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Abstract. The classical di�erential subordination of martingales, introduced by Burkholder in
the eighties, is generalized to the noncommutative setting. Working under this domination, we
establish the strong-type inequalities with the constants of optimal order as p → 1 and p → ∞,
and the corresponding endpoint weak-type (1,1) estimate. In contrast to the classical case, we
need to introduce two di�erent versions of noncommutative di�erential subordination, depending
on the range of the exponents. For the Lp-estimate, 2 ≤ p < ∞, a certain weaker version is
su�cient; on the other hand, the strong-type (p, p) inequality, 1 < p < 2, and the weak-type (1,1)
estimate require a stronger version. As an application, we present a new proof of noncommutative
Burkholder-Gundy inequalities. The main technical advance is a noncommutative version of the
good λ-inequality and a certain summation argument. We expect that these techniques will be
useful in other situation as well.

1. Introduction

Martingale inequalities play a distinguished role in probability theory and have profound appli-
cations in many areas of mathematics, including stochastic analysis, harmonic analysis, functional
analysis and geometry of Banach spaces; we refer to two recent monographs [20, 40] for the clas-
sical martingale theory. The purpose of this paper is to study certain estimates arising in the
context of noncommutative (or quantum) probability. This branch of martingale theory has be-
come a very active area of research in the recent twenty years and many important inequalities
from the classical case have been successfully transferred to the noncommutative setting, often
revealing certain unexpected phenomena. The literature on the subject is very extensive and we
will brie�y mention here several results closely related to those obtained in this work. The paper
[41] of Pisier and Xu is fundamental to the whole theory. The authors introduced there the ab-
stract noncommutative setup, formulated an appropriate form of Burkholder-Gundy inequalities
and established a noncommutative analogue of Stein's inequality. The Doob maximal estimate
was generalized to the noncommutative context by Junge [26] and the appropriate versions of
Burkholder/Rosenthal inequalities were studied by Junge and Xu in [27, 30]. The non-classical
analogue of Gundy's decomposition of a martingale was obtained by Parcet and Randrianantoan-
ina in [38], and the noncommutative version of Davis' decomposition was given by Perrin in [39].
We should mention here the important works on the weak-type versions of the estimates above,
obtained by Randrianantoanina in [43, 44, 45]. We also refer the interested reader to the writings
[5, 6, 7, 14, 15, 16, 17, 21, 22, 46, 47] for martingale inequalities in the context of various noncom-
mutative symmetric spaces, to the articles [8, 12] for certain non-classical atomic decompositions,
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to the works [19, 29] for the noncommutative versions of John-Nirenberg inequalities, and to the
papers [23, 24, 25] for the noncommutative analogs of Johnson-Schechtman inequalities.

In this paper, we will continue the above line of research and study noncommutative analogs of
classical martingales inequalities under the assumption of the so-called di�erential subordination.
Let us brie�y recall the basic de�nitions in the classical case. Suppose that (Ω,F ,P) is a probability
space equipped with a discrete-time �ltration (Fn)n≥0. Let x = (xn)n≥0, y = (yn)n≥0 be two
adapted martingales taking values in some real or complex Hilbert space (H, | · |). We de�ne the
associated di�erence sequences dx = (dxn)n≥0 and dy = (dyn)n≥0 by the formulae dx0 = x0 and
dxn = xn − xn−1 for n ≥ 1, and analogously for dy. Following Burkholder [11], we say that y is
di�erentially subordinate to x, if for any n ≥ 0 we have the inequality |dyn| ≤ |dxn| almost surely.
There are two important examples, which link the notion of di�erential subordination to other
basic operators arising in the martingale theory. First, suppose that x = (xn)n≥0 is an arbitrary
martingale, ε = (εn)n≥0 is a deterministic sequence of signs and let y be the martingale transform
of x by ε, i.e.,

yn =
n∑
k=0

εkdxk, n = 0, 1, 2, · · · .

Then y is a martingale and we have |dyn| = |dxn| for all n, so the di�erential subordination
holds. To describe the second example, suppose that x = (xn)n≥0 is an arbitrary martingale
taking values in some Hilbert space (H, | · |). Then we may treat x as a process taking values
in a larger Hilbert space `2(H), simply embedding it onto the �rst coordinate (i.e., identifying
x ∈ H with (x, 0, 0, · · · ) ∈ `2(H)). Consider another `2(H)-valued martingale given by yn =
(dx0, dx1, dx2, · · · , dxn, 0, 0, · · · ). Obviously, we have |dyn|`2(H) = |dxn|`2(H) for each n, so the
di�erential subordination is satis�ed (actually, in both directions: the martingales x and y are

di�erentially subordinate to each other). On the other hand, we have |yn|`2(H) =
(∑n

k=0 |dxk|2
)1/2

and hence any general estimate between di�erentially subordinate martingales immediately yields
the corresponding analogue for square functions.

The di�erential subordination implies many interesting inequalities between the martingales
involved. Furthermore, as Burkholder showed in [11], there is a general powerful technique,
sometimes referred to as the Bellman function method in the recent literature, which enables
the identi�cation of optimal constants in such estimates. As an application of this approach,
Burkholder [11] proved that for any martingale x, if the martingale y is di�erentially subordinate
to x, then we have the sharp weak-type inequality

||y||1,∞ ≤ 2||x||1
and the sharp Lp-bound

(1.1) ||y||p ≤ (p∗ − 1)||x||p, 1 < p <∞,

where p∗ = max{p, p/(p − 1)}. These estimates can be extended in numerous directions; see
the monograph [35] by the second-named author, which contains almost up-to-date exposition
on the subject. See also the works of Wang [49] and Bañuelos and Wang [4] where an appro-
priate continuous-time version of the di�erential subordination was introduced. Besides the two
probabilistic examples mentioned above (i.e., the square functions and martingale transforms),
such estimates have important applications in harmonic analysis and the theory of quasiconfor-
mal mappings (see e.g. [1, 2, 3, 4, 9, 36, 37] and consult the references therein). This immediately
gives rise to the problem of extending these results to the noncommutative case. To the best of
our knowledge, this issue is almost completely open (except for [34], which contains the study
of the corresponding weak-type inequality under an unnatural condition). The primary goal of
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this paper is to set up an appropriate framework and establish fundamental estimates in this
direction, that is, to establish the weak-type (1,1) inequality and strong-type (p, p) inequality for
noncommutative di�erentially subordinate martingales. As we shall see, our methods will require
several new ideas and we hope that our approach may be useful in the study of other inequalities
which arise naturally in the area.

Let us write a few words about the organization of the remaining part of this paper.
In the next section we present the necessary noncommutative background and some basic facts

of the theory of martingales in this setting.
Section 3 contains the discussion on the concept of noncommutative version of di�erential subor-

dination under which we will work later. Quite unexpectedly (though the form of noncommutative
Burkholder-Gundy inequalities might indicate this), we need to introduce two di�erent versions
of this domination relation, a stronger and a weaker one (the reason for this will be explained in
a moment).

In Section 4 we show that the stronger condition guarantees the validity of the weak-type (1,1)
estimate. This is accomplished by exploiting a certain novel version of noncommutative Gundy's
decomposition.

Section 5 is devoted to the Lp-inequalities for di�erentially subordinate martingales. We need
the aforementioned stronger version of the domination to show the inequality for 1 < p < 2;
however, it turns out that for p ≥ 2 the weaker version is su�cient. We should point out here
that the study of the strong-type estimates is not a mere repetition or slight modi�cation of well-
known arguments and methods, but it requires the development of completely new ideas. In a
typical situation (e.g., during the study of Lp-bounds for martingale transforms or Burkholder-
Gundy inequalities), one establishes the corresponding weak-type (1, 1) and strong-type (2, 2)
estimate and then proceeds with interpolation and duality arguments. In the context of di�erential
subordination, neither of these tools is directly available. We overcome this di�culty by using
a certain �summation argument� which can be regarded as a proper substitution of the real
interpolation method; this enables us to handle the Lp-estimates in the case 1 < p < 2. For
p ≥ 2, we exploit a certain novel approach which can be viewed as a noncommutative version of
the good-λ inequality. As we shall see, the study of both these cases will rest on a very delicate
technical analysis, which does not occur very often in the noncommutative case.

The �nal section of the paper contains an application of the results obtained earlier. As we have
seen above, any estimate for classical di�erentially subordinate martingales implies the correspond-
ing bound for classical square functions. It turns out that a certain non-classical version of this
phenomenon also holds true, and this allows us to obtain an alternative proof of noncommutative
Burkholder-Gundy inequalities obtained originally in [41].

2. Preliminaries

We start with some basic facts from the operator theory, for the detailed exposition of the
subject we refer the reader to [31, 32, 48]. Throughout the paper,M is a von Neumann algebra
equipped with a semi�nite normal faithful trace τ . We assume that M is a subalgebra of the
algebra of all bounded operators acting on some Hilbert space H. A closed densely de�ned
operator a on H is said to be a�liated with M if u∗au = a for all unitary operators u in the
commutant M′ of M. A closed densely de�ned operator a on H a�liated with M is said to
be τ -measurable if for any ε > 0 there exists a projection e such that e(H) is contained in the
domain of x and τ(I − e) < ε; here and below, I denotes the identity operator. The set of all
τ -measurable operators will be denoted by L0(M, τ). The trace τ can be extended to a positive
tracial functional on the positive part L0

+(M, τ) of L0(M, τ) and this extension is still denoted by
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τ . For a given family (ei)i∈I of projections, the symbol
∧
i∈I ei will denote the intersection of the

family, i.e., the projection onto
⋂
i∈I ei(H). Next, suppose that a is a self-adjoint τ -measurable

operator and let a =
∫∞
−∞ λdeλ stand for its spectral decomposition. For any Borel subset B of

R, the spectral projection of a corresponding to the set B is de�ned by IB(a) =
∫∞
−∞ χB(λ)deλ.

For 0 < p <∞, we recall that the noncommutative Lp-space associated with (M, τ) is de�ned

by Lp(M, τ) = {x ∈ L0(M, τ) : τ(|x|p) <∞} equipped with the (quasi-)norm ‖x‖p = (τ(|x|p))1/p,
where |x| = (x∗x)1/2 is the modulus of x. For p =∞, the space Lp(M, τ) coincides withM with
its usual operator norm. We refer to the survey [42] and the references therein for more details.

We now turn our attention to the general setup of noncommutative martingales. Suppose that
(Mn)n≥0 is a �ltration, i.e., a nondecreasing sequence of von Neumann subalgebras ofM whose
union is weak∗-dense inM. Then for any n ≥ 0 there is a normal conditional expectation En from
M ontoMn, satisfying

(i) En(axb) = aEn(x)b for all a, b ∈Mn and x ∈M;
(ii) τ ◦ En = τ .

It is straightforward to check that the conditional expectations satisfy the tower property EmEn =
EnEm = Emin(m,n) for all nonnegative integers m and n. Furthermore, since En is trace preserving,
it can be extended to a contractive projection from Lp(M, τ) onto Lp(Mn, τn) for all 1 ≤ p ≤ ∞,
where τn is the restriction of τ toMn.

A sequence x = (xn)n≥0 in L1(M) is called a noncommutative martingale (with respect, or
adapted to (Mn)n≥0), if for any n ≥ 0 we have the equality

En(xn+1) = xn.

The associated di�erence sequence is de�ned as in the commutative case, with the use of the
formulae dx0 = x0 and dxn = xn − xn−1 for n ≥ 1. If for some given 1 ≤ p ≤ ∞ we have
x = (xn)n≥0 ⊂ Lp(M) and

‖x‖p = sup
n≥0
‖xn‖p <∞,

then x is said to be a bounded Lp-martingale. An important identi�cation is in order. Suppose
that 1 ≤ p < ∞ and x = (xn)n≥0 is a martingale given by xn = En(x∞) for some operator
x∞ ∈ Lp(M). Then x is a bounded Lp-martingale and ‖x‖p = ‖x∞‖p. Conversely, if 1 < p <∞,
then every bounded Lp-martingale converges in Lp(M), and so is given by some operator x∞ as
previously. Consequently, one can identify the space of bounded Lp-martingales with the space
Lp(M) in the case 1 < p <∞, with the identi�cation given by x 7→ x∞.

Finally, let us brie�y discuss the context of square functions and Hardy spaces associated with
noncommutative martingales. We follow the presentation given by Pisier and Xu in [41]. Let
1 ≤ p <∞. For a given �nite sequence a = (an)n≥0 ⊂ Lp(M), we de�ne

‖a‖Lp(M,`2c)
=

∥∥∥∥∥∥∥
∑
n≥0
|an|2

1/2
∥∥∥∥∥∥∥
p

, ‖a‖Lp(M,`2r)
=

∥∥∥∥∥∥∥
∑
n≥0
|a∗n|2

1/2
∥∥∥∥∥∥∥
p

.

Then ‖ · ‖Lp(M,`2c)
and ‖ · ‖Lp(M,`2r)

are norms on the family of all �nite sequences of Lp(M).

Furthermore, the corresponding completions Lp(M, `2c), L
p(M, `2r) form Banach spaces which can

be regarded as the column and row subspaces of Lp(M⊗̄B(`2), τ ⊗ tr).
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For a given noncommutative martingale x = (xn)n≥0, we de�ne its column and row square
functions respectively by

Sc,n(x) =

(
n∑
k=0

|dxk|2
)1/2

and Sr,n(x) =

(
n∑
k=0

|dx∗k|2
)1/2

.

Then, in the language of the column and row spaces, dx belongs to Lp(M, `2c) (resp. L
p(M, `2r))

if and only if (Sc,n(x))n≥0 (resp. (Sr,n(x))n≥0) is a bounded sequence in Lp(M). In such a case,
the `'full" sum

Sc(x) =

( ∞∑
k=0

|dxk|2
)1/2

resp. Sr(x) =

( ∞∑
k=0

|dx∗k|2
)1/2


belongs to Lp(M). These operators are the noncommutative versions of the square functions from
the classical theory of martingales.

Now, we introduce the noncommutative martingale Hardy spaces. De�ne Hp
c (M) and Hp

r (M)
to be the spaces of all Lp-martingales x such that dx ∈ Lp(M, `2c) and dx ∈ Lp(M, `2r), respectively.
Then, equipped with the norms

‖x‖Hp
c (M) = ‖dx‖Lp(M,`2c)

= ‖Sc(x)‖p

and

‖x‖Hp
r (M) = ‖dx‖Lp(M,`2r)

= ‖Sr(x)‖p,

the spaces Hp
c (M), Hp

r (M) become Banach spaces. If 1 ≤ p < 2, we de�ne

Hp(M) = Hp
c (M) +Hp

r (M)

equipped with the norm

‖x‖Hp(M) = inf
{
‖y‖Hp

c (M) + ‖z‖Hp
r (M)

}
,

where the in�mum is taken over all decompositions x = y+ z such that y ∈ Hp
c (M), z ∈ Hp

r (M).
If 2 ≤ p ≤ ∞, we set

Hp(M) = Hp
c (M) ∩Hp

r (M)

equipped with the intersection norm

‖x‖Hp(M) = max
{
‖x‖Hp

c (M), ‖x‖Hp
r (M)

}
.

The noncommutative Burkholder-Gundy inequalities can now be stated as follows.

Theorem 2.1 (Pisier and Xu [41]). For 1 < p <∞, there exist �nite constants cp, Cp such that

c−1p ‖x‖Hp(M) ≤ ‖x‖p ≤ Cp‖x‖Hp(M).
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3. Noncommutative differential subordination

Our main task of this section is to �nd a proper extension of the notion of di�erential subor-
dination in noncommutative setting. We start with the following domination relation which was
proposed by the second-named author in [34].

De�nition 3.1. Let x, y be two self-adjoint L2-bounded martingales. We say that y is di�eren-
tially subordinate to x if the following two conditions are satis�ed:

(i) for any n ≥ 0 and any projection R ∈Mn, we have

τ(RdynRdynR) ≤ τ(RdxnRdxnR);

(ii) for any n ≥ 0 and any orthogonal projections R, S ∈Mn such that R+S ∈Mn−1, we have

τ(RdynSdynR) ≤ τ(RdxnSdxnR).

Here and below, if n = 0, then the phrase �R + S ∈ Mn−1� means that R + S = I. As in the
commutative case, an important example is that of martingale transforms. Indeed, assume that x
is an arbitrary L2-bounded martingale and ε = (εn)n≥0 is a sequence of signs. De�ne y by setting
dyn = εndxn, n = 0, 1, 2, · · · . Then, obviously, y is di�erentially subordinate to x.

However, it should be pointed out that the above de�nition has two severe de�ciencies. The
�rst issue is the assumption on the square-integrability of the martingales, without which some
traces in (i) or (ii) might become in�nite; nothing of this type seems to arise in the commutative
context. The second problem is the complexity of the domination, which makes it very di�cult
to be applied.

Our �rst contribution is the correction of both defects above. We propose a di�erent de�nition,
which is much simpler, does not require the square integrability of martingales and is actually
weaker than that above. Furthermore, as we will see later, it enforces the appropriate weak- and
strong-type martingale inequalities.

De�nition 3.2. Let x, y be two self-adjoint martingales. We say that y is weakly di�erentially
subordinate to x if for any n ≥ 0 and any projection R ∈Mn−1, we have

(3.1) RdynRdynR ≤ RdxnRdxnR.
We say that y is very weakly di�erentially subordinate to x if for any n ≥ 0, we have

(3.2) dy2n ≤ dx2n.

Let us compare the de�nitions above. Obviously, in the commutative case, all the dominations
are equivalent to saying that |dyn| ≤ |dxn| for all n ≥ 0, which is the usual di�erential subor-
dination introduced by Burkholder [11]. Clearly, the weak di�erential subordination implies the
very weak di�erential subordination and the implication cannot be reversed. What about the
connection with the domination of De�nition 3.1? The following lemma clari�es this issue.

Lemma 3.3. The di�erential subordination implies the weak di�erential subordination. Further-
more, the reverse implication is not true in general.

Proof. Let x, y be two self-adjoint martingales. Suppose that y is di�erentially subordinate to x.
Fix n ≥ 0 and an arbitrary projection R ∈Mn−1, we de�ne

T = I(0,∞)(RdynRdynR−RdxnRdxnR).

Then T ∈Mn is a sub-projection of R, so by (i) and (ii) of De�nition 3.1, we have

τ(TdynTdynT ) ≤ τ(TdxnTdxnT )
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and

τ
(
Tdyn(R− T )dynT

)
≤ τ

(
Tdxn(R− T )dxnT

)
.

Adding the two estimates above, we get an inequality equivalent to

τ(TdynRdynT − TdxnRdxnT ) ≤ 0,

or

τ
(
T (RdynRdynR−RdxnRdxnR)

)
≤ 0.

However, the operator under the latter trace is nonnegative, by the very de�nition of T . Thus we
obtain T = 0 and hence the weak di�erential subordination holds.

We turn our attention to the second part of the lemma. We will construct an appropriate
example. LetM be the algebra of 2× 2 matrices equipped with the normalized trace τ . Consider
the �ltration (Mn)n≥0 given by M0 = {aI : a ∈ R} and M1 = M2 = · · · = M. Then the
associated conditional expectations En : M → Mn act as follows: for n ≥ 1, En is just the
identity, and

E0
([

a b
c d

])
=
a+ d

2
I.

Finally, consider the adapted self-adjoint sequences x = (xn)n≥0, y = (yn)n≥0 with the di�erences
given by

dx1 =

[
1 0
0 −1

]
, dy1 =

[
0 1
1 0

]
and, for remaining n, dxn = dyn = 0. It is evident that (dxn)n≥0, (dyn)n≥0 are martingale
di�erences, directly from the above description of the conditional expectations. Next, it is easy
to see that y is weakly di�erentially subordinate to x. To this end, it is enough to check that for
any projection R ∈M0 we have

Rdy1Rdy1R ≤ Rdx1Rdx1R.

However, there is only one nontrivial projection in M0, the identity operator. For R = I, the
above estimate becomes dy21 ≤ dx21, which holds true: both sides are actually equal to I. On the
other hand, the condition (i) of De�nition 3.1 is not satis�ed. Consider the projection

R =

[
1/2 −1/2
−1/2 1/2

]
∈M1

onto the subspace spanned by the vector (1,−1). We compute that Rdy1Rdy1R = R and
Rdx1Rdx1R = 0, so the di�erential subordination is indeed violated. �

De�nition 3.2 gives us two alternative noncommutative versions of the di�erential subordination.
As we have announced in the introductory section, the stronger condition (3.1) will be needed to
establish the weak- and Lp-bounds for 1 < p < 2, while the weaker condition (3.2) will be su�cient
for the case p ≥ 2. Let us present an important construction which illustrates the necessity of
introducing the stronger of the requirements.

Example 3.4. We will prove now that the condition (3.2) is in general too weak to imply the
weak- and Lp-estimate for 1 < p < 2. Fix a large positive even integer N and let ε0, ε1, ε2, · · · ,
εN be independent Rademacher variables on some (classical) probability space (Ω,F ,P). Suppose
that for each n ≥ 0, Fn is the σ-algebra generated by ε0, ε1, ε2, · · · , εn (with the convention
F−1 = {∅,Ω) and Fn = F if n > N). Consider the algebra M = L∞(Ω,F ,P)⊗MN+2 equipped
with the tensor product trace (hereMN+2 is the algebra of (N+2)×(N+2) matrices with the usual
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trace) and the �ltrationMn = L∞(Ω,Fn,P)⊗MN+2, n = 0, 1, 2, · · · . Let En = En⊗I :M→Mn

be the corresponding conditional expectation.
Finally, consider the sequences dx = (dxn)n≥0, dy = (dyn)n≥0 given by dxn = εn ⊗ (e1,n+2 +

en+2,1) and dyn = εn ⊗ (e1,1 + en+2,n+2), n = 0, 1, 2, · · · , N ; for remaining n, set dxn = dyn = 0
(here and below, the symbol ei,j denotes the matrix which has 1 at the place lying in i-th column
and j-th row, and zeros elsewhere). It is obvious that dx and dy are martingale di�erences.
Furthermore, we compute that

dx2n = dy2n =

{
1⊗ (e1,1 + en+2,n+2) if 1 ≤ n ≤ N,
0 otherwise,

so the very weak subordination is satis�ed. On the other hand, we have

yN =


ε0 + ε1 + · · ·+ εN 0 0 · · · 0

0 ε0 0 · · · 0
0 0 ε1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · εN

 ,
which implies

|yN | =


|ε0 + ε1 + · · ·+ εN | 0 0 · · · 0

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1


and τ

(
I[1,∞)(|yN |)

)
= N + 2 (here we use the assumption that N is even: this guarantees that

the entry in the upper-left corner of |yN | is at least 1). On the other hand, we have

xN =


0 ε0 ε1 · · · εN
ε0 0 0 · · · 0
ε1 0 0 · · · 0
· · · · · · · · · · · · · · ·
εN 0 0 · · · 0

 .
To derive the trace of |xN |, note that

x2N =


N + 1 0 0 · · · 0

0 ε20 ε0ε1 · · · ε0εN
0 ε1ε0 ε21 · · · ε1εN
· · · · · · · · · · · · · · ·
0 εNε0 εNε1 · · · ε2N

 = (N + 1)(P1 + Pε),

where P1, Pε are the projections onto the one-dimensional spaces spanned by (1, 0, 0, · · · , 0) and
(0, ε0, ε1, · · · , εN ), respectively. These spaces are orthogonal, so |xN | =

√
N + 1(P1 + Pε) and

hence τ(|xN |) = 2
√
N + 1. We have thus obtained that

τ
(
I[1,∞)(|yN |)

)
/τ(|xN |) =

N + 2

2
√
N + 1

,

so the weak-type (1,1) estimate cannot hold with any �nite universal constant.
The above example also provides some information in the context of Lp-estimates. Indeed,

for x, y as above, we have ||yN ||p ≥ (N + 2)1/p and ||xN ||p = 21/p
√
N + 1. Consequently, the
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condition (3.2) cannot guarantee in general the strong-type (p, p) estimate

||yN ||p ≤ Cp||xN ||p, 1 < p < 2,

with any �nite universal constant Cp. On the contrary, when p ≥ 2, then (3.2) does imply
the validity of the Lp-bound. This follows directly from noncommutative Burkholder-Gundy
inequalities (Theorem 2.1):

||yN ||p ≤ Cp

∥∥∥∥∥(
N∑
n=0

dy2n

)1/2∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥(
N∑
n=0

dx2n

)1/2∥∥∥∥∥
p

≤ C ′p||xN ||p.

However, the resulting constant is of order O(p2) as p→∞, which is much more than one might
expect from the commutative case. We will improve this order to the optimal O(p), which is
already the best possible in the commutative setting; see (1.1).

4. Weak-type estimate

The principal statement of this section is the weak-type (1,1) estimate for weakly di�erentially
subordinate martingales. By Lemma 3.3, it strengthens the main result [34, Theorem 1]. It
should be emphasized that our approach is completely di�erent from that used in [34], where
the noncommutative Burkholder operators play an important role; while our proof is based on a
certain novel version of noncommutative Gundy's decomposition (see (4.4) below), which should
be compared with the one given by Parcet and Randrianantoanina in [38].

We now state the precise formulation.

Theorem 4.1. Suppose that x, y are self-adjoint martingales such that y is weakly di�erentially
subordinate to x. Then for any λ > 0 and any N ≥ 0 we have

λτ
(
I[λ,∞)(|yN |)

)
≤ 36||x||1.

The proof is a combination of several separate intermediate estimates. A key ingredient of our
reasoning is the following family of projections associated with a given self-adjoint martingale
x = (xn)n≥0. Set R−1 = I and for each n ≥ 0 de�ne, inductively,

Rn = Rn−1I(−1,1)(Rn−1xnRn−1),

Un = Rn−1I(−∞,−1](Rn−1xnRn−1),

Dn = Rn−1I[1,∞)(Rn−1xnRn−1).

The family (Rn)n≥−1 can be regarded as two-sided, extended version of the classical projections
introduced by Cuculescu in [13]. In what follows, we will need the following properties of these
objects.

Lemma 4.2. Let x = (xn)n≥0 be an L1-bounded self-adjoint martingale. Then the following
statements hold true:

(i) for each n ≥ 0 the projections Rn, Un and Dn belong toMn and Rn + Un +Dn = Rn−1;
(ii) for each n ≥ 0, the projections Rn, Un and Dn commute with Rn−1xnRn−1;
(iii) for each n ≥ 0 we have

−Rn ≤ RnxnRn ≤ Rn, UnxnUn ≤ −Un, DnxnDn ≥ Dn;

(iv) for any 0 ≤ n ≤ N , we have

−RN ≤ RNxnRN ≤ RN and τ(I −RN ) ≤ τ((I −RN )|xN |) ≤ ||x||1.
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Proof. It is clear that (i), (ii) and (iii) are satis�ed. Furthermore,

RNxnRN = RNRnxnRnRN ≤ RNRnRN = RN

and similarly RNxnRN ≥ −RN . To prove the trace estimate from (iv), note that for each N ≥ 0,

τ(I −RN ) =

N∑
n=0

τ(Rn−1 −Rn) =

N∑
n=0

τ(Un +Dn)

≤
N∑
n=0

τ (−UnxnUn +DnxnDn)

=
N∑
n=0

τ (−UnxNUn +DnxNDn)

= τ

((
N∑
n=0

Un

)
(−xN ) +

(
N∑
n=0

Dn

)
xN

)

≤ τ

((
N∑
n=0

Un

)
|xN |+

(
N∑
n=0

Dn

)
|xN |

)
≤ τ

(
(I −RN )|xN |

)
≤ τ(|xN |).

This yields the assertion. �

Later on, we will exploit the following estimate.

Lemma 4.3. For any L1-bounded self-adjoint martingale x = (xn)n≥0 and any N ≥ 0 we have

τ

(
N∑
n=0

RndxnRn−1dxnRn

)
≤ 2||x||1.

Proof. Observe that for any 0 ≤ n ≤ N ,

τ(RndxnRn−1dxnRn) = τ
(
Rn(xn − xn−1)Rn−1(xn − xn−1)Rn

)
= τ

(
RnxnRn−1xnRn +Rnxn−1Rn−1xn−1Rn

−Rnxn−1Rn−1xnRn −RnxnRn−1xn−1Rn
)(4.1)

(if n = 0, we interpret xn−1 to be zero). Let us transform each of the four terms in the latter
expression. First, applying the commuting property of Rn, we see that

τ(RnxnRn−1xnRn) = τ(RnxnRnxnRn).

Next, by the tracial property of τ and the estimate Rn ≤ Rn−1, we get

τ(Rnxn−1Rn−1xn−1Rn) = τ(Rn−1xn−1Rnxn−1Rn−1)

≤ τ(Rn−1xn−1Rn−1xn−1Rn−1).

Finally, observe that

τ(Rnxn−1Rn−1xnRn) = τ(Rn−1xn−1Rn−1xnRn) = τ(Rn−1xn−1RnxnRn)
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and similarly

τ(RnxnRn−1xn−1Rn) = τ(Rn−1xn−1RnxnRn).

Thus we have proved that

τ(RndxnRn−1dxnRn) ≤ τ
(
RnxnRnxnRn +Rn−1xn−1Rn−1xn−1Rn−1 − 2Rn−1xn−1RnxnRn

)
,

which can be rewritten in the form

τ(RndxnRn−1dxnRn) ≤ τ(RnxnRnxnRn)− τ(Rn−1xn−1Rn−1xn−1Rn−1)

+ 2τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
.

By the martingale property of x, we have the equality

τ(Rn−1xn−1Rn−1xn−1Rn−1) = τ(Rn−1xn−1Rn−1xnRn−1).

Therefore, by the de�nition of Rn, Un, Dn and their commuting properties, we easily check that

τ
(
Rn−1xn−1Rn−1(Rn−1xn−1Rn−1 −RnxnRn)

)
= τ

(
Rn−1xn−1Rn−1(Rn−1xnRn−1 −RnxnRn)

)
= τ

(
Rn−1xn−1Rn−1(Rn−1 −Rn)Rn−1xnRn−1

)
= τ(Rn−1xn−1Rn−1UnRn−1xnRn−1) + τ(Rn−1xn−1Rn−1DnRn−1xnRn−1)

= τ(Rn−1xn−1Rn−1UnxnUn) + τ(Rn−1xn−1Rn−1DnxnDn).

Now, by Lemma 4.2 (iii), the operator UnxnUn is nonpositive and Rn−1(xn−1 + I)Rn−1 is non-
negative. Consequently, we have

τ(Rn−1xn−1Rn−1UnxnUn) = τ
(
Rn−1(xn−1 + I)Rn−1UnxnUn

)
− τ(UnxnUn)

≤ −τ(Unxn) = −τ(UnxN ) ≤ τ(Un|xN |).

Similarly, one may prove that

τ(Rn−1xn−1Rn−1DnxnDn) ≤ τ(Dn|xN |).

Putting all the above facts together, we obtain that

τ(RndxnRn−1dxnRn) ≤ τ(RnxnRnxnRn)− τ(Rn−1xn−1Rn−1xn−1Rn−1)

+ 2τ
(

(Un +Dn)|xN |
)
,

which yields

(4.2) τ

(
N∑
n=0

RndxnRn−1dxnRn

)
≤ τ(RNxNRNxNRN ) + 2τ

(
N∑
n=0

(Un +Dn)|xN |

)
.

By Lemma 4.2 (i) , we have
∑N

n=0(Un + Dn) = I − RN and hence the second term on the right
equals 2τ

(
(I −RN )|xN |

)
. To handle the �rst term, introduce the auxiliary projections

R+
N = RN−1I[0,1)(RN−1xNRN−1), R−N = RN−1I(−1,0)(RN−1xNRN−1).
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We have RN = R+
N +R−N and both R±N commute with RN−1xNRN−1. Therefore,

τ(RNxNRNxNRN ) = τ(RNRN−1xNRN−1RNRN−1xNRN−1RN )

= τ(RNxNRN−1xNRN−1)

= τ
(

(R+
N +R−N )xNRN−1xNRN−1

)
= τ(R+

NxNR
+
NxNR

+
N ) + τ(R−NxNR

−
NxNR

−
N ).

The operator R+
NxNR

+
N is nonnegative and R+

N (xN − I)R+
N is nonpositive. This implies

τ
(
R+
NxNR

+
N (xN − I)R+

N

)
≤ 0.

Hence

τ
(
R+
NxNR

+
NxNR

+
N

)
≤ τ

(
R+
NxNR

+
N

)
≤ τ

(
R+
N |xN |R

+
N

)
= τ

(
R+
N |xN |

)
.

Analogous argumentation yields the estimate

τ
(
R−NxNR

−
NxNR

−
N

)
≤ τ

(
R−N |xN |

)
.

Combining the above two observations gives

τ(RNxNRNxNRN ) ≤ τ
(

(R+
N +R−N )|xN |

)
= τ(RN |xN |),

which plugged into (4.2) yields

τ

(
N∑
n=0

RndxnRn−1dxnRn

)
≤ τ(RN |xN |) + 2τ

(
(I −RN )|xN |

)
≤ 2τ(|xN |) ≤ 2||x||1.

This is the desired assertion. �

We will also use the following fact.

Lemma 4.4. For any L1-bounded self-adjoint martingale x = (xn)n≥0 and any N ≥ 0 we have∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

∣∣(Rn−1 −Rn)dxn(Rn−1 −Rn)
∣∣∣∣∣∣∣
∣∣∣∣∣
1

≤ 2τ((I −RN )|xN |) ≤ 2||x||1.

Proof. For any 0 ≤ n ≤ N we have

(Rn−1 −Rn)dxn(Rn−1 −Rn) = (Rn−1 −Rn)(xn − xn−1)(Rn−1 −Rn),

so by the triangle inequality,

τ
(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|

)
≤ τ

(
|(Rn−1 −Rn)xn(Rn−1 −Rn)|

)
+ τ
(
|(Rn−1 −Rn)xn−1(Rn−1 −Rn)|

)
.

(4.3)

We will treat each of the two terms on the right hand side separately. By the martingale property
of x and the fact that the conditional expectation is a contraction in L1, we have

τ
(
|(Rn−1 −Rn)xn(Rn−1 −Rn)|

)
= τ

(∣∣En((Rn−1 −Rn)xN (Rn−1 −Rn)
)∣∣)

≤ τ
(∣∣(Rn−1 −Rn)xN (Rn−1 −Rn)

∣∣)
≤ τ

(
(Rn−1 −Rn)|xN |(Rn−1 −Rn)

)
.
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Consequently, after summation we obtain

N∑
n=0

τ
(
|(Rn−1 −Rn)xn(Rn−1 −Rn)|

)
≤ τ

(
(I −RN )|xN |

)
.

Concerning the second summand in (4.3), we note that the inequality ||Rn−1xn−1Rn−1||∞ ≤ 1

implies τ
(∣∣(Rn−1 −Rn)xn−1(Rn−1 −Rn)

∣∣) ≤ τ(Rn−1 −Rn), and hence

N∑
n=0

τ
(∣∣(Rn−1 −Rn)xn−1(Rn−1 −Rn)

∣∣) ≤ τ(I −RN ).

Combining the above estimates with Lemma 4.2 (iv), we get the claim. �

We are ready for the proof of the weak-type estimate for weakly di�erentially subordinate
martingales. Based on the lemmas above, we mainly employ a novel version of noncommutative
Gundy-type decomposition.

Proof of Theorem 4.1. We may assume that x is L1-bounded, since otherwise there is nothing to
prove. Furthermore, by homogeneity, it is enough to establish the estimate for one value of λ: it
will be convenient for us to take λ = 4.

We start with an appropriate Gundy-type decomposition of the dominated martingale y. Namely,
for any n ≥ 0, set

dyn = dαn + dβn + dγn + dδn,

where

dαn = Rn−1dynRn +RndynRn−1 −RndynRn
− En−1(Rn−1dynRn +RndynRn−1 −RndynRn),

dβn = En−1(Rn−1dynRn +RndynRn−1 −RndynRn),

dγn = Rndyn(I −Rn−1),
dδn = (I −Rn)dyn − (Rn−1 −Rn)dynRn

(4.4)

(with the convention E−1a = 0 for all a). The di�erences dα, dβ, dγ and dδ give rise to the
associated processes α, β, γ and δ. By the well-known properties of a distribution function,

(4.5) τ
(
I[4,∞)(|yN |)

)
≤ τ

(
I[1,∞)(|αN |)

)
+ τ

(
I[1,∞)(|βN |)

)
+ τ

(
I[1,∞)(|γN |)

)
+ τ

(
I[1,∞)(|δN |)

)
.

For the sake of convenience, we now study the terms on the right separately.

Step 1. The term dαn. It is evident that (dαn)n≥0 is a martingale di�erence sequence. Note that
for any self-adjoint bounded operator a, we have

τ
(

(a− En−1(a))2
)

= τ
(
a2 − En−1(a)2

)
≤ τ(a2).

Therefore,

τ(dα2
n) ≤ τ

(
(Rn−1dynRn +RndynRn−1 −RndynRn)2

)
= 2τ(RndynRn−1dyn)− τ(RndynRndyn) ≤ 2τ(Rn−1dynRndyn).

By the weak di�erential subordination of y to x, we have

Rn−1dynRn−1dynRn−1 ≤ Rn−1dxnRn−1dxnRn−1
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and hence also RndynRn−1dynRn ≤ RndxnRn−1dxnRn, since Rn ≤ Rn−1. Passing to the trace,
we obtain

τ(Rn−1dynRndyn) = τ(RndynRn−1dyn) ≤ τ(RndxnRn−1dxnRn).

As we have mentioned above, the process (αn)n≥0 is a martingale, so the above analysis and
Lemma 4.3 give

||αN ||22 =
N∑
n=0

||dαn||22 ≤ 2τ

(
N∑
n=0

RndxnRn−1dxnRn

)
≤ 4||x||1.(4.6)

Consequently, by Chebyshev's inequality, we obtain

τ
(
I[1,∞)(|αN |)

)
≤ ||αN ||22 ≤ 4||x||1.

Step 2. The term dβn. By the martingale property of y, we have

dβn = En−1(−Rn−1dynRn−1 +Rn−1dynRn +RndynRn−1 −RndynRn)

= −En−1
(

(Rn−1 −Rn)dyn(Rn−1 −Rn)
)
.

By the weak di�erential subordination of y to x, namely,

Rn−1dynRn−1dynRn−1 ≤ Rn−1dxnRn−1dxnRn−1,
it is immediate that

(Rn−1 −Rn)dyn(Rn−1 −Rn)dyn(Rn−1 −Rn)

≤ (Rn−1 −Rn)dynRn−1dyn(Rn−1 −Rn)

≤ (Rn−1 −Rn)dxnRn−1dxn(Rn−1 −Rn)

= (Rn−1 −Rn)(xn − xn−1)Rn−1(xn − xn−1)(Rn−1 −Rn)

= (Rn−1 −Rn)xnRn−1xn(Rn−1 −Rn) + (Rn−1 −Rn)xn−1Rn−1xn−1(Rn−1 −Rn)

− (Rn−1 −Rn)xn−1Rn−1xn(Rn−1 −Rn)− (Rn−1 −Rn)xnRn−1xn−1(Rn−1 −Rn).

Since Rn commutes with Rn−1xnRn−1, the above sum is equal to

(Rn−1 −Rn)xn(Rn−1 −Rn)xn(Rn−1 −Rn)

+ (Rn−1 −Rn)xn−1Rn−1xn−1(Rn−1 −Rn)

− (Rn−1 −Rn)xn−1(Rn−1 −Rn)xn(Rn−1 −Rn)

− (Rn−1 −Rn)xn(Rn−1 −Rn)xn−1(Rn−1 −Rn)

(note that the second summand has not changed), which can be further transformed into

(Rn−1 −Rn)dxn(Rn−1 −Rn)dxn(Rn−1 −Rn)

+ (Rn−1 −Rn)xn−1Rnxn−1(Rn−1 −Rn).
(4.7)

Let us handle the second term in the latter expression. Since Rn ≤ Rn−1, we have
(Rn−1 −Rn)xn−1Rnxn−1(Rn−1 −Rn)

≤ (Rn−1 −Rn)xn−1Rn−1xn−1(Rn−1 −Rn).

This is not bigger than Rn−1 −Rn. Indeed, by Lemma 4.2 (iii), we have Rn−1xn−1Rn−1 ≤ Rn−1,
which yields Rn−1xn−1Rn−1xn−1Rn−1 ≤ Rn−1 and hence also the desired inequality. This enables
us to bound the expression in (4.7) from above by a convenient square:(

|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn
)2
.
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Putting all the above facts together, we conclude that

(Rn−1 −Rn)dyn(Rn−1 −Rn)dyn(Rn−1 −Rn)

≤
(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn

)2
,

which implies

|(Rn−1 −Rn)dyn(Rn−1 −Rn)| ≤ |(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn

and hence

±dβn ≤ En−1
(
|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+Rn−1 −Rn

)
.

It follows from the properties of the conditional expectation, Lemma 4.2 (iv) and Lemma 4.4 that

(4.8) ||βN ||1 ≤

∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

|(Rn−1 −Rn)dxn(Rn−1 −Rn)|+ I −RN

∣∣∣∣∣
∣∣∣∣∣
1

≤ 3||x||1.

This gives us the inequality

τ
(
I[1,∞)(|βN |)

)
≤ ||βN ||1 ≤ 3||x||1.

Step 3. The terms dγn and dδn. Here the analysis is much simpler. The right support of dγn
satis�es r(dγn) ≤ I −Rn−1 ≤ I −RN , so

N∨
n=0

r(dγn) ≤ I −RN .

Therefore, by Lemma 4.2 (iv),

τ

(
N∨
n=0

r(dγn)

)
≤ ||x||1.

A similar analysis of the left support of dδn gives

τ

(
N∨
n=0

`(dδn)

)
≤ ||x||1.

Consequently,

τ
(
I[1,∞)(|γN |)

)
≤ τ(r(γN )) ≤ τ

(
N∨
n=0

r(dγn)

)
≤ ||x||1

and analogously

τ
(
I[1,∞)(|δN |)

)
≤ τ(`(δN )) ≤ τ

(
N∨
n=0

`(dδn)

)
≤ ||x||1.

Step 4. The �nal calculation. Combining the above estimates with (4.5) gives

τ
(
I[4,∞)(|yN |)

)
≤ 9||x||1.

This yields the desired claim. �
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5. Strong-type (p, p) inequality

In this section, we deal with the strong-type (p, p) inequalities for weakly and very weakly
di�erentially subordinate martingales. The following is our main result.

Theorem 5.1. Suppose that x, y are self-adjoint martingales.

(i) If y is weakly di�erentially subordinate to x, then for any 1 < p < 2 and any N ≥ 0 we have

‖yN‖p ≤ cp||xN ||p,
where

(5.1) cp =
4Bp−1

Bp−1 − 1

(
9Bp − 3 +

4Bp(Bp − 1)

1−Bp−2

)1/p

and B > 1.
(ii) If y is very weakly di�erentially subordinate to x, then for any p ≥ 2 and any N ≥ 0 we have

||yN ||p ≤ cp||xN ||p,
where c2 = 1 and, for p > 2,

cp =
21+1/pp(1 + 22−4/p)1/2B(p+2)/2

(1−B2−p)1/2

and B = 1 + 1/p.

Remark 5.2. (i) Note that cp is of order O((p − 1)−1) as p → 1+ (e.g., set B = 2 in (5.1)) and
O(p) as p→∞. In the light of (1.1), this is already the best possible in the commutative setting.

(ii) As we already mentioned in the introductory section (see also Example 3.4), to show the
strong-type (p, p) inequality for p ≥ 2, the very weak di�erential subordination is su�cient.
However, for 1 < p < 2, we do need the stronger condition (3.1).

The proofs in the cases 1 < p < 2 and p ≥ 2 are quite di�erent. For the sake of convenience
and clarity, we have decided to split this section accordingly into two parts.

5.1. The case 1 < p < 2. The proof of the Lp-estimate for this range of p will depend heavily on
the weak-type estimate of the previous section and the objects introduced there. Our reasoning
can be regarded as a variant of a real interpolation: see Remark 5.5 below.

First, we introduce several auxiliary objects. Let x, y be two self-adjoint martingales. For a
�xed λ > 0, let (Rλn)n≥0 be the sequence of projections from the previous section, built on the
martingale x/λ: that is, we have Rλ−1 = I and, for any n ≥ 0,

Rλn = Rλn−1I(−λ,λ)(R
λ
n−1xnR

λ
n−1).

Note that when λ = 1, the family of projections (R1
n)n≥0 are just those we used in Section 4.

In the sequel, we still use (Rn)n≥0 to denote (R1
n)n≥0. Next, consider the following modi�cation

introduced by Randrianantoanina [43]. Namely, for a �xed B > 1, n ≥ 0 and k ∈ Z, we set

(5.2) PB
k

n :=
∧
`≥k

RB
`

n .

The reason for the introduction of the family P is to ensure the monotonicity property with

respect to both n and k. More precisely, note that for any �xed k, the projections (RB
k

n )n≥0
are decreasing when n increases; however, there is no monotonicity if we �x n and change k.

The new projections (PB
k

n )n,k have the monotonicity property �in both directions�, i.e., we have

PB
`

n ≤ PB
k

m if n ≥ m and ` ≤ k. Note that in the commutative case we have PB
k

n = RB
k

n , and
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thus we may regard PB
k

n as the �corrected� noncommutative version of the indicator function of
the set {max0≤m≤n |xm| < Bk}.

The next object, to be needed later, is a certain family of special operators. Namely, for n ≥ 0,
let

(5.3) an :=
∑
k∈Z

Bk(PB
k+1

n − PBk

n ).

These operators can be interpreted as a weak noncommutative version of the maximal function of
x. Indeed, this follows immediately from the fact that in the commutative setting we have

an =
∑
k∈Z

Bk1{Bk≤max0≤m≤n |xm|<Bk+1}.

The lemma below is devoted to the comparison of the Lp-norms of a and x.

Lemma 5.3. Let 1 < p <∞. Then ‖aN‖p ≤ Bp−1

Bp−1−1‖xN‖p for any N .

Proof. We may assume that ‖xN‖p <∞, since otherwise there is nothing to prove. It is convenient
to split the reasoning into two parts.

Step 1. Inequalities for truncated versions of aN . Consider the operators

aN,M :=
∑
k≤M

Bk(PB
k+1

n − PBk

n ),

where M is an arbitrary integer. Note that aN,M ≤ BM and hence in particular ‖aN,M‖p < ∞.
Furthermore, it is easy to see that

τ
(
apN,M

)
= τ

∑
k≤M

Bkp
(
PB

k+1

N − PBk

N

)
= τ

∑
k≤M

∑
`≤k

(
B`p −B(`−1)p

)(
PB

k+1

N − PBk

N

)
= τ

∑
`≤M

(
B`p −B(`−1)p

) M∑
k=`

(
PB

k+1

N − PBk

N

)
= (1−B−p)τ

∑
`≤M

B`p
(
PB

M+1

N − PB`

N

) .

(5.4)

We have τ(I −PBM+1

N ) <∞ (see below), so τ
(∑

`≤M B`p
(
I − PBM+1

N

))
<∞ and we may write

τ
(
apN,M

)
= (1−B−p)τ

∑
`≤M

B`p
(
I − PB`

N

)− (1−B−p)τ

∑
`≤M

B`p
(
I − PBM+1

N

) .

Denote the �rst term on the right by (1−B−p)VM . Then τ
(
apN,M

)
≤ (1−B−p)VM <∞ and

VM = τ

∑
`≤M

B`p
(
I −RB`

N

)+ τ

∑
`≤M

B`p
(
RB

`

N − PB
`

N

) := VM,1 + VM,2.
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From the fact that RB
`

N − PB
`

N is a subprojection of I − PB`+1

N , it follows that

VM,2 ≤ τ

∑
`≤M

B`p
(
I − PB`+1

N

) = B−pVM+1.

Thus we have VM ≤ VM,1 +B−pVM+1, or equivalently,

(5.5) (1−B−p)VM ≤ VM,1 +B−p(VM+1 − VM ) = VM,1 +BMpτ
(
I − PBM+1

N

)
,

since VM is �nite. On the other hand, from the proof of Lemma 4.2 (iv), we know that

τ
(
I −RB`

N

)
≤ B−`τ

((
I −RB`

N

)
|xN |

)
,

which gives

VM,1 ≤ τ

∑
`≤M

B`(p−1)
(
I −RB`

N

)
|xN |

 ≤ τ
∑
`≤M

B`(p−1)
(
I − PB`

N

)
|xN |

 .

Arguing as in (5.4), we obtain that (all the relevant traces are easily shown to be �nite)

VM,1 ≤
1

1−B−(p−1)
τ

∑
k≤M

Bk(p−1)
(
PB

k+1

N − PBk

N

)
|xN |

+ τ

∑
`≤M

B`(p−1)(I − PBM+1

N )|xN |


=

Bp−1

Bp−1 − 1

(
τ
(
ap−1N,M |xN |

)
+BM(p−1)τ

(
(I − PBM+1

N )|xN |
))

.

Now, by the Hölder inequality, we have τ
(
ap−1N,M |xN |

)
≤ ‖aN,M‖p−1p ‖xN‖p and

τ
(

(I − PBM+1

N )|xN |
)
≤ τ

(
I − PBM+1

N

)(p−1)/p
‖xN‖p,

which combined with the previous estimate yields

VM,1 ≤
Bp−1

Bp−1 − 1

(
‖aN,M‖p−1p +

(
BMpτ

(
I − PBM+1

N

))(p−1)/p
)
‖xN‖p.

This bound, together with the inequality τ(apN,M ) ≤ (1−B−p)VM and (5.5), implies

τ
(
apN,M

)
≤ Bp−1

Bp−1 − 1

(
‖aN,M‖p−1p +

(
BMpτ

(
I − PBM+1

N

))(p−1)/p
)
‖xN‖p +BMpτ

(
I − PBM+1

N

)
.

(5.6)

Step 2. Handling the last two terms in (5.6). Observe that

τ
(
I − PBM+1

N

)
≤

∑
j≥M+1

τ
(
I −RBj

N

)
≤

∑
j≥M+1

B−jτ
(

(I −RBj

N )|xN |
)

≤

 ∑
j≥M+1

B−j

 τ
(

(I − PBM+1

N )|xN |
)

≤ B−M−1(1−B−1)−1τ
(

(I − PBM+1

N )|xN |
)
,
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so in particular τ
(
I − PBM+1

N

)
→ 0 as M →∞. Furthermore, by the Hölder inequality,

τ
(
I − PBM+1

N

)
≤ B−M−1(1−B−1)−1τ

(
(I − PBM+1

N

)(p−1)/p
‖(I − PBM+1

N )|xN |(I − PB
M+1

N )‖p,

or equivalently

BMpτ
(
I − PBM+1

N

)
≤ B−p(1−B−1)−p‖(I − PBM+1

N )|xN |(I − PB
M+1

N )‖p.

But ‖xN‖p < ∞ and τ
(
I − PBM+1

N

)
→ 0 as M → ∞, so the above estimate implies that

limM→∞B
Mpτ

(
I − PBM+1

N

)
= 0. Consequently, for any ε ∈ (0, 1) and M large enough we have

BMpτ
(
I − PBM+1

N

)
≤ ετ(apN,M ). Plugging this into (5.6) gives an inequality equivalent to

‖aN,M‖p ≤
Bp−1(1 + ε(p−1)/p)

(Bp−1 − 1)(1− ε)
‖xN‖p.

We complete the proof by letting M →∞ and noting that ε ∈ (0, 1) was arbitrary. �

The proof of Theorem 5.1 is mainly based on an estimate on τ(|yN | > 4Bk) which is stated
below as a lemma. Actually, this lemma is already implicit in Section 4, we include a proof for
the reader's convenience.

Lemma 5.4. For any N ≥ 0 and k ∈ Z, we have

(5.7) τ
(
I[4Bk,∞) (|yN |)

)
≤ 2B−2kτ

(
RB

k

N xNR
Bk

N xNR
Bk

N

)
+ 9B−kτ

(
(I −RBk

N )|xN |
)
.

Proof. By homogeneity, it su�ces to verify the lemma for k = 0 (remember that, in this case, we

use RN to denote RB
0

N ). Set α, β, γ and δ as in the proof of Theorem 4.1. Then, combining (4.6)
and (4.2), we deduce that

τ
(
I[1,∞)(|αN |)

)
≤ ‖αN‖22 ≤ 2τ

(
N∑
k=0

RkdxkRk−1dxkRk

)

≤ 2τ(RNxNRNxNRN ) + 4τ

(
N∑
k=0

(Uk +Dk)|xN |

)
= 2τ(RNxNRNxNRN ) + 4τ ((I −RN )|xN |) .

For the term β, the estimate (4.8) together with Lemma 4.4 give that

τ
(
I[1,∞)(|βN |)

)
≤ ‖βN‖1 ≤ 2τ ((I −RN )|xN |) + τ (I −RN ) ≤ 3τ((I −RN )|xN |)

(the latter passage is due to Lemma 4.2 (iv)). As for the terms γ and δ, we have

τ
(
I[1,∞)(|γN |)

)
≤ τ(I −RN ) ≤ τ((I −RN )|xN |)

and, similarly, τ
(
I[1,∞)(|δN |)

)
≤ τ((I −RN )|xN |). Hence,

τ
(
I[4,∞)(|yN |)

)
≤ τ

(
I[1,∞)(|αN |)

)
+ τ

(
I[1,∞)(|βN |)

)
+ τ

(
I[1,∞)(|γN |)

)
+ τ

(
I[1,∞)(|δN |)

)
≤ 2τ(RNxNRNxNRN ) + 9τ

(
(I −RN )|xN |

)
.

The proof is complete. �

We are now ready to show the Lp estimate for 1 < p < 2. Before we do this, let us make an
informal, but interesting observation.
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Remark 5.5. The inequality (5.7) has a very nice interpretation in the language of interpolation
theory. Clearly, the left-hand side, when multiplied by Bkp and summed over all k ∈ Z, returns
a p-th moment of yN up to some multiplicative constant. The right-hand side can be regarded
as a K-functional of the operator xN , corresponding to the interpolating spaces L1 and L2. To
make this more visible, take k = 0 and look at this expression in the commutative context. As
we have explained above, the projection RN corresponds to the indicator function of the set
{max0≤n≤N |xn| ≤ 1} and hence, roughly speaking, the operator

2RNxNRNxNRN + 9(I −RN )|xN |

is equal to the quadratic term 2x2N when xN is small and to the linear term 9|xN | when xN is
large. This is precisely the intuition behind the K-functional; actually, the cut-o� level (which
decides whether xN is small or large) refers to the maximal function max0≤n≤N |xn|, so summing
(5.7) over all k ∈ Z will additionally involve the weak maximal operator aN in our considerations.
However, this part will be handled by means of Lemma 5.3.

Let us proceed to the formal reasoning.

Proof of Theorem 5.1 (i). For any N ≥ 0, we have

‖yN‖pp =

∫ ∞
0

ptp−1τ
(
I[t,∞)(|yN |)

)
dt

≤
∑
k

∫ 4Bk+1

4Bk

ptp−1τ
(
I[4Bk,∞)(|yN |)

)
dt

= 4p(Bp − 1)
∑
k

Bkpτ
(
I[4Bk,∞)(|yN |)

)
:= 4p(Bp − 1)W.

(5.8)

Multiplying both sides of the inequality (5.7) by Bkp and taking the sum over all k ∈ Z, we obtain

W ≤ 2W1 + 9W2,

where

W1 =
∑
k

Bk(p−2)τ
(
RB

k

N xNR
Bk

N xNR
Bk

N

)
and

W2 =
∑
k

Bk(p−1)τ
(

(I −RBk

N )|xN |
)
.

Reversing the arguments used in (5.4), we deduce that

W2 ≤
∑
k

Bk(p−1)τ
(

(I − PBk

N )|xN |
)

=
Bp−1

Bp−1 − 1

∑
k

Bk(p−1)τ
(

(PB
k+1

N − PBk

N )|xN |
)

=
Bp−1

Bp−1 − 1
τ
(
ap−1N |xN |

)
.

Using the Hölder inequality and Lemma 5.3, we arrive at

W2 ≤
(

Bp−1

Bp−1 − 1

)p
‖xN‖pp.
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Now we deal with W1. Observe that

τ
(
RB

k

N xNR
Bk

N xNR
Bk

N

)
= τ

(
PB

k

N xNP
Bk

N xN

)
+ 2τ

(
(RB

k

N − PB
k

N )xNP
Bk

N xN

)
+ τ

(
(RB

k

N − PB
k

N )xN (RB
k

N − PB
k

N )xN

)
.

Since PB
k

N is a subprojection of RB
k

N , it follows from Lemma 4.2 (iv) that

τ
(

(RB
k

N − PB
k

N )xNP
Bk

N xN

)
= τ

(
(RB

k

N − PB
k

N )RB
k

N xNR
Bk

N PB
k

N RB
k

N xNR
Bk

N (RB
k

N − PB
k

N )
)

≤ B2kτ
(
RB

k

N − PB
k

N

)
.

In a similar way, we may also show that

τ
(

(RB
k

N − PB
k

N )xN (RB
k

N − PB
k

N )xN

)
≤ B2kτ

(
RB

k

N − PB
k

N

)
.

Therefore,

τ
(
RB

k

N xNR
Bk

N xNR
Bk

N

)
≤ τ

(
PB

k

N xNP
Bk

N xN

)
+ 3B2kτ

(
RB

k

N − PB
k

N

)
.

Multiplying both sides of the above inequality by Bk(p−2) and taking the sum over all k ∈ Z, we
obtain that

W1 ≤
∑
k

Bk(p−2)τ
(
PB

k

N xNP
Bk

N xN

)
+ 3

∑
k

Bkpτ
(
RB

k

N − PB
k

N

)
:= W11 + 3W12.

For each k ∈ Z, RBk

N − PB
k

N = RB
k

N −RB
k

N ∧ PB
k+1

N is equivalent to a subprojection of I − PBk+1

N .
Thus,

W12 ≤
∑
k

Bkpτ
(
I − PBk+1

N

)
= B−p

∑
k

Bkpτ
(
I − PBk

N

)
.

By reversing the arguments in (5.4), we conclude that

W12 ≤
1

Bp − 1
‖aN‖pp ≤

1

Bp − 1

(
Bp−1

Bp−1 − 1

)p
‖xN‖pp.

As for W11, note that

τ
(
PB

k

N xNP
Bk

N xN

)
=
∑
r,s≤k

τ
(

(PB
r

N − PBr−1

N )xN (PB
s

N − PBs−1

N )xN

)
.

By the tracial property, we conclude that

τ
(
PB

k

N xNP
Bk

N xN

)
≤ 2

∑
s≤r≤k

τ
(

(PB
r

N − PBr−1

N )xN (PB
s

N − PBs−1

N )xN

)
= 2

∑
r≤k

τ
(

(PB
r

N − PBr−1

N )xNP
Br

N xN

)
= 2

∑
r≤k

τ
(

(PB
r

N − PBr−1

N )PB
r

N xNP
Br

N xNP
Br

N (PB
r

N − PBr−1

N )
)

≤ 2
∑
r≤k

B2rτ
(
PB

r

N − PBr−1

N

)
,
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where the last inequality is due to the fact ||PBr

N xNP
Br

N ||∞ ≤ Br. Thus we have

W11 ≤ 2
∑
k

∑
r≤k

Bk(p−2)+2rτ
(
PB

r

N − PBr−1

N

)
= 2

∑
r

B2r
∑
k≥r

Bk(p−2)τ
(
PB

r

N − PBr−1

N

)
=

2

1−Bp−2

∑
Bprτ

(
PB

r

N − PBr−1

N

)
=

2Bp

1−Bp−2 τ
(
apN
)

and hence by Lemma 5.3 we get

W11 ≤
2Bp

1−Bp−2

(
Bp−1

Bp−1 − 1

)p
‖xN‖pp.

Combining (5.8) with the above estimates of W11, W12 and W2, we conclude that

‖yN‖pp ≤
(

4Bp−1

Bp−1 − 1

)p(
9Bp − 3 +

4Bp(Bp − 1)

1−Bp−2

)
‖xN‖pp.

The proof is complete. �

5.2. The case p > 2. For p > 2, the proof will be more involved technically. We will again use
the projections R, D, U , but this time they will be built from the martingale y. To avoid confusion
and the abuse of notation, we will write these letters in italics: R, D and U , respectively. More
precisely, we de�ne these projections by R−1 = I and, inductively,

Rn = Rn−1I(−1,1)(Rn−1ynRn−1),
Un = Rn−1I(−∞,−1](Rn−1ynRn−1),
Dn = Rn−1I[1,∞)(Rn−1ynRn−1).

Then the assertions of Lemmas 4.2 and 5.3 are still valid, if x is replaced by y in appropriate
places.

The proof of Theorem 5.1 (ii) rests on several ingredients. We start with a key lemma, which
is of independent interest.

Lemma 5.6. Let 2 < p < ∞. Suppose that x, y are self-adjoint martingales such that y is very
weakly subordinate to x. Then for any N ≥ 0 we have

(5.9) τ

(I −RN )

(
yN −

N∑
n=0

(Dn − Un)

)2
 ≤ 2τ

(
(I −RN )(x2N + b)

)
,

where b =
(∑N

k=0 |dxk|p
)2/p

.

Proof. It is convenient to split the reasoning into a few parts.

Step 1. We will �rst prove that for any n ≥ 0,

τ
(

(Rn−1 −Rn)dy2n(Rn−1 −Rn)
)

≥ τ
(
Dn(yn − I)Rn−1(yn − I) + Un(yn + I)Rn−1(yn + I)

)
= τ

(
(Rn−1 −Rn)(yn −Dn + Un)Rn−1(yn −Dn + Un)

)
.

(5.10)
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The second passage above is straightforward and follows from the tracial property of τ and the
simple structural properties of Un, Dn, Rn−1 and Rn listed in Lemma 4.2. Thus, we only verify
the inequality here. Note that both the operators Rn−1(−yn−1 − I)Rn−1 and Un(yn + I)Un are
nonpositive. These imply that the operators

Un(−yn−1 − I)Un = UnRn−1(−yn−1 − I)Rn−1Un

and

Un(2yn + I − yn−1)Un = 2Un(yn + I)Un + Un(−yn−1 − I)Un
are also nonpositive. Hence, we have

τ
(
Un(−yn−1 − I)Un(2yn + I − yn−1)Un

)
≥ 0.

Equivalently, this estimate can be rewritten in the form

τ(UndynUndynUn) ≥ τ
(
Un(yn + I)Un(yn + I)Un

)
.

Then, it follows from the commuting property of Un (i.e., Lemma 4.2 (ii)) that

τ(UndynUndynUn) ≥ τ
(
Un(yn + I)Rn−1(yn + I)Un

)
.

The same reasoning shows that

τ(DndynDndynDn) ≥ τ
(
Dn(yn − I)Rn−1(yn − I)Dn

)
.

Combining the two last estimates with the observation that

τ
(

(Rn−1 −Rn)dy2n(Rn−1 −Rn)
)

= τ
(
Undy2nUn

)
+ τ(Dndy2nDn)

≥ τ(UndynUndynUn) + τ(DndynDndynDn),

we obtain the inequality in (5.10).

Step 2. Now, we shall prove that for any n ≥ 0,

τ
(

(Rn−1 −Rn)(yN −Dn+Un)Rn−1(yN −Dn + Un)
)

≤ τ
(

(Rn−1 −Rn)(x2N + b)(Rn−1 −Rn)
)
.

(5.11)

By the very weak di�erential subordination, we have

(Rn−1 −Rn)dy2n(Rn−1 −Rn) ≤ (Rn−1 −Rn)dx2n(Rn−1 −Rn),

and hence (5.10) implies

τ
(

(Rn−1 −Rn)(yn −Dn + Un)Rn−1(yn −Dn + Un)
)

≤ τ
(

(Rn −Rn−1)dx2n(Rn−1 −Rn)
)
.

(5.12)

For k > n, again by the very weak di�erential subordination, we have

τ
(

(Rn−1 −Rn)dy2k(Rn−1 −Rn)
)
≤ τ

(
(Rn−1 −Rn)dx2k(Rn−1 −Rn)

)
.
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Then, by the martingale property of x and y, we obtain that

τ(
(
Rn−1 −Rn)(yN − yn)2(Rn−1 −Rn)

)
≤ τ

(
(Rn−1 −Rn)(xN − xn)2(Rn−1 −Rn)

)
= τ

(
(Rn−1 −Rn)(x2N − x2n)(Rn−1 −Rn)

)
≤ τ

(
(Rn−1 −Rn)x2N (Rn−1 −Rn)

)
.

Thus, we have

τ
(

(Rn−1 −Rn)(yN − yn)Rn−1(yN − yn)(Rn−1 −Rn)
)

≤ τ
(

(Rn−1 −Rn)x2N (Rn−1 −Rn)
)
.

Adding this estimate to (5.12) and using the fact that En(yN − yn) = 0, we obtain

τ
(

(Rn−1 −Rn)(yN −Dn+Un)Rn−1(yN −Dn + Un)
)

≤ τ
(

(Rn−1 −Rn)(x2N + dx2n)(Rn−1 −Rn)
)
.

(5.13)

Since p > 2 and
∑N

n=0 |dxn|p ≥ |dxk|p for each k between 0 and N , we conclude that

dx2k ≤ b for any k = 0, 1, 2, · · · , N.
Combining this with (5.13), we obtain the desired inequality (5.11).

Step 3. Our �nal step is to sum the estimates (5.11) over n. Observe that

N∑
n=0

τ
(

(Rn−1 −Rn)yNRn−1yN
)

=
N∑
n=0

N∑
k=n

τ
(

(Rn−1 −Rn)yN (Rk−1 −Rk)yN
)

+
N∑
n=0

τ
(

(Rn−1 −Rn)yNRNyN
)

≥
N∑
k=0

k∑
n=0

τ
(

(Rn−1 −Rn)yN (Rk−1 −Rk)yN
)

=
N∑
k=0

τ
(

(I −Rk)yN (Rk−1 −Rk)yN
)
.

Consequently,

2

N∑
n=0

τ
(

(Rn−1 −Rn)yNRn−1yN
)

≥
N∑
n=0

τ
(

(Rn−1 −Rn)yNRn−1yN
)

+

N∑
k=0

τ
(

(I −Rk)yN (Rk−1 −Rk)yN
)

=

N∑
n=0

τ
(

(I −Rn +Rn−1)yN (Rn−1 −Rn)yN

)
= τ

(
(I −RN )y2N

)
+

N∑
n=0

τ
(

(Rn−1 −Rn)yN (Rn−1 −Rn)yN

)
.

(5.14)
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Multiply both sides of (5.11) by 2 and take the sum over n. Then, combining the obtained
inequality with (5.14), we get

τ

(I −RN )

(
yN −

N∑
n=0

(Dn − Un)

)2


+
N∑
n=0

τ
(

(Rn−1 −Rn)(yN −Dn + Un)(Rn−1 −Rn)(yN −Dn + Un)
)

≤ 2τ
(

(I −RN )(x2N + b)
)

which implies that

τ

(I −RN )

(
yN −

N∑
n=0

(Dn − Un)

)2
 ≤ 2τ

(
(I −RN )(x2N + b)

)
.

This is precisely the claim. �

The inequality (5.9) gives an e�cient bound for the distribution function of the dominated
martingale. To state this bound, we need other auxiliary families of projections. For a �xed
number c > 1, consider the families (Sn)n≥−1, (Qn)n≥0 and (Tn)n≥0 given by S−1 = I and,
inductively, for n ≥ 0,

Sn = Sn−1I(−c,c)(Sn−1ynSn−1), Qn = I[c,∞)(Sn−1ynSn−1), Tn = Sn−1 − Sn −Qn.

Therefore, (Sn)n≥−1 coincides with the family (Rcn)n≥−1 of projections corresponding to the level
c, andQ, T are the appropriate modi�cations of D and U . However, for the notational convenience,
we have decided to use di�erent letters.

We will prove the following important estimate.

Theorem 5.7. For any c > 1 and any nonnegative integer N we have

(5.15) τ(I − SN ) ≤ 4(c− 1)−2τ
(

(I −RN )(x2N + b)
)
.

Before we proceed to the proof, let us make a crucial observation.

Remark 5.8. The above result can be regarded as a variant of the so-called good-λ inequality, a
powerful tool which is used widely in the commutative probability theory and harmonic analysis.
This tool was introduced by Burkholder in [10]. Roughly speaking, the idea behind the approach
(in the probabilistic context) is the following: in order to establish the estimate

(5.16) E(Y p) ≤ cpE(Xp)

for some p, some �nite constant cp and some nonnegative random variables, it su�ces to establish
the associated good-λ inequality

(5.17) P(Y ≥ βλ, X ≤ δλ) ≤ αβ,δP(Y ≥ λ),

for some β, δ, αβ,δ > 0 and all λ > 0. Clearly, this bound, if valid, implies

P(Y ≥ βλ) ≤ P(X > δλ) + αβ,δP(Y ≥ λ),

which multiplied by λp−1 and integrated over λ from 0 to ∞ yields (5.16), if only the parameters
β, δ and αβ,δ were chosen appropriately. This method has found many interesting and important
applications, in particular it has turned out to yield best-order constants in several estimates; see
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e.g. [10, 18, 33]. The problem of extending good-λ inequalities to the noncommutative realm is a
long-standing open problem.

Theorem 5.7 brings some new information in this direction. To explain this, let us mention
here an important intrinsic feature of a general good-λ inequality (5.17) and related bounds (cf.
[10]), which is key to its functionality. Namely, the left- and the right-hand side involve di�erent
level sets of the dominated random variable. This crucial phenomenon occurs also for estimate
(5.15) in the classical setting: then the bound becomes

P
(

max
0≤n≤N

|yn| ≥ c
)
≤ 4(c− 1)−2E

(
(x2N + b)1{max0≤n≤N |yn|≥1}

)
.

Thus we �nd reasonable to call (5.15) the noncommutative good-λ inequality corresponding to the
Lp-bounds for di�erentially subordinate martingales.

Proof of Theorem 5.7. The reasoning is quite lengthy and rests on a number of separate parts.

Step 1. By the very de�nition of S, Q and T ,

τ(I − SN ) =

N∑
n=0

τ(Sn−1 − Sn) =

N∑
n=0

(
τ(Qn) + τ(Tn)

)
.

Now �x n ∈ {0, 1, 2, · · · , N} and observe that

τ(Qn) = τ
(
I[c,∞)(QnynQn)

)
= τ

(
I[c,∞)

(
Qn
(
RnynRn + (I −Rn)ynRn + yn(I −Rn)

)
Qn

))
.

By the properties of the projections R, D and U , the operator dn := RnynRn +
∑n

k=0(Dk − Uk)
satis�es the double estimate −I ≤ dn ≤ I. Furthermore, the projections D0, U0, D1, U1, · · · ,
Dn, Un are mutually orthogonal and sum up to I − Rn. Consequently, if we denote zn = yn −∑n

k=0(Dk − Uk), then we may write

τ(Qn) = τ

(
I[c,∞)

(
Qn
(
dn + (I −Rn)znRn + zn(I −Rn)

)
Qn

))
≤ τ

(
I[c−1,∞)

(
Qn
(
(I −Rn)znRn + zn(I −Rn)

)
Qn

))
.

Therefore, by Chebyshev's inequality,

(c− 1)2τ(Qn) ≤ τ
((

Qn
(
(I −Rn)znRn + zn(I −Rn)

)
Qn

)2)
≤ τ

(
Qn

(
(I −Rn)znRn + zn(I −Rn)

)2
Qn

)
= τ

(
Qnzn(I −Rn)znQn

)
+ τ
(
Qn(I −Rn)znRnzn(I −Rn)Qn

)
= I1 + I2.

(5.18)

We will analyze the terms I1 and I2 separately below. Before we do that, let us record here that
an analogous reasoning yields the estimate

(c− 1)2τ(Tn) ≤ τ
(
Tnzn(I −Rn)znTn

)
+ τ
(
Tn(I −Rn)znRnzn(I −Rn)Tn

)
:= J1 + J2.(5.19)

(indeed, it su�ces to change y into −y; then Q and T interchange their roles).
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Step 2. Let us �rst deal with I1. By the martingale property of y, we have

τ
(
QnyN (I −Rn)yNQn

)
= τ

(
Qnyn(I −Rn)ynQn

)
+

N∑
k=n+1

τ
(
Qndyk(I −Rn)dykQn

)
≥ τ

(
Qnyn(I −Rn)ynQn

)
.

Therefore,

I1 = τ

(
Qn

(
yn −

n∑
k=0

(Dk − Uk)
)

(I −Rn)
(
yn −

n∑
k=0

(Dk − Uk)
)
Qn

)

≤ τ
(
Qn

(
yN −

n∑
k=0

(Dk − Uk)
)

(I −Rn)
(
yN −

n∑
k=0

(Dk − Uk)
)
Qn

)
.

Note that, if k > n, then Dk and Uk are subprojections of Rn and hence are orthogonal to I−Rn.
Thus, we conclude that

I1 ≤ τ
(
Qn

(
yN −

N∑
k=0

(Dk − Uk)
)

(I −Rn)
(
yN −

N∑
k=0

(Dk − Uk)
)
Qn

)
= τ

(
QnzN (I −Rn)zNQn

)
≤ τ

(
QnzN (I −RN )zNQn

)
.

(5.20)

Step 3. We turn our attention to I2, for which the calculations will be more involved. By the
martingale property of y, we have, for any k ≥ n,

τ
(
Qn(I −Rk)ykRkyk(I −Rk)Qn

)
≤ τ

(
Qn(I −Rk)ykRkyk(I −Rk)Qn

)
+ τ
(
Qn(I −Rk)dyk+1Rkdyk+1(I −Rk)Qn

)
= τ

(
Qn(I −Rk)yk+1Rkyk+1(I −Rk)Qn

)
= τ

(
Qn(I −Rk)yk+1(Rk −Rk+1)yk+1(I −Rk)Qn

)
+ τ
(
Qn(I −Rk)yk+1Rk+1yk+1(I −Rk)Qn

)
.

By the commuting property of the projection R described in Lemma 4.2 (ii), we have

(Rk −Rk+1)yk+1Rk+1 = Rk+1yk+1(Rk −Rk+1) = 0.

Combining this fact with the estimate above, we see that

τ
(
Qn(I −Rk)ykRkyk(I −Rk)Qn

)
≤ τ

(
Qn(I −Rk)yk+1(Rk −Rk+1)yk+1(I −Rk)Qn

)
+ τ
(
Qn(I −Rk+1)yk+1Rk+1yk+1(I −Rk+1)Qn

)(5.21)

(i.e., in comparison to the last line of the preceding chain of inequalities, the projection Rk has
been changed to Rk+1).

Now, the projections I − Rn and Rn are orthogonal, and each Dj , Uj is contained in one of
them. Consequently,

I2 = τ
(
Qn(I −Rn)znRnzn(I −Rn)Qn

)
= τ

(
Qn(I −Rn)ynRnyn(I −Rn)Qn

)
.
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Hence, by the inductive use of (5.21), we get

I2 ≤ τ
(
Qn(I −RN )yNRNyN (I −RN )Qn

)
+

N−1∑
k=n

τ
(
Qn(I −Rk)yk+1(Rk −Rk+1)yk+1(I −Rk)Qn

)
.

By the martingale property of y, we further get

I2 ≤ τ
(
Qn(I −RN )yNRNyN (I −RN )Qn

)
+
N−1∑
k=n

τ
(
Qn(I −Rk)yN (Rk −Rk+1)yN (I −Rk)Qn

)
.

Finally, arguing as above, we may replace yN by zN . This follows at once from the fact that
the pairs of projections I −RN ; RN and I −Rk; Rk −Rk+1 are orthogonal and all Dk, Uk are
subprojections of one of the elements of each pair. Therefore we have proved that

I2 ≤ τ
(
Qn(I −RN )zNRNzN (I −RN )Qn

)
+
N−1∑
k=0

τ
(
Qn(I −Rk)zN (Rk −Rk+1)zN (I −Rk)Qn

)
,

(5.22)

which is the desired upper bound for I2.

Step 4. Similar to the estimates we obtained in (5.20) and (5.22) for I1 and I2, we may show that

(5.23) J1 ≤ τ
(
TnzN (I −RN )zNTn

)
and

J2 ≤ τ
(
Tn(I −RN )zNRNzN (I −RN )Tn

)
+
N−1∑
k=0

τ
(
Tn(I −Rk)zN (Rk −Rk+1)zN (I −Rk)Tn

)
.

(5.24)

Step 5. Now we will plug the estimates (5.20), (5.22) into (5.18) and the estimates (5.23), (5.24)
into (5.19), and then plus them and sum over n. For convenience, let us sum separately the pair
of terms I1, J1 and the pair of terms I2, J2. First, note that by the tracial property,

N∑
n=0

(I1 + J1) ≤
N∑
n=0

τ
(
QnzN (I −RN )zNQn

)
+ τ
(
TnzN (I −RN )zNTn

)
≤ τ

((
N∑
n=0

(Qn + Tn)

)
zN (I −RN )zN

)
≤ τ

(
zN (I −RN )zN

)
.

(5.25)
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Now we denote

M1 :=
N∑
n=0

(
τ
(
Qn(I −RN )zNRNzN (I −RN )Qn

)
+ τ
(
Tn(I −RN )zNRNzN (I −RN )Tn

))
;

M2 :=
N∑
n=0

N−1∑
k=0

(
τ

(
Qn(I −Rk)zN (Rk −Rk+1)zN (I −Rk)Qn

)
+ τ

(
Tn(I −Rk)zN (Rk −Rk+1)zN (I −Rk)Tn

))
.

Using the tracial property again, we have

M1 = τ

((
N∑
n=0

(Qn + Tn)

)
(I −RN )zNRNzN (I −RN )

)
≤ τ

(
(I −RN )zNRNzN (I −RN )

)
.

(5.26)

Similarly,

M2 ≤
N−1∑
k=0

τ
(
(I −Rk)zN (Rk −Rk+1)zN

)
.

If we write I −Rk =
∑k−1

`=−1(R`−R`+1), plug this above and change the order of summation, we
obtain that the right hand side of the above expression is equal to

N−2∑
`=−1

τ
(
(R` −R`+1)zN (R`+1 −RN )zN

)
.

Therefore, by the tracial property, we get

2M2 ≤ 2
N−1∑
k=0

τ

(
(I −Rk)zN (Rk −Rk+1)zN

)

=

N−1∑
k=0

τ

(
(I −Rk)zN (Rk −Rk+1)zN

)

+

N−2∑
`=−1

τ((R` −R`+1)zN (R`+1 −RN )zN )

=
N−1∑
k=−1

τ

(
(I −Rk +Rk+1 −RN )zN (Rk −Rk+1)zN

)

≤
N−1∑
k=−1

τ

(
(I −RN )zN (Rk −Rk+1)zN

)
= τ

(
(I −RN )zN (I −RN )zN

)
.

(5.27)
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Combining the estimates (5.26) and (5.27), we conclude that

N∑
n=0

(I2 + J2) = M1 +M2 ≤τ
(
(I −RN )zNRNzN (I −RN )

)
+

1

2
τ
(
(I −RN )zN (I −RN )zN

)
.

(5.28)

Plugging (5.25) and (5.28) into (5.18) and (5.19), we obtain

(c− 1)2τ(I − SN )

= (c− 1)2
N∑
n=0

(
τ(Qn) + τ(Tn)

)
=

N∑
n=0

(I1 + J1 + I2 + J2)

≤ τ
(
zN (I −RN )zN + (I −RN )zNRNzN (I −RN ) +

1

2
(I −RN )zN (I −RN )zN

)
≤ 2τ(zN (I −RN )zN ).

It su�ces to apply (5.9) to obtain the desired assertion. �

We now provide the proof of the strong-type estimate for the case 2 ≤ p <∞.

Proof of Theorem 5.1 (ii). In the case p = 2 there is nothing to prove, so we assume that p > 2.

Take B = c = 1 + 1/p and, in analogy to the case 1 < p < 2, let RBk

N be the projection of y

corresponding to the level Bk. Since B = c, we have Sn = RBn and the inequality (5.15) becomes

τ(I −RBN ) ≤ 4p2τ
(
(I −RN )(x2N + b)

)
,

(recall that RN stands for R1
N ). Therefore, by homogeneity, we get

B2kτ(I −RBk+1

N ) ≤ 4p2τ
(
(I −RBk

N )(x2N + b)
)
≤ 4p2τ

(
(I − PBk

N )(x2N + b)
)
,

where the projections P are given by (5.2). Multiply both sides by Bk(p−2) and sum over all k ∈ Z
to obtain

(5.29)
∑
k

Bkpτ(I −RBk+1

N ) ≤ 4p2

1−B2−p τ(ap−2N (x2N + b)),

where the operator a is de�ned in (5.3). Let us now handle the right-hand side. First, note that
the following estimate can be shown by interpolation (see also Junge and Xu [27]):

(5.30) ||b||1/2p/2 =

(
N∑
n=0

||dxn||pp

)1/p

≤ 21−2/p||xN ||p.

Applying the Hölder inequality, triangle inequality in Lp/2 and the estimate (5.30), we obtain

τ
(
ap−2N (x2N + b)

)
≤ ||aN ||p−2p ||x2N + b||p/2

≤ ||aN ||p−2p

(
||x2N ||p/2 + ||b||p/2

)
≤ (1 + 22−4/p)||aN ||p−2p ||xN ||2p.
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Furthermore, by the �rst estimate in (5.6) and the de�nition of V1, we obtain

||aN ||p−2p ≤

(∑
k

Bkpτ(I −RBk

N )

)1−2/p

= Bp−2

(∑
k

Bkpτ(I −RBk+1

N )

)1−2/p

.

Plugging these two observations into (5.29) yields, after some simple manipulations,

(5.31)

(∑
k

Bkpτ(I −RBk+1

N )

)1/p

≤ 2p(1 + 22−4/p)1/2B(p−2)/2

(1−B2−p)1/2
||xN ||p.

It remains to compare the left hand side to ||yN ||p. To this end, observe that I[1,∞)(yN ) is
equivalent to a subprojection of I − RN . Indeed, suppose that a nonzero vector ξ belongs to
I[1,∞)(yN )(H) ∩RN (H). Then

||ξ||2 ≤ 〈yNξ, ξ〉 = 〈yNRNξ,RNξ〉 = 〈RNyNRNξ, ξ〉 < ||ξ||2,
a contradiction (the last inequality is due to the very de�nition of RN ). A similar argument
shows that I(−∞,−1](yN ) is equivalent to a subprojection of I − RN . Consequently, we have

τ
(
I[1,∞)(|yN |)

)
≤ 2τ(I −RN ) and, by homogeneity,

τ
(
I[Bk,∞)(|yN |)

)
≤ 2τ(I −RBk

N )

for each k. This implies

2
∑
k

Bkpτ(I −RBk+1

N ) ≥
∑
k

Bkpτ
(
I[Bk+1,∞)(|yN |)

)
=
∑
k

∑
`>k

Bkpτ
(
I[B`,B`+1)(|yN |)

)
≥
∑
`

B(`−1)pτ
(
I[B`,B`+1)(|yN |)

)
≥ B−2p||yN ||pp.

Plugging this bound into (5.31) gives the claim. �

6. Application: Burkholder-Gundy inequality

In this section we will show how Theorem 5.1 can be used to obtain Burkholder-Gundy inequal-
ities in the case p ≥ 2. Consider an arbitrary Lp-bounded self-adjoint martingale x = (xn)n≥0
on the algebra (M, τ) with some �ltration (Mn)n≥0. Fix a large positive integer N and consider
the larger von Neumann algebra N = MN+2⊗M equipped with the tensor product trace and
the �ltration Nn = MN+2⊗Mn, n = 0, 1, 2, · · · . Finally, consider the martingales ȳ = (ȳn)n≥0,
x̄ = (x̄n)n≥0 on the larger algebra with the di�erence sequences dx̄ = (dx̄n)n≥0, dȳ = (dȳn)n≥0
given by dx̄n = (e1,1 + en+2,n+2)⊗ dxn and dȳn = (e1,n+2 + en+2,1)⊗ dxn for n = 0, 1, 2, · · · , N ;
for remaining n, set dx̄n = dȳn = 0. It is obvious that dx̄ and dȳ are martingale di�erences and

dx̄2n = dȳ2n = (e1,1 + en+2,n+2)⊗ dx2n
for all n. In other words, the martingales x̄ and ȳ are di�erentially subordinate to each other.
Therefore, Theorem 5.1 implies

(6.1) c−1p ||x̄N ||p ≤ ||ȳN ||p ≤ cp||x̄N ||p, p ≥ 2.
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It remains to relate the Lp-norms of x̄N and ȳN to the appropriate norms of x. First, note that

|x̄N | = e1,1 ⊗ |xN |+
N∑
n=0

en+2,n+2 ⊗ |dxn|,

which implies that

||x̄N ||p =

(
||xN ||pp +

N∑
n=0

||dxk||pp

)1/p

.

This expression is comparable to ||xN ||p: by the estimate (5.30),

||xN ||p ≤ ||x̄N ||p ≤ (1 + 21−2/p)||xN ||p.
To analyze ȳN , we easily compute that

ȳ2N = e1,1 ⊗ S2
N (x) + zz∗,

where z =
∑N

n=0 en+2,1 ⊗ dxn. Consequently, we see that

||ȳN ||p =
(
‖SN (x)‖pp + ||zz∗||p/2p/2

)1/p
is not smaller than ||SN (x)||p and not larger than

||SN (x)||p + ||zz∗||1/2p/2 = ||SN (x)||p + ||z∗z||1/2p/2 = 2||SN (x)||p.

Combining the observations above with (6.1), we conclude that

||xN ||p ≤ ||x̄N ||p ≤ cp‖ȳN‖p ≤ 2cp||SN (x)||p
and

‖SN (x)‖p ≤ ‖ȳN‖p ≤ cp‖x̄N‖p ≤ (1 + 21−2/p)cp||xN ||p.
Thus we have proved the Burkholder-Gundy inequality in the range p ≥ 2, with upper and lower
constants of order O(p) as p→∞ (which is optimal: see Junge and Xu [28]). The case 1 < p < 2
can be deduced by duality (however, this time the obtained constant in the estimate

||x||p ≤ Cp||x||Hp(M)

is of order O((p− 1)−1), which is not the best). It would be nice to have an analogous argument
showing Burkholder-Gundy inequalities for 1 < p < 2 directly from Theorem 5.1. However, we
have been unable to �nd such a connection.
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