ≤ max{2p−1, 2}c}, so it is enough to ensure
that the segment PR is contained in {(x, y) : 1 ≤ xyp−1 ≤ max{2p−1, 2}c}. Let
P = (Px, Py), Q = (Qx, Qy) and R = (Rx, Ry). We consider two cases. If Px < Rx,
then

Py = 2Ry −Qy < 2Ry,

so the segment PR is contained in the quadrant {(x, y) : x ≤ Rx, y ≤ 2Ry}. Con-
sequently, PR lies below the hyperbola xyp−1 = 2p−1c passing through (Rx, 2Ry);
this proves the assertion in the case Px < Rx. In the case Px ≥ Rx the reasoning
is similar: then the line segment PR lies below the hyperbola xyp−1 = 2c passing
through (2Rx, Ry). �
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Proof of (1.5). We know that W is an Ap weight and Y is differentially subordinate
to X, so (1.4) gives

W (Y ∗ ≥ 1) ≤ cpp[W ]pAp
||X||pL∞(W ).

It follows from the above construction that for each n, (Xτn , Yτn ,Wτn , Vτn) has the
same distribution as the quadruple (

∑n
k=0 akhk,

∑n
k=0 bkhk,

∑n
k=0 ckhk,

∑n
k=0 dkhk)

and, in particular, supn≥0 |Yτn | has the same distribution as Mg. Furthermore, by

(3.1), we have [W ]Ap ≤ max{2p−1, 2}[w]Ap , so the above weak-type bound implies

w(Mg ≥ 1) ≤ cpp max{2p−1, 2}p[w]pAp
||f ||L∞(w),

which is precisely the claim. �

3.2. On the linear dependence on the characteristic. Now we will show that
the linear dependence in the weak-type bound is optimal in the context of Haar sys-
tem with real-valued coefficients; this will automatically show that this dependence
is optimal in the probabilistic setting as well. Consider the functions

f =
1

3
+

2

3

∞∑
n=0

(−1)n+1h2n , g =
1

3
+

2

3

∞∑
n=0

h2n

and introduce the weight

w = 1 +

(
1− 1

c

) ∞∑
n=0

(
2− 1

c

)n
h2n .

It is easy to check that f =
∑∞
n=0(−1)nχ[2−n−1,2−n) and hence f is bounded in

absolute value by 1. On the other hand, on the set [2−n−1, 2−n) we have h1 = 1,
h2 = 1, . . . , h2n−1 = 1 and h2n = −1, so g = 1

3 + 2
3 (n− 1) there and

(3.2)

{
g ≥ 1

3
+

2

3
(n− 1)

}
= [0, 2−n).

Concerning w, we see that on [2−n−1, 2−n) we have

w = 1+

(
1− 1

c

)[
1 +

(
2− 1

c

)
+ . . .+

(
2− 1

c

)n−1

−
(

2− 1

c

)n]
=

1

c

(
2− 1

c

)n
,

so in particular w is positive (and hence is a weight). Furthermore, w is a nonin-
creasing function on [0, 1), so its maximal function can be computed as follows. If
x ∈ [0, 1) and k is the unique positive integer such that x ∈ [2−k−1, 2−k), then

Mw(x) =
1

|[0, 2−k)|

∫
[0,2−k)

wds

= 2k
∞∑
n=k

∫
[2−n−1,2−n)

wds

= 2k
∞∑
n=k

2−n−1 · 1

c

(
2− 1

c

)n
=

(
2− 1

c

)k
.

Consequently, we have Mw = cw on [0, 1) and hence w is an A1 weight with
[w]A1

= c. We obviously have ||f ||L∞(w) = 1 and, by (3.2),

w

(
g ≥ 1

3
+

2

3
(n− 1)

)
=

∫
[0,2−n)

wds = 2−n
(

2− 1

c

)n
=

(
1− 1

2c

)n
.
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Now take n = bcc+ 2 and λ = 1
3 + 2

3 (n− 1) ≥ 2
3c. Then

||g||pLp,∞(w) ≥ λ
pw(g ≥ λ) ≥

(
2

3
c

)p(
1− 1

2c

)bcc+2

≥ κpcp||f ||pL∞(w),

for some constant κp depending only on p. This proves that the linear dependence
is indeed optimal.
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