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Abstract. We introduce a novel method which can be used to establish gen-
eral sharp maximal inequalities for monotone bases and contractive projections

in L1. The technique enables to deduce such estimates from the existence of

the upper solutions to the corresponding nonlinear problems. As an applica-
tion, we identify the best unconditional-type constants in certain maximal and

weak-type inequalities for monotone bases in L1.

1. Introduction

The motivation for the results obtained in this paper comes from a very natural
question about monotone bases and contractive projections in L1. We start with
introducing the necessary background and notation. Recall that a sequence e =
(en)n≥0 with values in a given real Banach space X is a basis, if for every f ∈ X
there is a unique sequence a = (an)n≥0 ⊂ R satisfying ||f−

∑n
k=0 akek||X → 0. The

basis (ek)k≥0 is unconditional, if for any f ∈ X the corresponding series converges
unconditionally. This is equivalent to the condition sup{||PE || : E ⊂ N finite} <∞,
where, for a given E, the symbol PE stands for the associated projection defined
by PEf =

∑
i∈E aiei. A basis is called monotone if for each n the projection

Pn := P{0,1,...,n} is contractive. This is equivalent to saying that for any nonnegative
integer n and any real numbers a0, a1, . . ., an, an+1,∣∣∣∣∣

∣∣∣∣∣
n∑
k=0

akek

∣∣∣∣∣
∣∣∣∣∣
X

≤

∣∣∣∣∣
∣∣∣∣∣
n+1∑
k=0

akek

∣∣∣∣∣
∣∣∣∣∣
X

.

We will be particularly interested in monotone bases of Lp(Ω,F , µ), where the
underlying measure µ is assumed to be positive and nonatomic. Suppose first that
1 < p < ∞. Then, as observed by Ando [1], every non-vanishing contractive
projection of Lp is isometrically equivalent to a conditional expectation. This ar-
gument can be pushed further to yield that every nondecreasing sequence (Pn)n≥0

of contractive projections (i.e., satisfying PmPn = Pm∧n for all m, n) gives rise
to a sequence of conditional expectations with respect to a nondecreasing family
of sub-σ-algebras, which in turn links this subject with the theory of martingales.
Then, as shown by Dor and Odell [7], the use of the inequalities for martingale
transforms (see Burkholder [2]) yields the following statement.

Theorem 1.1. Assume that (Ω,F , µ) is a positive measure space. Let P−1 = 0, P0,
P1, P2, . . . be a nondecreasing sequence of contractive projections in Lp(Ω,F , µ),
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1 < p <∞. If f ∈ Lp(Ω,F , µ), then for any sequence ε0, ε1, ε2, . . . of signs,

(1.1)

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

εk(Pk − Pk−1)f

∣∣∣∣∣
∣∣∣∣∣
p

≤ Cp||f ||p,

for some universal constant Cp which depends only on p.

It turns out that the optimal choice for the constant Cp in (1.1) equals p∗ − 1,
where p∗ = max{p, p/(p − 1)}. This follows from a related sharp inequality for
martingales shown by Burkholder in [3] (see also [4]). In particular, the above
theorem implies that every monotone basis in Lp is unconditional provided 1 <
p < ∞. Further combination with the results of Olevskǐi [10], [11] gives that the
unconditional constant of any monotone basis e of Lp (1 < p < ∞) equals p∗ − 1.
That is, for any n, any sequence a0, a1, a2, . . . , an of real numbers and any sequence
ε0, ε1, ε2, . . . , εn of signs we have

(1.2)

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

εkakek

∣∣∣∣∣
∣∣∣∣∣
p

≤ (p∗ − 1)

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

akek

∣∣∣∣∣
∣∣∣∣∣
p

, 1 < p <∞,

and the constant p∗− 1 cannot be improved. Consult also the paper of Choi [6], in
which the unconditional constant is defined in a slightly different manner.

There is a very interesting question about the validity of the inequality (1.2)
in the limit case p = 1. A well-known result, due to Paley [12] (consult also
Marcinkiewicz [9]), states that the Haar basis, a fundamental monotone basis of
L1([0, 1],B([0, 1]), | · |), is not unconditional. Thus there is a further question about
an appropriate version for the inequality (1.2) for p = 1, which will serve as a
substitute for the unconditionality. A typical approach to such a problem is to
study the corresponding weak-type inequality

(1.3)

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

εkakek

∣∣∣∣∣
∣∣∣∣∣
1,∞

≤ c

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

akek

∣∣∣∣∣
∣∣∣∣∣
1

,

where ||f ||1,∞ = supλ>0 λµ({ω ∈ Ω : |f(ω)| ≥ λ}) denotes the weak norm of f .
However, one encounters a difficulty here. Namely, Ando’s theorem fails to hold
for p = 1 and the structure of a contractive projection in L1 is more complicated.
Indeed, as shown by Douglas [8], such a projection is isometrically equivalent to the
sum of a conditional expectation and an appropriate nilpotent operator. This in
turn implies that the monotone sequence (Pn)n≥0 of projections in L1 cannot be rep-
resented as a martingale any more. In addition, while the version of (1.3) for mar-
tingale transforms holds true (see [2] and [3]), the inequality (1.3) is not valid in gen-
eral with any finite constant c. This can be easily seen by considering the following
example: fix a large positive integer N and let e be a basis of L1([0, 1],B([0, 1]), | · |),
given as follows. Put e0 = χ[0,1/N) and ek = −χ[(k−1)/N,k/N) + χ[k/N,(k+1)/N) for
k = 1, 2, . . . , N − 1. Finally, complete this sequence to a basis, by using a copy of
the Haar system on each of the intervals [(k − 1)/N, k/N), k = 1, 2, . . . , N . Then
it is not difficult to verify that e is monotone,

N−1∑
k=0

ek = χ[(N−1)/N,1)
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and
N−1∑
k=0

(−1)kek = 2

N−1∑
k=1

(−1)kχ[(k−1)/N,k/N) + (−1)Nχ[(N−1)/N,1).

This implies c ≥ N and shows that no finite constant suffices in (1.3).
Thus, we see that the theory of martingale transforms and that of contractive

projections in L1 are no longer parallel. One of the objectives of this paper is, in
a sense, to fill this gap. We introduce an approach which enables the successful
treatment of the inequalities for monotone bases in L1. Namely, we will see how a
certain class of estimates can be reduced to finding the upper solutions to some novel
nonlinear boundary value problems. This will allow us to establish the following
sharp maximal version of (1.2).

Theorem 1.2. Suppose that e in a monotone basis of L1(Ω,F , µ). Then for any
sequences a0, a1, a2, . . . of real numbers and ε0, ε1, ε2, . . . of signs we have the
sharp inequalities

(1.4)

∣∣∣∣∣
∣∣∣∣∣
∞∑
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εkakek

∣∣∣∣∣
∣∣∣∣∣
1
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akek
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and

(1.5)
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εkakek
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akek
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.

Here β = 2.536 . . . is the unique positive solution to the equation

(1.6) β = 3− exp
1− β

2
.

We would like to mention here that the method we plan to develop has its ana-
logue in martingale theory (see Burkholder [5]), but the interplay between the two
is non-trivial. Namely, if we compare the above statement to its version for mar-
tingale transforms, we have that the constant β is also optimal in the probabilistic
counterpart of (1.4) (cf. [5]); on contrary, quite surprisingly, the best constant in
the martingale version of (1.5) is strictly smaller than β (in fact it does not exceed
2, see e.g. [3]).

A few words about the organization of the paper are in order. The next section
contains the description of the structure of a monotone basis in L1. Section 3 is
devoted to the detailed presentation of the method which allows to study general
maximal inequalities for a certain class of monotone bases. In Section 4 we construct
the special function which yields the validity of the inequalities (1.4) and (1.5). In
the final part of the paper we address the question about the optimality of the
constant β.

2. On the structure of monotone bases in L1

The material presented in this section is, essentially, taken from the paper [7] of
Dor and Odell. We will show how to construct an isometry of L1(Ω,F , µ) onto a
certain L1(Ω,F , ν), which sends a given monotone basis e onto a simple basis (for
the necessary definition, see below). The new thing which will be proved here is that
this isometry preserves the L1 norm of the maximal function supn≥0 |

∑n
k=0 akek|.

Let us start with definitions.
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Definition 2.1. A system of sets {An,i : i = 1, 2, . . . , 2n, n = 0, 1, 2, . . .} is called
a dyadic tree if for all n and 1 ≤ i ≤ 2n we have

An+1,2i−1 ∩An+1,2i = ∅
and

An+1,2i−1 ∪An+1,2i = An,i.

Definition 2.2. Given a dyadic tree of sets satisfying µ(An,i) > 0 for all n and
i, we define the associated generalized Haar sequence h = (hk)k≥0 by h0 = h0,1 =
χA0,1

/||χA0,1
||1 and

h2n−1+i−1 = hn,i = Hn,i/||Hn,i||1,
where

Hn,i = χAn,2i−1/µ(An,2i−1)− χAn,2i/µ(An,2i), i ≤ 2n, n = 1, 2, . . . .

If h forms a basis, it will be referred to as a generalized Haar basis.

The generalized Haar sequence (hn)n≥0 is uniquely determined by a dyadic tree
{An,i} and the following condition: for each n ≥ 1 and 1 ≤ i ≤ 2n, the function
hn,i is a linear combination of χAn,2i−1

and χAn,2i
, such that

(2.1) ||hn,i||1 = 1 and

∫
Ω

hn,i = 0 for n ≥ 1.

Observe that if {An,i} is the family of the dyadic subintervals of [0, 1] and µ is the
Lebesgue’s measure, then the above definition yields the usual Haar system in L1.

The final notion we need is the following.

Definition 2.3. A basis d = (dk)k≥0 in L1(Ω,F , ν) is called simple, if there is a
sequence (possibly finite) of disjoint sets En ∈ F covering Ω, so that (dk)k≥0 is the
union of disjoint subsequences (dni )i≥1, n = 1, 2, . . ., satisfying the following two
conditions.

(i) For each n the sequence χEn/||χEn ||1, dn2 , dn3 , . . . is a generalized Haar basis
for L1(En).

(ii) For each n we have dn1 = cnχEn
+ ψn, where ||dn1 ||1 = 1, ||ψn||1 ≤ ||cnχEn

||1
and ψn is a combination of the elements of (dk)k≥0 which precede dn1 .

Next, we recall Theorem 3.1 from [7], which shows that monotone bases of L1

are equivalent to simple bases.

Theorem 2.4. Let (ek)k≥0 be a normalized monotone basis for L1(Ω,F , µ). Then
there is an isometry T of L1(Ω,F , µ) onto some L1(Ω,F , ν), which sends (ek)k≥0

to some simple basis (dk)k≥0.

The proof of this statement, presented in [7], shows that one can take dν = |ϕ|dµ
and Tf = f/ϕ for an appropriately chosen measurable function ϕ : Ω → R \ {0}.
Thus, we see that for each nonnegative integer n and any numbers a0, a2, . . ., an,

T

(
max

0≤m≤n

∣∣∣∣∣
m∑
k=0

akek

∣∣∣∣∣
)

= max
0≤m≤n

∣∣∣∣∣
m∑
k=0

akdk

∣∣∣∣∣
and hence ∣∣∣∣∣

∣∣∣∣∣ max
0≤m≤n

∣∣∣∣∣
m∑
k=0

akek

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L1(µ)

=

∣∣∣∣∣
∣∣∣∣∣ max
0≤m≤n

∣∣∣∣∣
m∑
k=0

akdk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L1(ν)

.
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In consequence, to show (1.4), it suffices to establish it for simple bases only. In
the next section we introduce a tool to handle this problem.

3. An upper class of functions

In this section, (ek)k≥0 will always be a simple basis of L1(Ω,F , µ). For any f =∑∞
k=0 akek, we will write fn = Pnf =

∑n
k=0 akek for the projection on the subspace

generated by e0, e1, . . ., en and we say that g ∈ L1(Ω,F , µ) is a ±1-transform of f ,
if there is a sequence ε0, ε1, ε2, . . . of signs such that g =

∑∞
k=0 εkakek. Moreover,

we will use the notation f∗n(ω) = max0≤k≤n |fk(ω)|, ω ∈ Ω, n = 0, 1, 2, . . ., for the
“maximal function” of f .

We are ready to describe the method. Let

D = {(x, y, z, w) ∈ R× R×[0,∞)×[0,∞) : |x| ∨ z > 0, |y| ∨ w > 0} ∪ {(0, 0, 0, 0)}
and suppose that V : D → R is a given function, satisfying V (0, 0, 0, 0) = 0 and

(3.1) V (x, y, z, w) = V (x, y, |x| ∨ z, |y| ∨ w), (x, y, z, w) ∈ D.
This function need not be Borel or even measurable. Assume we are interested in
proving that

(3.2)

∫
Ω

V (fn(ω), gn(ω), f∗n(ω), g∗n(ω)) dµ(ω) ≤ 0, n = 0, 1, 2, . . . ,

for all f, g ∈ L1(Ω) such that g is a ±1 transform of f . To handle this problem, we
consider the class U(V ) which consists of all functions U which satisfy the following
four conditions.

1◦ For all (x, y, z, w) ∈ D we have

(3.3) U(x, y, z, w) = U(x, y, |x| ∨ z, |y| ∨ w).

2◦ For all (x, y, z, w) ∈ D we have

(3.4) U(x, y, z, w) ≥ V (x, y, z, w).

3◦ If |x| ≤ z, |y| ≤ w, ε ∈ {−1, 1}, and α1, α2 ∈ (0, 1), t1, t2 ∈ R satisfy
α1 + α2 = 1, α1t1 + α2t2 = 0, then

(3.5) U(x, y, z, w) ≥ α1U(x+ t1, y + εt1, z, w) + α2U(x+ t2, y + εt2, z, w).

4◦ If |x| ≤ z, |y| ≤ w, ε ∈ {−1, 1} and t1, t2 ∈ R, then

(3.6) |t2|U(x, y, z, w) ≥ |t2|U(x+ t1, y + εt1, z, w) + |t1|U(t2, εt2, |t2|, |t2|).
A few comments about these conditions are in order. The property 1◦ is a

technical assumption which will make an appropriate induction argument work:
see below. Concerning 2◦, we will see that the properties 1◦, 3◦ and 4◦ imply the
validity of (3.2), but with V replaced by U ; then the application of the majorization
will yield the claim. The condition 3◦ is a concavity-type property. In particular,
it implies that for each z, w > 0, the function U(·, ·, z, w) is diagonally concave
on [−z, z] × [−w,w], i.e., concave along any line segment of slope ±1 contained
in this rectangle. More generally, 3◦ means that for each ε ∈ {−1, 1} and any
(x, y, z, w) ∈ D with |x| ≤ z, |y| ≤ w, the function Φ(t) = U(x + t, y + εt, z, w),
t ∈ R, is majorized by a linear function Ψ satisfying Ψ(0) = Φ(0). Finally, 4◦ can
be regarded as a bound for the slopes of all such functions Ψ’s.

In particular, these conditions imply that

(3.7) U(0, 0, 0, 0) = 0
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and

(3.8) U(t,±t, |t|, |t|) ≤ 0, t ∈ R.

Indeed, plugging t2 = 0 into (3.6) gives U(0, 0, 0, 0) ≤ 0, while 1◦ together with
V (0, 0, 0, 0) = 0 implies the reverse bound. Thus (3.7) follows. To see (3.8), fix
ε ∈ {−1, 1}, t 6= 0 and apply 4◦ to x = t, y = εt, z = w = |t|, t1 = −t and t2 = t.
As the result, we get an estimate which is equivalent to U(0, 0, |t|, |t|) ≤ 0. Now
apply 4◦ again, this time with x = y = 0, z = w = |t| and t1 = t2 = t to obtain
(3.8).

To explain the interplay between the inequality (3.2) and the class U(V ), we will
prove the following fact.

Theorem 3.1. If the class U(V ) is nonempty, then (3.2) is valid.

Proof. By simplicity, each ek is either a generalized Haar function, or it can be
written in the form cχEk

+ ψk, where ψk is a combination of e0, e1, . . ., ek−1, the
set Ek is disjoint from the union of the supports of these functions and ||ψk||1 ≤
||cχEk

||1. Pick f , g ∈ L1(Ω,F , µ) such that g is a ±1-transform of f , and let
a0, a1, a2, . . ., ε0, ε1, ε2, . . . denote the corresponding coefficients and the signs
appearing in their expansions. The key part of the proof is to show that for any
n ≥ 0,

(3.9)

∫
Ω

U (fn, gn, f
∗
n, g
∗
n) dµ ≥

∫
Ω

U
(
fn+1, gn+1, f

∗
n+1, g

∗
n+1

)
dµ.

To do this, fix n ≥ 0 and assume first that en+1 is a generalized Haar function, with
the support E contained in the union of the supports of e0, e1, . . ., en. Then the
quadruples (fn, gn, f

∗
n, g
∗
n), (fn+1, gn+1, f

∗
n+1, g

∗
n+1) coincide outside E and hence it

suffices to show that

(3.10)

∫
E

U (fn, gn, f
∗
n, g
∗
n) dµ ≥

∫
E

U
(
fn+1, gn+1, f

∗
n+1, g

∗
n+1

)
dµ.

But fn, gn, f∗n and g∗n are constant on E, because of the structure of the simple
basis e. Denoting the corresponding values by x, y, z and w, we see that |x| ≤ z
and |y| ≤ w. By 1◦, we have

U
(
fn+1, gn+1, f

∗
n+1, g

∗
n+1

)
= U (fn+1, gn+1, f

∗
n, g
∗
n) on E,

which allows us to transform the previous estimate into

1

µ(E)

∫
E

U(x+ an+1en+1, y + εn+1an+1en+1, z, w)dµ ≤ U(x, y, z, w).

This inequality follows immediately from 3◦, since en+1 is a generalized Haar func-
tion (see the second equation in (2.1)). Next, assume that en+1 is of the second type,
i.e. en+1 = cχEn+1 +ψn+1, for appropriate c 6= 0, En+1 and ψn+1. Let E denote the
support of en+1. Again, the quadruples (fn, gn, f

∗
n, g
∗
n), (fn+1, gn+1, f

∗
n+1, g

∗
n+1) co-

incide outside E; furthermore, U(fn, gn, f
∗
n, g
∗
n) = 0 on En+1, see (3.7). Therefore,

(3.9) reduces to

(3.11)

∫
E\En+1

U (fn, gn, f
∗
n, g
∗
n) dµ ≥

∫
E

U
(
fn+1, gn+1, f

∗
n+1, g

∗
n+1

)
dµ.
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The right-hand side of this inequality equals∫
En+1

U(c, εn+1c, c, c)dµ+

∫
E\En+1

U
(
fn + ψn+1, gn + εn+1ψn+1, f

∗
n+1, g

∗
n+1

)
dµ

= µ(En+1)U(c, εn+1c, c, c) +

∫
E\En+1

U (fn + ψn+1, gn + εn+1ψn+1, f
∗
n, g
∗
n) dµ,

by virtue of 1◦. Applying 4◦, we get the pointwise estimate

U (fn + ψn+1, gn + εn+1ψn+1, f
∗
n, g
∗
n) ≤U (fn, gn, f

∗
n, g
∗
n)

− |ψn+1|
c

U (c, εn+1c, c, c) .

By (3.8), we have the inequality U(c, εn+1c, c, c) ≤ 0. Moreover, ||ψn+1||1 ≤
cµ(En+1), which follows from the form of en+1. This gives∫

E\En+1

|ψn+1|
c

U(c, εn+1c, c, c)dµ ≥ µ(En+1)U(c, εn+1c, c, c).

Combining the above facts yields (3.11) and thus the sequence(∫
Ω

U (fn, gn, f
∗
n, g
∗
n) dµ

)
n≥0

is nonincreasing. In consequence, by 2◦, we obtain that for any n ≥ 0,∫
Ω

V (fn, gn, f
∗
n, g
∗
n) dµ ≤

∫
Ω

U (fn, gn, f
∗
n, g
∗
n) dµ ≤

∫
Ω

U (f0, g0, f
∗
0 , g
∗
0) dµ.

It remains to note that f∗0 = g∗0 = |f0| = |g0| and use (3.8) to get the desired
estimate (3.2). �

A very interesting fact is that the implication of the above theorem can be
reversed. For a given measurable space (Ω,F , µ) with µ(Ω) ≥ 1, we let E(Ω,F , µ)
denote the family of all simple bases (ek)k≥0 of L1(Ω,F , µ) such that e0 is the
characteristic function of a set of measure 1. Of course, this family is nonempty.
Next, for a given e ∈ E(Ω,F , µ) and x, y ∈ R, letM(x, y, e) be the class of all pairs
(f, g) of functions which admit the expansions

f = xe0 +

n∑
k=1

anen, g = ye0 +

n∑
k=1

εnanen

for some n and some sequences a1, a2, . . . , an ∈ R, ε1, ε2, . . . , εn ∈ {−1, 1}.
Define U0 : D → R ∪ {∞} by the formula

(3.12) U0(x, y, z, w) = sup

{∫
Ω

V (f, g, f∗ ∨ ze0, g
∗ ∨ we0)dµ

}
,

where the supremum is taken over all measurable spaces (Ω,F , µ) with µ(Ω) ≥ 1,
all e ∈ E(Ω,F , µ) and all (f, g) ∈M(x, y, e).

Theorem 3.2. If the inequality (3.2) is valid, then the function U0 belongs to the
class U(V ).

Proof. The condition 1◦ follows from the pointwise bounds f∗ ≥ |f0| = |x|e0,
g∗ ≥ |g0| = |y|e0, which imply that

f∗ ∨ ze0 = f∗ ∨ ((|x| ∨ z)e0), g∗ ∨ we0 = g∗ ∨ ((|y| ∨ w)e0).
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To prove 2◦, let us compute the integral in (3.12) for n = 0 and some e ∈ E(Ω,F , µ).
Since e0 is the indicator function of a set of measure one, the integral equals
V (x, y, |x| ∨ z, |y| ∨ w) = V (x, y, z, w), by (3.1). This implies the desired majoriza-
tion. To show 3◦, pick x, y, z, w, ε, α1, α2, t1 and t2 as in the statement. Take
two bases e1 ∈ E(Ω1,F1, µ1), e2 ∈ E(Ω2,F2, µ2) and two pairs (f1, g1), (f2, g2) of
functions which have the following finite expansions in e1 and e2:

(3.13) f i = (x+ ti)e
i
0 +

n∑
k=1

aine
i
n, gi = (y + εti)e

i
0 +

n∑
k=1

εina
i
ne
i
n

(we may assume that the length of the expansion is the same for both pairs, enlarg-
ing one of them if necessary). Suppose that Ω1 and Ω2 are disjoint and let us splice
the measure spaces (Ωi,F i, µi) into one space (Ω,F , µ), with Ω = Ω1 ∪ Ω2, F =
σ(F1,F2) and µ(A1 ∪A2) = α1µ

1(A1) + α2µ
2(A2) for all Ai ∈ F i, i = 1, 2. Next,

we splice e1 and e2 into one base e ∈ E(Ω,F , µ), by putting e0 = e1
0χΩ1 + e2

0χΩ2 ,
e1 = 1

2α
−1
1 e1

0χΩ1 − 1
2α
−1
2 e2

0χΩ2 and, for k ≥ 1,

e2k = α−1
1 e1

kχΩ1 , e2k+1 = α−1
2 e2

kχΩ2 .

Clearly, this new sequence forms a simple basis of L1(Ω,F , µ). Furthermore, e0 is
the indicator function of a certain set of measure 1, so e ∈ E(Ω,F , µ). Using (3.13),
it is easy to check that the functions

(3.14) f = f1χΩ1 + f2χΩ2 , g = g1χΩ1 + g2χΩ2

admit the following expansions in the basis e:

f = xe0 + 2α1t1e1 +

n∑
k=1

(
α1a

1
ke2k + α2a

2
ke2k+1

)
,

g = ye0 + 2α1εt1e1 +

n∑
k=1

(
ε1
kα1a

1
ke2k + ε2

kα2a
2
ke2k+1

)
.

Consequently, by the definition of U and the formula (3.14) for f and g, we have

U0(x, y, z, w) ≥
∫

Ω

V (f, g, f∗ ∨ ze0, g
∗ ∨ we0)dµ

= α1

∫
Ω1

V (f1, g1, (f1)∗ ∨ ze1
0, (g

1)∗ ∨ we1
0)dµ1

+ α2

∫
Ω2

V (f2, g2, (f2)∗ ∨ ze2
0, (g

2)∗ ∨ we2
0)dµ2.

It remains to take the supremum over all triples (Ωi,F i, µi), all n and all pairs
(f i, gi) to get (3.5). Finally, to establish (3.6), we may assume that t1, t2 6= 0. Pick
two bases ei ∈ E(Ωi,F i, µi) with (Ωi,F i, µi) as previously and two pairs f i, gi of
functions of the form

f1 = (x+ t1)e1
0 +

n∑
k=1

a1
ne

1
n, g1 = (y + εt1)e1

0 +

n∑
k=1

ε1
na

1
ne

1
n,

f2 = t2e
2
0 +

n∑
k=1

a2
ne

2
n, g2 = εt2e

2
0 +

n∑
k=1

ε2
na

2
ne

2
n.
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This time we use the splicing

Ω = Ω1 ∪ Ω2, F = σ(F1,F2), µ(A1 ∪A2) = µ1(A1) +
|t1|
|t2|

µ2(A2),

for all A1 ∈ F1, A2 ∈ F2. Furthermore, we put e0 = e1
0χΩ1 , e1 = 1

2e
1
0χΩ1 + t2

2t1
e2

0χΩ2

and, for k ≥ 1, we let

e2k = e1
kχΩ1 and e2k+1 =

t2
t1
e2
kχΩ2 .

Then it is straightforward to check that e is a simple basis, which follows immedi-
ately from the simplicity of e1 and e2. The only thing which needs to be verified
is whether e1 satisfies the condition (ii) of Definition 2.3. But this amounts to
checking that ∣∣∣∣∣∣∣∣12e1

0χΩ1

∣∣∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣∣∣ t22t1

e2
0χΩ2

∣∣∣∣∣∣∣∣
1

,

which is evident: in fact, both sides are equal. Now, we easily see that the functions
f , g given by f = f1χΩ1 + f2χΩ2 and g = g1χΩ1 + g2χΩ2 have the expansions

f = xe0 + 2t1e1 +

n∑
k=1

(
a1
ke2k +

t1a
2
k

t2
e2k+1

)
,

g = ye0 + ε · 2t1e1 +

n∑
k=1

(
ε1
ka

1
ke2k +

ε2
kt1a

2
k

t2
e2k+1

)
.

Therefore, by the definition of U0, we obtain

U0(x, y, z, w) ≥
∫

Ω

V (f, g, f∗ ∨ ze0, g
∗ ∨ we0)dµ

=

∫
Ω1

V (f1, g1, (f1)∗ ∨ ze1
0, (g

1)∗ ∨ we1
0)dµ1

+
|t1|
|t2|

∫
Ω2

V (f2, g2, (f2)∗ ∨ 0, (g2)∗ ∨ 0)dµ2.

However,

V (f2, g2, (f2)∗ ∨ 0, (g2)∗ ∨ 0) = V (f2, g2, (f2)∗ ∨ |f2
0 |, (g2)∗ ∨ |g2

0 |)
= V (f2, g2, (f2)∗ ∨ |t2|e2

0, (g
2)∗ ∨ |t2|e2

0),

so it suffices to take supremum over all (f i, gi) ∈ L1(Ωi,F i, µi) to obtain (3.6).
�

We conclude this section by two important observations.

Remark 3.3. (i) If one of the maximal functions does not appear in the estimate
under investigation, then we may consider U , V defined on the appropriate three-
dimensional domain. Simply remove the variable corresponding to the non-existing
maximal function.

(ii) In certain cases, the function U0 inherits some crucial properties from the
function V , which in turn simplifies the search for its explicit formula. For example,
if V is homogeneous of order p, then so is U0. To see this, pick arbitrary (Ω,F , µ)
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with µ(Ω) ≥ 1, e ∈ E(Ω,F , µ), (f, g) ∈ M(x, y, e) and λ > 0. Then (λf, λg) ∈
M(λx, λy, e) and hence

U0(λx, λy, λz, λw) ≥
∫

Ω

V
(
λf, λg, λ(f∗ ∨ ze0), λ(g∗ ∨ we0)

)
dµ

= λp
∫

Ω

V
(
f, g, f∗ ∨ ze0, g

∗ ∨ we0

)
dµ.

Taking the supremum over all the parameters gives the inequality

U0(λx, λy, λz, λw) ≥ λpU0(x, y, z, w) for (x, y, z, w) ∈ D,
and switching from λ to λ−1 yields the reverse. Using a similar reasoning one can
show that if V satisfies the symmetry condition

V (x, y, z, w) = V (−x, y, z, w) = V (x,−y, z, w) for all (x, y, z, w) ∈ D,
then the same is true for U0.

4. Proof of (1.4) and (1.5)

As an application of the method described in the previous section, let us present
the proofs of the maximal estimates formulated in the Introduction. Obviously,
it suffices to focus on the L1-inequality (1.4); then the weak-type bound follows
immediately by the use of Chebyshev’s inequality. In view of Lebesgue’s monotone
convergence theorem and Fatou’s lemma, it suffices to prove that for any monotone
basis e of L1(Ω,F , µ), any n and all a0, a1, a2, . . . an ∈ R, ε0, ε1, ε2, . . . εn ∈
{−1, 1}, we have∫

Ω

∣∣∣∣∣
n∑
k=0

εkakek(ω)

∣∣∣∣∣ dµ(ω) ≤ β
∫

Ω

sup
0≤m≤n

∣∣∣∣∣
m∑
k=0

akek(ω)

∣∣∣∣∣dµ(ω).

This can be rewritten in the more compact form

(4.1)

∫
Ω

V (fn, gn, f
∗
n)dµ ≤ 0,

where V (x, y, z) = |y| − β(|x| ∨ z) and fn, gn and f∗n are as previously. Thus the
problem is of the form (3.2) and hence it can be treated by means of Theorems 3.1
and 3.2.

To introduce the corresponding special function U , first we define an auxiliary
object. Let u : [−1, 1]× R→ R be given by

u(x, y) =

{
2

β−1

[
−|x| − 1

3 −
1
3 (2− 2|x| − |y|)(1− |x|+ |y|)1/2

]
if |y| < |x|,

2
β−1

[
|y| − 3 + (2− |x|) exp

(
|x|−|y|

2

)]
if |y| ≥ |x|.

It is not difficult to check that the function u is of class C1: the partial derivatives
match appropriately at the diagonals {(x, y) ∈ [−1, 1]×R : |x| = |y|}. Furthermore,
the function u enjoys the following properties.

Lemma 4.1. (i) The function u(1, ·) : y 7→ u(1, y) is convex on R.
(ii) The function u is concave along any line segment of slope ±1 contained in

[−1, 1]× R.
(iii) For any (x, y) ∈ [−1, 1]× R we have

(4.2) u(x, y) ≥ |y| − β.
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Proof. (i) The convexity is evident on (−∞,−1], [−1, 1] and [1,∞). Furthermore,
the function u(1, ·) is of class C1 on R.

(ii) Since u is of class C1 and satisfies

(4.3) u(x, y) = u(x,−y) = u(−x, y) for all (x, y) ∈ [−1, 1]× R,
it suffices to show that

uxx(x, y)± 2uxy(x, y) + uyy(y, y) ≤ 0

for (x, y) ∈ (0, 1) × (0,∞) such that x 6= y. It is clear from the definition that
uxx+2uxy+uyy = 0 on (0, 1)× (0,∞). Furthermore, a little calculation shows that

uxx(x, y)− 2uxy(x, y) + uyy(x, y) =

{
− 2y
β−1 (1− x+ y)−3/2 if 0 < y < x,

− 2x
β−1 exp

(
x−y

2

)
if 0 < x < y

and both expressions are obviously nonpositive.
(iii) The function (x, y) 7→ |y|−β is convex, so by (ii) and the symmetry condition

(4.3), it suffices to prove the majorization (4.2) only for x = 1 and y > 0. However,
by (i), the function F (y) = u(1, y)− y+β is convex on (0,∞); it suffices to observe
that F (β) = F ′(β) = 0 to complete the proof. �

Now, for any (x, y) ∈ R2 and any z ≥ 0 such that |x| ∨ z > 0, we define

(4.4) U(x, y, z) = (|x| ∨ z)u
(

x

|x| ∨ z
,

y

|x| ∨ z

)
and set U(0, 0, 0) = 0. This is the special function corresponding to the inequality
(1.4), which, in view of (4.1) and Theorem 3.1, can be deduced from the following
statement.

Theorem 4.2. The function U belongs to U(V ).

Proof. We need to verify the conditions 1◦-4◦. The first of them is clear in view of
the definition of U . The majorization 2◦ follows immediately from (4.2) and (4.4).
The main technical difficulty lies in proving the conditions 3◦ and 4◦. To handle
these, fix ε ∈ {−1, 1} and a point (x, y, z) ∈ R × R × (0,∞) such that z ≥ |x|.
Introduce the function Φ = Φx,y,z,ε : R → R, given by Φ(t) = U(x + t, y + εt, z).
Let us prove that there is A = A(x, y, z, ε) ∈ [−2/(β − 1), 2/(β − 1)] such that

(4.5) Φ(t) ≤ Φ(0) +At for all t ∈ R.
This will clearly yield (3.5); furthermore, it will imply that for all x, y, z, t1, t2, ε
as in the formulation of 4◦,

U(x+ t1, y + εt1, z) ≤ Φ(0) +At1

≤ U(x, y, z) +
2

β − 1
|t1|

= U(x, y, z)− |t1|
|t2|

U(t2, εt2, |t2|, |t2|),

which is (3.6). Thus, all we need is to prove (4.5). By homogeneity, we may and
do assume that z = 1. Furthermore, we have Φx,y,z,ε = Φx,−y,z,−ε, which allows us
to consider the case ε = 1 only. Finally, by the identity Φx,y,z,1(t) = Φ−x,−y,z,1(t),
it suffices to establish (4.5) for t ≤ 0. After all these reductions, we see that (4.5)
will follow if we show that

(4.6) Φ is concave on [−1− x, 1− x],
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(4.7) Φ is convex on (−∞,−1− x),

(4.8) lim
t→−∞

Φ′(t+) ≥ 2

β − 1

and

(4.9) Φ′(−1− x+) ≤ 2

β − 1
, Φ′(1− x−) ≥ − 2

β − 1
.

However, (4.6) is a consequence of the part (ii) of Lemma 4.1. The prove the second
condition, fix α1, α2 > 0 satisfying α1 + α2 = 1, choose t1, t2 ∈ (−∞,−1− x] and
let t = α1t1 + α2t2. We have

α1Φ(t1) + α2Φ(t2) = α1U(x+ t1, y + t1, 1) + α2U(x+ t2, y + t2, 1)

= α1U(x+ t1, y + t1, |x+ t1|) + α2U(x+ t2, y + t2, |x+ t2|)

= α1|x+ t1|u
(
−1,

y + t1
|x+ t1|

)
+ α2|x+ t2|u

(
−1,

y + t2
|x+ t2|

)
.

Using the convexity of u(1, ·), this can be bounded from below by

|x+ t|u
(

1,
y + t

|x+ t|

)
= Φ(t),

which gives (4.7). Using this convexity, we compute that

lim
t→−∞

Φ′(t+) = lim
t→−∞

Φ(t)

t
= lim
t→−∞

|x+ t|u
(

1, y+t
|x+t|

)
t

= −u(1, 1) =
2

β − 1

and hence (4.8) holds true. Finally, we see that

Φ′(−1− x) =


2

β−1 if y − x ≥ 1,
2

β−1 (1− (x− y + 1)1/2) if y − x ∈ [0, 1),
2

β−1

(
−1 + exp

(
y−x

2

))
if y − x < 0.

does not exceed 2/(β − 1), which is the first estimate in (4.9). This also yields the
second bound, since

Φ′(1− x) = Φ′x,y,1,1(1− x) = −Φ′−x,−y,1,1(−1 + x) ≥ − 2

β − 1
.

The proof is complete. �

Finally, let us state here the following interesting observation.

Remark 4.3. The function U studied above does not coincide with the function
U0 corresponding to the problem, but we have U = U0 on the large part of the set
D. Namely, it can be shown that U0 is given by U0(0, 0, 0) = 0 and, for |x| ∨ z > 0,

U0(x, y, z) = (|x| ∨ z)u0

(
x

|x| ∨ z
,

y

|x| ∨ z

)
,

where u0(x, y) (for (x, y) ∈ [−1, 1]× R) equals
2

β−1

[
−|x| − 1

3 −
1
3 (2− 2|x| − |y|)(1− |x|+ |y|)1/2

]
if |y| < |x|,

2
β−1

[
|y| − 3 + (2− |x|) exp

(
|x|−|y|

2

)]
if |x| ≤ |y| ≤ |x|+ β − 1,

|y| − β + 3−β
β−1 (1− |x|) exp(|x| − |y|+ β − 1) if |y| ≥ |x|+ β − 1.
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5. Sharpness

Of course, it suffices to prove that the constant β is the best in the weak-type
inequality (1.5). This can be obtained by the construction of appropriate exam-
ples (see Burkholder [5]), but this approach involves quite elaborate analysis and
computations. We take the opportunity to present a completely different method,
based on Theorem 3.2, which has the advantage of being much simpler.

So, suppose that β0 is the best constant in the estimate (1.5). Then for any n,
any coefficients a0, a1, . . . ∈ R and any signs ε0, ε1, ε2, . . . we have

β µ

(∣∣∣∣∣
n∑
k=0

εkakek

∣∣∣∣∣ ≥ β
)
≤ β0

∫
Ω

sup
0≤m≤n

∣∣∣∣∣
m∑
k=0

akek

∣∣∣∣∣ dµ.
This is equivalent to the estimate∫

Ω

V (fn, gn, f
∗
n)dµ ≤ 0,

where V : D → R is given by V (x, y, z) = βχ{|y|≥β}− β0(|x| ∨ z). By Theorem 3.2,
the function

U0(x, y, z) = sup

{∫
Ω

V (fn, gn, f
∗
n ∨ ze0)dµ

}
,

with the supremum taken over appropriate parameters, belongs to the class U(V ).
Since V (x, y, z) = V (−x, y, z) = V (x,−y, z) for all x, y, z, the function U0 inherits
this property. Introduce the notation B(y) = U0(1, y, 1) and A(y) = U0(0, y, 1).
For the sake of convenience, let us divide the reasoning into few parts.

Step 1. First we show that

(5.1) A(0) ≥ B(1).

This follows immediately from 3◦, applied to x = y = 0, z = 1, ε = 1, t1 = 1
and t2 = −1 (note that then we must take α1 = α2 = 1/2, so that the conditions
α1 + α2 = 1, α1t1 + α2t2 = 0 are satisfied).

Step 2. The next step is to prove that

(5.2) A(y − 1) ≥ B(y) +B(1)

(
1− exp

(
1− y

2

))
for all y ≥ 1. To do this, fix δ > 0 and apply 4◦ with x = z = 1, y, ε = −1, t1 = −δ
and t2 = 1. As the result, we obtain

U0(1, y, 1) ≥ U0(1− δ, y + δ, 1) + δU0(1,−1, 1) = U0(1− δ, y + δ, 1) + δU0(1, 1, 1).

Next, use the property 3◦ with x = 1 − δ, y + δ, z = 1, ε = 1, t1 = δ − 1, t2 = δ
(then we are forced to take α1 = δ and α2 = 1− δ). We arrive at

U0(1− δ, y + δ, 1) ≥ δU0(0, y + 2δ − 1, 1) + (1− δ)U0(1, y + 2δ, 1)

and combining this with the preceding estimate yields

(5.3) B(y) ≥ (1− δ)B(y + 2δ) + δA(y + 2δ − 1) + δB(1).

Using a similar reasoning, we show that

(5.4) A(y + 2δ − 1) ≥ δ

1 + δ
B(y) +

δ

1 + δ
B(y + 2δ) +

1− δ
1 + δ

A(y − 1).
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Indeed, it suffices to combine the following inequalities: first,

A(y + 2δ − 1) ≥ 1

1 + δ
U0(δ, y + δ − 1, 1) +

δ

1 + δ
B(y + 2δ),

coming from 3◦ with x = 0, y + 2δ, z = 1, ε = −1, t1 = δ, t2 = −1; second,

U0(δ, y + δ − 1, 1) ≥ (1− δ)A(y − 1) + δB(y),

a consequence of 3◦ with x = δ, y + δ − 1, z = 1, ε = 1, t1 = −δ and t2 = 1− δ.
Now multiply both sides of (5.3) by 1/(1 + δ) and add it to (5.4). After some

manipulations, we get

A(y + 2δ − 1)−B(y + 2δ)−B(1) ≥ (1− δ)(A(y − 1)−B(y)−B(1)).

Therefore, by induction, we see that for any nonnegative integer N ,

A(y + 2Nδ − 1)−B(y + 2Nδ)−B(1) ≥ (1− δ)N (A(y − 1)−B(y)−B(1)).

Now fix s > 1 and set y = 1, δ = (s− 1)/(2N). Letting N →∞ yields

A(s− 1)−B(s)−B(1) ≥ (A(0)− 2B(1)) exp
1− s

2
,

and using (5.1) we arrive at (5.2).

Step 3. Now we come back to (5.3) and insert the bound (5.2) there, obtaining

B(y) ≥ B(y + 2δ) + 2δB(1)− δB(1) exp
1− y − 2δ

2
.

By induction, we get, for any nonnegative integer N ,

B(y) ≥ B(y + 2Nδ) + 2NδB(1)− δB(1)

N∑
k=1

exp

(
1− y − 2kδ

2

)
= B(y + 2Nδ) + 2NδB(1)− δB(1)

1− e−Nδ

1− e−δ
exp

(
1− y − 2δ

2

)
.

As previously, fix s > 1 and set y = 1, δ = (s− 1)/(2N). Letting N →∞ gives

B(1)

(
3− s− exp

(
1− s

2

))
≥ B(s)

and hence B(β) ≤ 0 (see (1.6)). Since U0 majorizes V , we obtain that

β − β0 = V (1, β, 1) ≤ U0(1, β, 1) = B(β) ≤ 0,

that is, β0 ≥ β. This shows that the constant β is indeed the best possible.
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