
INEQUALITIES FOR MARTINGALE TRANSFORMS AND

RELATED CHARACTERIZATIONS OF HILBERT SPACES

ADAM OSȨKOWSKI

Abstract. Suppose that f is a martingale taking values in a Banach space

B and g is its transform by a deterministic sequence of numbers in {−1, 1},
such that supn ||gn|| ≥ 1 almost surely. We show that a certain family of
Φ-estimates for f holds true if and only B is a Hilbert space.

1. Introduction

Martingale theory provides insight into the structure of Banach spaces and is a
powerful tool in the study of their properties, as evidenced in the works of many
mathematicians, see e.g. Bourgain [1], Burkholder [6], Figiel [7], Godefroy [8], Mc-
Connell [12], Pisier [13] and references therein. The purpose of this paper is to
investigate the geometry of Banach spaces by means of certain martingale inequal-
ities which, in particular, lead to related characterizations of Hilbert spaces.

We start with introducing the necessary background and notation. Assume that
(B, || · ||) is a real or complex Banach space and let (Ω,F ,P) be a probability space,
equipped with (Fn)n≥0, a nondecreasing sequence of sub-σ-algebras of F . Let
f = (fn)n≥0 be an adapted martingale taking values in B, with the corresponding
difference sequence d = (dn)n≥0 given by d0 = f0 and dn = fn − fn−1 for n ≥ 1.
For any predictable sequence v = (vn)n≥0, we say that g is a transform of f by
v, if gn =

∑n
k=0 vkdk for all n ≥ 0. Here by predictability we mean that each vn

is measurable with respect to the algebra F(n−1)∨0. In the particular case when
each term vn is deterministic and takes values in {−1, 1}, we will say that g is a
±1-transform of f . We shall use the notation ||f ||p = supn≥0 ||fn||p for the p-th
moment of f (1 ≤ p ≤ ∞) and f∗ = supn≥0 ||fn|| for the maximal function of f . If
f converges almost everywhere, then its pointwise limit will be denoted by f∞. We
say that f is simple, if for any n the term fn takes only a finite number of values
and there is N such that fN = fN+1 = fN+2 = . . . = f∞ with probability 1.

A Banach space B is UMD (unconditional for martingale differences), if for some
(equivalently, for all) p ∈ (1,∞) there is a finite constant β = βp such that

||g||p ≤ β ||f ||p
for all B-valued martingales f, g such that g is a ±1-transform of f . Here the
filtration must vary as well as the probability space, unless it is assumed to be
nonatomic. There is a beautiful geometric characterization of UMD spaces, due to
Burkholder [3]. A function ζ : B × B → R is said to be biconvex if both ζ(x, ·)
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and ζ(·, y) are convex for all x, y ∈ B. Here is a slight modification of the principal
result of [3] (see also [2]).

Theorem 1.1. A Banach space B is UMD if and only if there is a biconvex function
ζ : B× B→ R such that ζ(0, 0) > 0 and

(1.1) ζ(x, y) ≤ ||x+ y|| if ||x|| = ||y|| = 1.

A biconvex function ζ which satisfies (1.1) must also satisfy ζ(0, 0) ≤ 1. Indeed,
if ||x|| = 1, then ζ(x, x) ≤ 2, ζ(x,−x) ≤ 0 and ζ(0, 0) ≤ [ζ(x, 0) + ζ(−x, 0)]/2, so

ζ(0, 0) ≤
[
ζ(x, x) + ζ(x,−x) + ζ(−x, x) + ζ(−x,−x)

]
/4 ≤ 1.

This bound can be attained. If B is a Hilbert space with the inner product 〈·, ·〉 and
ζ(x, y) = 1+Re〈x, y〉, then ζ is a biconvex function satisfying (1.1) and ζ(0, 0) = 1.
On the other hand, if B is UMD, but not a Hilbert space, then ζ(0, 0) < 1, as shown
by Burkholder [4] and Lee [10]. This fact has a nice probabilistic interpretation (see
Theorem 2.1 and Theorem 3.2 in [3]).

Theorem 1.2. The following conditions are equivalent.
(i) For any B-valued martingale f , if there is a ±1-transform g of f which

satisfies g∗ ≥ 1 almost surely, then ||f ||1 ≥ 1/2.
(ii) B is isometric to a Hilbert space.

What can be said if we replace ||f ||1 above by the p-th moment, or more generally,
by the Orlicz norm of f? A partial answer (the implication (ii)⇒(i)) is contained in
the following statement. Suppose that Φ is an increasing convex function on [0,∞)
such that Φ is twice differentiable on (0,∞) and Φ(0) = Φ′(0+) = 0.

Theorem 1.3. Suppose that f is a Hilbert-space-valued martingale for which there
exists a ±1-transform g satisfying g∗ ≥ 1 almost surely.

(i) If Φ′ is concave, then

(1.2) sup
n

EΦ(||fn||) ≥
1

2

∫ ∞
0

Φ(t)e−tdt

and the constant on the right is the best possible, already in the real case.
(ii) If Φ′ is convex, then

(1.3) sup
n

EΦ(||fn||) ≥ Φ(1)

and the constant on the right is the best possible, already in the real case.

For example, if we take Φ(t) = tp, then for f as in the theorem we have ||f ||pp ≥
Γ(p+ 1)/2 for 1 ≤ p ≤ 2, ||f ||p ≥ 1 for p ≥ 2, and both estimates are sharp.

The first part of the theorem above is due to Burkholder; the proof in [5] concerns
real martingales, but it can be easily transfered to the Hilbert setting. The second
assertion is probably well known but, as we have not found any reference, we shall
include an easy proof for the sake of completeness.

Motivated by (1.2) and (1.3), we establish the following result on UMD spaces
(consult [3] and, for the reverse statement concerning Paley-Walsh martingales, see
the proof of Theorem 3.1 in [4]).

Theorem 1.4. Let Φ be as above and suppose that there is cΦ > 0 such that the
following holds: we have supn EΦ(||fn||) ≥ cΦ for any B-valued f which admits a
±1-transform g with g∗ ≥ 1 almost surely. Then B is a UMD space.
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By the previous theorem, if Φ′ is concave or convex, then the largest possible
choice for cΦ is given by the right-hand side of (1.2) or (1.3). If Φ is nontrivial (see
below), this choice characterizes Hilbert spaces in the following sense.

Theorem 1.5. Assume that B is not a Hilbert space and let Φ be as above.
(i) If Φ′ is concave and Φ 6≡ 0, then there is a B-valued martingale f and its

±1-transform g satisfying g∗ ≥ 1 almost surely, but

(1.4) sup
n

EΦ(|fn|) <
1

2

∫ ∞
0

Φ(t)e−tdt.

(ii) If Φ′ is convex and Φ′(1) > 0, then there is a B-valued martingale f and its
±1-transform g satisfying g∗ ≥ 1 almost surely, but

(1.5) sup
n

EΦ(|fn|) < Φ(1).

Obviously, neither of the conditions Φ 6≡ 0, Φ′(1) > 0 can be removed, because
the right-hand sides of (1.4), (1.5) must be strictly positive.

The results announced above will be proved in the next section. Surprisingly,
parts (i) and (ii) of Theorem 1.5 require completely different arguments. The proof
of the first part rests on Burkholder’s biconvex characterization of Hilbert spaces,
while the second is dealt with directly, using some basic facts from convex geometry.

2. Proofs

2.1. Proof of (1.3). Of course, the sharpness of the estimate is clear. Pick f , g as
in the statement and note that we may assume that both martingales are simple.
In addition, we may restrict ourselves to f satisfying supn EΦ(||fn||) < ∞, since
otherwise there is nothing to prove. If Φ is nonzero (as we may assume), this implies
that f , and hence also g, are bounded in L2: by the convexity of Φ′, there are a > 0
and b ∈ R such that Φ(x) ≥ ax2 + b for all x ≥ 0.

Let ε ∈ (0, 1) and consider a stopping time τ = inf{n ≥ 0 : ||gn|| ≥ 1− ε}. Then
τ <∞ because g∗ ≥ 1 almost surely. Next, for any integer n we have E||fτ∧n||2 =
E||gτ∧n||2, since B is a Hilbert space. Observe that the function x 7→ Φ(

√
x), x ≥ 0,

is convex: its second derivative at x > 0 equals x−3/2(Φ′′(
√
x)
√
x − Φ′(

√
x))/4,

which is nonnegative. Therefore Φ(
√
s)− Φ(1) ≥ 1

2Φ′(1)(s− 1) for all s ≥ 0 and

Φ(1) = Φ(1) +
1

2
Φ′(1)

(
||fτ∧n||22 − ||gτ∧n||22

)
= E

[
Φ(1) +

1

2
Φ′(1)(||fτ∧n||2 − 1) +

1

2
Φ′(1)(1− ||gτ∧n||2)

]
≤ EΦ(||fτ∧n||) + Φ′(1)(1− ||gτ∧n||22) ≤ sup

k
EΦ(||fk||) + Φ′(1)(1− ||gτ∧n||22),

where the latter bound follows from Jensen inequality. Let n → ∞ to obtain
Φ(1) ≤ supn EΦ(||fn||) + 2Φ′(1)ε and take ε→ 0 to get the claim.

2.2. A zigzag martingale and a biconvex function. Suppose that Z = (Z0,
Z1, Z2, . . .) is a martingale with values in B × B and let us write Zn = (Xn, Yn),
where both Xn and Yn have their values in B. We say that Z is zigzag if for any
positive integer n, either Xn+1 − Xn ≡ 0 or Yn+1 − Yn ≡ 0. For example, if f is
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a B-valued martingale with difference sequence d and g is a transform of f by a
sequence v of numbers in {−1, 1}, then

Xn = fn + gn =

n∑
k=0

(1 + vk)dk, Yn = fn − gn =

n∑
k=0

(1− vk)dk,

n = 0, 1, 2, . . ., define a zigzag martingale Z. For any (x, y) ∈ B × B, let Z(x, y)
denote the class of all simple zigzag martingales Z = (X,Y ) satisfying Z0 ≡ (x, y)
and ||X∞ − Y∞|| ≥ 2 almost surely. Introduce the function η : B× B→ R by

η(x, y) = inf
{
EΦ(||X∞ + Y∞||/2) : Z ∈ Z(x, y)

}
.

Using the “ splicing argument ”of Burkholder (see page 77 in [2]), one shows that η
is a biconvex function. For a fixed odd integer N = 2n + 1, a number δ ∈ (0, 1/2)
and a pair (x, y) ∈ B × B with ||x|| = ||y|| = 1, we shall construct an important
zigzag martingale Z = (Z0, Z1, Z2, . . . , ZN−1, ZN , ZN , . . .) ∈ Z(x, y). Consider
two sequences (rk)k≥1, (sk)k≥1 of independent centered random variables such that

r2k+1 ≡ 0, P(s2k+1 = −x− y) = 1− P(s2k+1 = δ(x+ y)) =
δ

1 + δ
,

s2k+2 ≡ 0, P(r2k+2 = (x+ y)(δ − 1)) = 1− P(r2k+2 = δ(x+ y)) = δ

for k = 0, 1, 2, . . ., and let ε be an independent Rademacher variable. Define
τ = inf{k ≥ 1 : rk = (x+ y)(δ − 1) or sk = −x− y},

Zk =
(
x+ r1 + r2 + . . .+ rτ∧k, y + s1 + s2 + . . .+ sτ∧k

)
for k = 0, 1, 2, . . . , N − 1, and, for k ≥ N ,

Zk =
(
x+ r1 + . . .+ rτ∧(N−1), y + s1 + . . .+ sτ∧(N−1) + ε(x+ y)1{τ≥N}

)
.

To gain some intuition about Z, observe that Z starts from (x, y); at the first step,
it moves either to (x,−x) (and stays there forever), or to (x, y + δ(x + y)). If the
second possibility occurs, then Z moves either to (δ(x+ y)− y, y + δ(x+ y)) (and
stops), or to (x+δ(x+y), y+δ(x+y)). If the latter happens, then the pattern of the
movement is repeated; in particular, after 2k steps (k ≤ n), the process reaches the
set F = {(u, v) ∈ B×B : ||u−v|| = 2} or takes the value (x+kδ(x+y), y+kδ(x+y)).
Finally, at the N -th move, if ||XN−1 − YN−1|| = ||X2n − Y2n|| 6= 2, then ZN goes
to (x + nδ(x + y),−x + nδ(x + y)) or to (x + nδ(x + y), x + 2y + nδ(x + y)), and
both points belong to F . Consequently, we see that Z ∈ Z(x, y) and τ ∧N is the
first moment when Z enters the set F .

Directly from the probabilities defining the distribution of the sequences (rk)k≥1

and (sk)k≥1, we infer that P(||X∞ + Y∞|| = 0) = P(τ = 1) = δ/(1 + δ),

P(||X∞ + Y∞|| = 2kδ||x+ y||) = P(τ ∈ {2k, 2k + 1}) =
2δ

(1 + δ)2
·
(

1− δ
1 + δ

)k−1

for k = 1, 2, . . . , n− 1, and

P(||X∞ + Y∞|| = 2nδ||x+ y||) = P(τ ≥ 2n) =
1

1 + δ

(
1− δ
1 + δ

)n−1

.

In consequence, we have

η(x, y) ≤
n−1∑
k=1

Φ(nδ||x+y||)· 2δ

(1 + δ)2

(
1− δ
1 + δ

)k−1

+Φ(nδ||x+y||)· 1

1 + δ

(
1− δ
1 + δ

)n−1

.



MARTINGALE INEQUALITIES 5

Now we treat the right-hand side as a Riemann sum and let δ → 0, n→∞ to get

(2.1) η(x, y) ≤
∫ ∞

0

Φ(t||x+ y||/2)e−tdt ≤ ||x+ y||
2

∫ ∞
0

Φ(t)e−tdt.

The latter bound follows from the observation that the function

ψ(t) = Φ

(
t||x+ y||

2

)
− ||x+ y||

2
Φ(t), t ≥ 0,

is nonpositive. Indeed, ψ(0) = 0 and

ψ′(t) =
||x+ y||

2
[Φ′(t||x+ y||/2)− Φ′(t)] ≤ 0,

because ||x+ y|| ≤ ||x||+ ||y|| = 2.

Proof of Theorem 1.4. Observe that we have

(2.2) η(0, 0) ≥ cΦ.
To prove this, pick Z = (X,Y ) ∈ Z(0, 0) and note that g = (X − Y )/2 is a
±1-transform of f = (X + Y )/2. Since ||X∞ − Y∞|| ≥ 2 almost surely, we have
P(g∗ ≥ 1) = 1 and hence, by the assumptions of Theorem 1.4,

EΦ(||X∞ + Y∞||/2) ≥ cΦ > 0.

This yields (2.2), since Z ∈ Z(0, 0) was arbitrary. Now let ζ : B × B → R be
given by ζ(x, y) = 2η(x, y)/

∫∞
0

Φ(t)e−tdt. Then ζ is a biconvex function satisfying
ζ(0, 0) > 0 and, by (2.1), ζ(x, y) ≤ ||x+y|| for ||x|| = ||y|| = 1. Thus, B is UMD. �

Proof of Theorem 1.5 (i). Suppose that the claim does not hold. Then, using the
same argumentation as previously, we get the following version of (2.2):

η(0, 0) ≥ 1

2

∫ ∞
0

Φ(t)e−tdt.

Thus, the function ζ just defined above not only satisfies (1.1), but also ζ(0, 0) ≥ 1.
In consequence, by Burkholder’s characterization theorem, B is a Hilbert space. �

2.3. Proof of Theorem 1.5 (ii). We shall need the following two well-known
lemmas from the theory of convex bodies (see e.g. Istrǎţescu [9]).

Lemma 2.1. Let B be a two-dimensional real Banach space. Then the norm of B
comes from an inner product if and only if the unit sphere of B is an ellipse.

Lemma 2.2. If C is symmetric (with respect to the origin) closed convex curve
in the plane, then there is a unique ellipse of maximal area inscribed in C. The
maximal ellipse touches C in at least four points which are symmetric pairwise.

We turn to the proof. We may assume that B is a real Banach space of dimension
two. Let SB denote the unit sphere of B and let S0 be the ellipse of maximal area
inscribed in SB, with at least four distinct contact points, symmetric pairwise. We
may take S0 to be the unit circle, applying affine transformation if necessary. Let
| · | be the norm induced by S0 and denote by A, C be two contact points, with no
contact points in the interior of the shorter arc AC. Using rotation and reflection,
we may assume that A = (1, 0) and C = (cos 2θ, sin 2θ) for some θ ∈ (0, π/2). Let
D = s(cos θ, sin θ), where s > 1 is such that ||D|| = 1. Consider the probability
space ([0, 1],B(0, 1),P), where P is the Lebesgue’s measure. For a given 0 < r < 1/2,
define the mean zero B-valued random variable ξ = x+A1[0,r) +C1[r,2r)−D1[2r,1],
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with x = −w(cos θ, sin θ) and w = 2r cos θ + s(2r − 1) ∈ (−s, cos θ). Let f , g
be two B-valued martingales given by f0 = −g0 = x, f1 = f2 = . . . = x + ξ,
g1 = g2 = . . . = −x + ξ. Then g is a transform of f by v = (−1, 1, 1, 1, . . .) and
g1 ∈ {A,C,−D}, so g∗ ≥ 1 almost surely. On the other hand,

sup
n

EΦ(||fn||) = EΦ(||x+ ξ||)

= rΦ(||2x+A||) + rΦ(||2x+ C||) + (1− 2r)Φ(||2x−D||)
≤ rΦ(|2x+A|) + rΦ(|2x+ C|) + (1− 2r)Φ(||2x−D||)

= 2rΦ(
√

1− 4w cos θ + 4w2) + (1− 2r)Φ

(
s+ 2w

s

)
=

w + s

s+ cos θ
Φ(
√

1− 4w cos θ + 4w2) +

(
1− w + s

s+ cos θ

)
Φ

(
s+ 2w

s

)
.

Denoting the right-hand side by G(w), we compute that G(0) = Φ(1) and

G′(0) =
2Φ′(1)(−s2 + 1) cos θ

s(s+ cos θ)
< 0.

This implies supn EΦ(||fn||) < Φ(1) for small w > 0. The claim is proved.
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