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Abstract. Let Sn denote the unit sphere in Cn. The purpose the paper is

to establish sharp L2 logL estimates for H and P+, the Hilbert transform
and the Riesz projection on Sn, respectively. The proof rests on the existence

of a certain superhamonic function on C satisfying appropriate majorization

conditions.

1. Introduction

Suppose that f(ζ) =
∑
n∈Z f̂(n)ζn is a complex-valued integrable function on

the unit circle S1 = {ζ ∈ C : |ζ| = 1}. Here, as usual, f̂(n) = 1
2π

∫ π
−π f(eiθ)e−inθdθ

denotes the n-th Fourier coefficient of f . For p ≥ 1, let Hp(T,C) consist of all

functions f satisfying f̂(n) = 0 for n < 0. Then Hp(T,C) is a closed subspace of
Lp(T,C) and can be identified with the space of analytic functions on the unit disc
B1. The Riesz projection (or analytic projection) P+ : Lp(S1,C) → Hp(S1,C), is
the operator given by

P+f(ζ) = f+(ζ) =
∑
n≥0

f̂(n)ζn, ζ ∈ S1.

One defines the complementary co-analytic projection on S1 by P− = I − P+.
These two projections are closely related to another classical operator, the Hilbert
transform (conjugate function) on S1, which is given by

Hf(ζ) = −i
∑
n∈Z

sgn(n)f̂(n)ζn, ζ ∈ S1.

Here sgn(n) = n/|n| for n 6= 0 and sgn(0) = 0. A classical theorem of M. Riesz [16]
asserts that the operator P+ (equivalently, the Hilbert transform H) is bounded on
Lp(S1,C) for 1 < p <∞. The question about the precise value of the norms of these
operators has gathered some interest in the literature. For p = 2k, k = 1, 2, . . .,
the exact values of the norms of H were determined by Gohberg and Krupnik [4],
who showed that

||H||Lp(S1,C)→Lp(S1,C) = cot(π/(2p)).

For the remaining values of 1 < p <∞, the norms of the operator H acting on real
Lp spaces were found by Pichorides [14] and, independently, by Cole (unpublished
work, see Gamelin [3]):

||H||Lp(S1,R)→Lp(S1,R) = cot(π/(2p∗)),
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where p∗ = max{p, p/(p − 1)}. Consult also Essén [2] and Verbitsky [20]. These
norms do not change while passing to the complex Lp spaces (see e.g. Pe lczyński
[13]):

||H||Lp(S1,C)→Lp(S1,C) = cot(π/(2p∗)), 1 < p <∞.
For the Riesz projection, Hollenbeck and Verbitsky [6] (see also [7]) proved that

||P±||Lp(S1,C)→Lp(S1,C) = csc(π/p), 1 < p <∞,

solving a conjecture which was open for almost 40 years. For related weak-type
bounds, consult e.g. the works of Davis [1], Janakiraman [8], Kolmogorov [9],
Osȩkowski [11, 12] and Tomaszewski [18, 19]. For a treatment of the subject from
a wider perspective, see Gohberg and Krupnik [5], Krupnik [10] and the classical
monograph of Zygmund [21].

Our purpose is to study another class of sharp estimates of the above type.
Actually, we will work in a slightly more general, n-dimensional setting. Let Cn be
the n-dimensional complex space, equipped with the usual norm

|z| =
(
|z1|2 + |z2|2 + . . .+ |zn|2)1/2.

Let Bn be the unit ball of Cn and let σn denote the rotation-invariant normalized
Borel measure on the unit sphere Sn = ∂Bn. For a σn-measurable function f :
Sn → C, we define the associated “L2 logL norm” by the formula

||f ||L2 logL =

∫
Sn
|f |2 log+ |f |dσn.

If a real-valued f satisfies ||f ||L2 logL < ∞ and its Poisson integral P[f ] (see e.g.
Chapter 5 in [17]) is pluriharmonic, then we shall write f ∈ H2 logH(Sn;R). In such
a case, there is a unique function g : Sn → R (up to set of σn-measure 0) satisfying∫
Sn gdσn = 0 and such that the Poisson extension of f+ig is a holomorphic function

on the unit ball. Such a g will be denoted by Hf and called the Hilbert transform
of f ; furthermore, we can define the Riesz projection of f by P+f = (f + iHf +∫
Sn fdσn)/2. One easily checks that for n = 1, these definitions of H and P+ are

consistent with those given at the beginning of the paper. Clearly, both H and
P+ can be extended to act on complex-valued functions f ∈ H2 logH(Sn;C) (i.e.,
those satisfying ||f ||L2 logL <∞ and whose Poisson extension is pluriharmonic), by
setting Hf = H(Rf) + iH(If) and P+f = P+(Rf) + iP+(If).

Let us turn to the formulation of the main results of this paper. The first
statement is a sharp bound for the Hilbert transform.

Theorem 1.1. Assume that f ∈ H2 logH(Sn;C) satisfies
∫
Sn fdσn = 0. Then

(1.1)

∫
Sn
|Hf(z)|2 log |Hf(z)|dσn(z) ≤ c1

∫
Sn
|f(z)|2 log

(
c2|f(z)|

)
dσn(z),

where c1 = 1 and c2 = eπ/2. Both c1 and c2 are the best possible, even if f is
assumed to be real-valued.

The second theorem is a sharp L2 logL estimate for Riesz projection. Quite
interestingly, it holds true only for real-valued functions.

Theorem 1.2. Assume that f ∈ H2 logH(Sn;R) satisfies
∫
Sn fdσn = 0. Then

(1.2)

∫
Sn
|P+f(z)|2 log |P+f(z)|dσn(z) ≤ c3

∫
Sn
|f(z)|2 log

(
c4|f(z)|

)
dσn(z),
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where c3 = 1/2 and c4 = eπ/4/
√

2. Both constants c3 and c4 are the best possible.
The inequality (1.2) does not hold with any constants c3 and c4 when f is allowed
to take complex values.

The change in the constants for P+ when passing from the real to the complex
case occurs also for the Lp bounds (see [6] and [20]), so the above phenomenon
is perhaps not that surprising. What may be a little unexpected is that actually
no finite constants work in the complex case. This is strictly related to the fact
that the function t 7→ t2 log t is neither convex nor concave, and has negative and
positive numbers in its range.

The proof will be based on the existence of a certain special superharmonic
function satisfying appropriate majorization condition. Theorem 1.2, as well as the
sharpness of (1.1), are shown in the next section. The final part of the paper is
devoted to the proof of (1.1).

2. Proof of Theorem 1.2 and sharpness of (1.1)

Consider the function U : R× [0,∞)→ R, given by

U(x, y) = −π
4
R2 cos(2θ)−R2 logR cos(2θ) +R2 sin(2θ)

(
θ − π

2

)
.

Here x = R cos θ, y = R sin θ denote the usual polar coordinates (with R ≥ 0 and
θ ∈ [0, π]). We extend the function to the whole plane R2 by setting U(x, y) =
U(x,−y). Note that U is also symmetric with respect to the y-axis: U(x, y) =
U(−x, y) for all x, y.

The key properties of the function U are gathered in a lemma below. Recall the
constants c3 and c4, introduced in the statement of Theorem 1.2 above.

Lemma 2.1. (i) We have the majorization

(2.1) U(x, y) ≥ (x2 + y2) log(x2 + y2)1/2 − 4c3x
2 log(2c4|x|), x, y ∈ R.

(ii) The function U is superharmonic.

Proof. (i) It is enough to establish the majorization in the first quadrant, i.e. for
nonnegative x and y. Then it takes the equivalent form

H(θ) = −π
4

cos(2θ) + sin(2θ)
(
θ − π

2

)
+ 2 cos2 θ log(

√
2eπ/4 cos θ), θ ∈ [0, π/2],

and one computes that

H ′(θ) = 2 cos(2θ)
(
θ − π

2

)
− 2 sin(2θ) log(

√
2 cos θ).

Now, if θ < π/4, then cos(2θ)
(
θ − π

2

)
< 0 and sin(2θ) log(

√
2 cos θ) > 0, so H ′ is

negative. Similarly, if θ > π/4, then cos(2θ)
(
θ − π

2

)
> 0 and sin(2θ) log(

√
2 cos θ) <

0, which implies that H ′ is positive. Consequently, H has a global minimum at
θ = π/4; since H(π/4) = 0, the majorization (2.1) holds true.

(ii) First note that U is harmonic in the upper halfplane. This follows at once
from the identity

U(x, y) = R
(
−z2 log(−iz)− πz2/4

)
,

where z = x+ iy and log is the principal branch of the complex logarithm. There-
fore, U is also harmonic in the halplane {(x, y) : y < 0}. Consequently, the super-
harmonicity will follow if we show that limy↓0 Uy(x, y) ≤ 0 for all x ∈ R. Actually,
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by symmetry, it is enough to consider positive x only. We have limy↓0Ry = 0 and
limy↓0 θy = 1/x, so limy↓0 Uy(x, y) = −πx < 0. This completes the proof. �

Proof of Theorem 1.2. Let us start with the case n = 1. Pick any function f as
in the statement. Since

∫
S1 fdσ1 = 0, we have P+f = (f + iHf)/2 and hence

|2P+f |2 = |f |2 + |Hf |2. Apply the majorization (2.1) to obtain∫
S1

[
|2P+f(z)|2 log |2P+f(z)| − 4c3|f(z)|2 log(2c4|f(z)|)

]
dσ1(z)

≤
∫
S1
U(f(z),Hf(z))dσ1(z).

However, the Poisson extension P[f + iHf ] is analytic on the unit disc and U is
superharmonic on the plane. Consequently, the composition U(P[f + iHf ]) is su-
perharmonic on B1 and hence the latter integral does not exceed U(f(0),Hf(0)) =
U(0, 0) = 0. Thus we have obtained∫

S1
|2P+f(z)|2 log |2P+f(z)|dσ1(z) ≤ 4c3

∫
S1
|f(z)|2 log(2c4|f(z)|)dσ1(z).

It remains to apply this estimate to the function f/2 to get (1.1) for n = 1. When
n ≥ 2, we note that∫

Sn

[
|P+f(z)|2 log |P+f(z)| − c3|f(z)|2 log(c4|f(z)|)

]
dσ1(z)

=

∫
Sn

∫
S1

[
|P+f(wz)|2 log |P+f(wz)| − c3|f(wz)|2 log(c4|f(wz)|)

]
dσ1(z)dσn(w).

However, for any w ∈ Sn we see that the inner integral is nonpositive. This follows
at once from the one-dimensional case we have just established, applied to the
function z 7→ f(wz). This implies that the integral over Sn is also nonpositive, and
this completes the proof of (1.2). �

Sharpness of (1.1) and (1.2). We will show that the estimates are sharp in the
case n = 1. To do this, we will use a certain modification of an example exploited
by Pichorides in [14]. We will start with the estimate (1.2). Pick κ < 2c4, let
γ ∈ (0, π/4) be a given parameter and consider the holomorphic function F (z) =

i
(

1+z
1−z

)2γ/π

− i defined on the unit disc B1. Since z 7→ 1+z
1−z maps B1 onto the left

halfplane {z ∈ C : Rz ≥ 0}, we see that the function F + i maps B1 onto the angle
{z ∈ C : |Rz| ≤ tan γ · Iz}. In particular, we see that the unit circle is mapped
onto the boundary of the angle, and hence

(2.2) |F (eiθ) + i| = |RF (eiθ)|
sin γ

=
|IF (eiθ) + 1|

cos γ
for θ ∈ [−π, π].

Let us take a look at the difference∫
S1
|F (z)|2 log |F (z)|dσ1(z)− 2

∫
S1
|RF (z)|2 log (κ|RF (z)|) dσ1(z) = I + II,
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where

I =

∫
S1

[
|F (z)|2 log |F (z)| − |F (z) + i|2 log |F (z) + i|

]
dσ1(z),

II =

∫
S1

[
|F (z) + i|2 log |F (z) + i| − 2|RF (z)|2 log (κ|RF (z)|)

]
dσ1(z).

We will show that I is bounded and II tends to infinity as γ → π/4; this will clearly
imply that no constants c < c3, κ < c4 work in (1.2), since F = P+(R(2F )). Let
us start with the term I. Note that

I =

∫
S1

[
|F (z)|2 log

|F (z)|
|F (z) + i|

]
dσ1(z) +

∫
S1

(
2IF (z)− 1

)
log |F (z) + i|dσ1(z).

Both integrals are bounded as γ → π/4: the identity 1+eiθ

1−eiθ = i cot(θ/2) implies

|F (z)| ≤ 1 + | cot(θ/2)|2γ/π. Thus, substituting z = eiθ, we see that we must
guarantee that both integrands do not explode too fast in the neighborhood of
θ = 0. However, we have

|F (z)|2 log
|F (z)|
|F (z) + i|

= O(cot(θ/2)4γ/π−1)

and
(
2IF (z)−1

)
log |F (z)+i| = O

(
cot(θ/2)2γ/π−1| log | cot(θ/2)|

)
as θ → 0. Hence

lim supγ→π/4 |I| <∞. We turn our attention to II. By (2.2), we have

II = (1− 2 sin2 γ)

∫
S1
|F (z) + i|2 log |F (z) + i|dσ1(z)

− 2 sin2 γ log(κ sin γ)

∫
S1
|F (z) + i|2dσ1(z)

=
1− 2 sin2 γ

2π

∫ π

−π
| cot(θ/2)|4γ/π log | cot(θ/2)|2γ/πdθ

− sin2 γ

π

∫ π

−π
| cot(θ/2)|4γ/π log

(
κ sin γ

)
dθ

=
1− 2 sin2 γ

2π

8γ

π

∫ ∞
0

r4γ/π log rdr

1 + r2
− 4 sin2 γ

π
log
(
κ sin γ

) ∫ ∞
0

r4γ/πdr

1 + r2
,

(2.3)

where the latter equality follows from the substitution r = cot(θ/2). Now pick an
arbitrary η ∈ (0, 1); then we have (1 + r2)−1 ≥ ηr−2 for sufficiently large r; say,
r > N = N(η). Thus,

II ≥ 1− 2 sin2 γ

2π

8γ

π
· η
∫ ∞
N

r4γ/π−2 log rdr

− 4 sin2 γ

π
log
(
κ sin γ

) [
1 +

∫ ∞
1

r4γ/π−2dr

]
=

1− 2 sin2 γ

2π

8γ

π
· η
[
N4γ/π−1

1− 4γ/π
logN +

N4γ/π−1

(1− 4γ/π)2

]
− 4 sin2 γ

π
log
(
κ sin γ

) [
1 +

1

1− 4γ/π

]
.
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Now, if we let γ → π/4, then both terms

1− 2 sin2 γ

2π

8γ

π
· η N

4γ/π−1

1− 4γ/π
logN and

4 sin2 γ

π
log
(
κ sin γ

)
converge to certain finite constants; on the other hand, for the remaining two terms,
we can write

1− 2 sin2 γ

2π

8γ

π
· η N4γ/π−1

(1− 4γ/π)2
− 4 sin2 γ

π

log
(
κ sin γ

)
1− 4γ/π

= 2

(
1− 4γ

π

)−1 [
1− 2 sin2 γ

π − 4γ

2γ

π
· ηN4γ/π−1 − 2 sin2 γ

π
log
(
κ sin γ

)]
.

Now if we let γ → π/4, the expression in the square brackets converges to η/4 −
log(κ/

√
2)/π. However, we have assumed at the beginning that κ < 2c4 =

√
2eπ/4.

Therefore, if η is a priori taken sufficiently close to 1, the expression in the square
brackets converges to a positive constant and, consequently, II → ∞. This shows
that the constants c3, c4 are indeed the best possible in (1.2).

The reasoning for the estimate (1.1) is similar, actually it exploits the same
function F as above. We pick κ0 < c2 and write∫

S1

[
|IF (z)|2 log |IF (z)| − c1|RF (z)|2 log (κ0|RF (z)|)

]
dσ1(z) = I + II,

where

I =

∫
S1

[
|IF (z)|2 log |IF (z)| − |IF (z) + i|2 log |IF (z) + i|

]
dσ1(z),

II =

∫
S1

[
|IF (z) + 1|2 log |IF (z) + 1| − c1|RF (z)|2 log (κ0|RF (z)|)

]
dσ1(z).

Now, as above, the term I remains bounded when we let γ → π/4. To handle II,
note that (2.2) implies

II = (1− 2 sin2 γ)

∫
S1
|F (z) + i|2 log |F (z) + i|dσ1(z)

+ (cos2 log cos γ − sin2 γ log(κ0 sin γ))

∫
S1
|F (z) + i|2dσ1(z)

≥ (1− 2 sin2 γ)

∫
S1
|F (z) + i|2 log |F (z) + i|dσ1(z)

− sin2 γ log κ0

∫
S1
|F (z) + i|2dσ1(z),

since cos2 γ log cos γ ≥ sin2 γ log cos γ for γ ∈ [0, π/4]. Now, compare this to the
first expression on the right of (2.3). We have κ0 < c2 = eπ/2 and hence there is

κ < 2c4 =
√

2eπ/4 such that for γ sufficiently close to π/4,

sin2 γ log κ0 < 2 sin2 γ log(κ sin γ).

But this implies that II → ∞ as γ → π/4, as we have shown above. This proves
the optimality of the constants c1 and c2, since IF = H(RF ). �

We conclude this section by indicating an example which shows that (1.2) does
not hold for complex-valued functions, no matter what c3 and c4 are. To see this,
fix these two constants and consider the function f(z) = c−1

4 ζ−1/2, ζ ∈ S1, where a
is a fixed constant. Then, from the very definition of P+, we have P+f = 0, so the
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left-hand side of (1.2) vanishes; on the other hand, we have |f(ζ)| log(c4|f(ζ)|) < 0
for all ζ ∈ S1. Hence the right-hand side is negative and the inequality (1.2) fails
to hold.

3. Proof of (1.1)

The reasoning will again be based on the properties of a certain special super-
harmonic function on the plane. Consider the holomorphic G : C \ [0,∞) → C,
given by

G(z) = −z log
(
−iz1/2

)
− πz/4.

Here log denotes the principal branch of the complex logarithm and the root is
given by z1/2 = R1/2eiθ/2 for any z = Reiθ with θ ∈ [0, 2π). Then Φ = RG is a
harmonic function on C\[0,∞). We easily check that limy↓0 Φ(x, y) = limy↑0 Φ(x, y)
and hence Φ extends to a continuous function on C. Actually, this extension (still
denoted by Φ) is superharmonic, which follows from the estimate limy↓0 Φy(x, y) =
− limy↑0 Φy(x, y) < 0 for any x > 0. Compare this to the analogous reasoning from
the proof of Lemma 2.1.

The next step in our analysis is to establish the following majorization.

Theorem 3.1. For any w, z ∈ C we have the estimate

(3.1) Φ(wz) ≥
∣∣∣∣w − z̄2

∣∣∣∣2 log

(√
2

∣∣∣∣w − z̄2

∣∣∣∣)− c1 ∣∣∣∣w + z̄

2

∣∣∣∣2 log

(√
2c2

∣∣∣∣w + z̄

2

∣∣∣∣) .
Proof. Define a = (w − z̄)/2 and b = (w + z̄)/2, and let us try to express the
left-hand side in terms of these auxiliary variables. We easily compute that wz =
(a+ b)(b̄− ā) = |b|2 − |a|2 + 2iI(ab̄); furthermore, a little calculation reveals that

−i(wz)1/2 =

√
|a|2 − |b|2 +

√
(|b|2 − |a|2)2 + (2I(ab̄))2

2

− sgn(I(ab̄))

√
|b|2 − |a|2 +

√
(|b|2 − |a|2)2 + (2I(ab̄))2

2
.

Consequently, we compute that

Φ(wz) = −(|b|2 − |a|2)

[
log
√

(|b|2 − |a|2)2 + (2Iab̄)2 +
π

4

]
− |2I(ab̄)| arctan

√
|b|2 − |a|2 +

√
(|b|2 − |a|2)2 + (2I(ab̄))2

|a|2 − |b|2 +
√

(|b|2 − |a|2)2 + (2I(ab̄))2
.

By continuity, it suffices to show (3.1) for nonzero a. Let us minimize the left-
hand side over a, b, keeping |a| and |b| fixed. To do this, set u = |b|2 − |a|2 ∈ R,
v = 2|I(ab̄)| ≥ 0, and consider the function

H(v) = Φ(wz) = −u
[
log
√
u2 + v2 +

π

4

]
− v arctan

√
u+
√
u2 + v2

−u+
√
u2 + v2

.

By the direct differentiation, we see that

H ′(v) = − uv

2(u2 + v2)
− arctan

√
u/
√
u2 + v2 + 1

−u/
√
u2 + v2 + 1

.
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Observe that there is α ∈ [0, π] such that

u√
u2 + v2

= cosα and
v√

u2 + v2
= sinα

(the restriction on α is due to the inequality v ≥ 0). Thus we have H ′(v) =
− (sin 2α− 2α+ 2π) /2 ≤ 0, where the latter elementary estimate follows from a
straightforward analysis of a derivative. Summarizing, we have shown that the
function H is nonincreasing and hence it is enough to check (3.1) for the largest
possible value of v, i.e., under the assumption v = 2|a||b|. However, then the
majorization becomes

− (|b|2 − |a|2)
[
log(|b|2 + |a|2) +

π

4

]
− 2|a||b| arctan

|b|
|a|

≥ −|a|2 log(
√

2|a|)− |b|2 log(
√

2eπ/2|b|),

or, after some equivalent rearranging,

J(s) = −s
2 − 1

2
log

s2 + 1

2
− 2s arctan s− π

4
(s2 − 1) + s2 log(eπ/2s) ≥ 0,

where s = |b|/|a| ≥ 0. We derive that

J ′(s) = −s log
s2 + 1

2
− 2 arctan s− π

2
s− 2s log(eπ/2s)

and

J ′′(s) = log
2s2eπ/2

s2 + 1
.

Therefore, J is concave on [0, s0] and convex on [s0,∞), for some positive number

s0; furthermore, we have J(0) = − log
√

2 + π/4 > 0 and J(1) = J ′(1) = 0. Thus J
has to be nonnegative on the whole halfline [0,∞) and the claim is proved. �

Proof of (1.1). As previously, the main difficulty lies in showing the bound for
n = 1. Let f : S1 → C be as in the statement and write f = P+f + P−f .
Then P[P+f ] and P

[
P−f

]
, the Poisson extensions of P+f and P−f to the disc B1,

are holomorphic. The function Φ is superharmonic and hence, by the well-known
fact from the theory of analytic functions (see e.g. Range [15]), the composition
(w, z) 7→ Φ(wz) is plurisuperharmonic on C2. This, in turn, implies that the
function Φ

(
4P[P+f ]P

[
P−f

])
is superharmonic. Hence, by the mean-value property

and (3.1),

0 = Φ(0) ≥
∫
S1

Φ
(
4P+f(z)P−f(z)

)
dσ1(z)

≥
∫
S1

[
|Hf(z)|2 log(

√
2|Hf(z)|)− c1|f(z)|2 log(

√
2c2|f(z)|)

]
dσ1(z),

where we have used the identities Hf = i(P−f − P+f) and f = P+f + P−f. It

remains to apply the above estimate to the function f/
√

2, and multiply both sides
by 2 to get the claim in the case n = 1. The passage to the higher-dimensional
setting is done exactly in the same manner as in the preceding section. We omit
the straightforward details. �
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