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Abstract

We prove the sharp bound for the expected spread upon opinions of n ≥ 2 experts,
who have access to different information sources represented by different σ-fields.
Using symmetrization argument and direct combinatorial optimization we derive an
explicit optimizer. Our results may turn out to be helpful not only for probabilists, but
also for statisticians and economists.
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1 Introduction

The purpose of this paper is to establish a certain sharp maximal estimate for
dependent random variables which stems from applications in statistics and information
theory. We start with the motivation and the necessary background. Imagine a group of
n ≥ 2 experts with an access to different knowledge, who are asked to evaluate the odds
of some future event. The question is: how radically different can their opinions be?
This natural and interesting problem can be formalized using the notion of conditional
probability. First, our experts must agree upon a basic model of reality, which can be
understood as accepting a common probability space (Ω,F ,P). Inconsistent sources
of information shall then be identified with different sub-σ-fields G1, G2, . . . , Gn ⊂ F .
Consequently, opinions on an event A ∈ F will be expressed as random variables
X1, X2, . . . , Xn defined by

Xi = P(A|Gi),

where 1 ≤ i ≤ n. As pioneered by Dawid et al. in [6], we refer to such random vectors as
coherent.

Definition 1.1. Let n ≥ 2 be an integer. A family (X1, X2, . . . , Xn) of random variables
on some probability space (Ω,F ,P) is coherent, if there is a sequence of sub σ-fields
G1, G2, . . . , Gn ⊂ F and an event A ∈ F such that

Xi = E(1A|Gi), i = 1, 2, . . . , n.
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Experts’ Opinions

See [6, 7, 8, 12] for applications to statistics, [1] for applications to economy, [3, 4] for
purely probabilistic considerations and [2] for philosophical implications. For notational
convenience, hereinafter, we write

(X1, X2, . . . , Xn) ∈ C,

whenever we want to indicate that the vector (X1, X2, . . . , Xn) is coherent. Sometimes,
in the literature, the joint distribution of (X1, X2, . . . , Xn) ∈ C is also referred to as
coherent.

Now, for a fixed α ∈ R+ and n ≥ 2, consider the number

sup
(X1,X2,...,Xn)∈C

E max
1≤i<j≤n

|Xi −Xj |α, (1.1)

where the supremum is taken over all probability spaces (Ω,F ,P), all events A ∈ F
and all sub σ-fields G1,G2, . . . ,Gn ⊂ F . The question about the explicit formula for this
supremum can be regarded as the precise, mathematical reformulation of the initial
problem, concerning the maximal spread of coherent opinions. The primary goal of this
paper is to answer this question for α = 1.

Theorem 1.2. Under the above notation, we have

sup
(X1,X2,...,Xn)∈C

E max
1≤i<j≤n

|Xi −Xj | =



1
2 if n = 2,

2−
√

2 if n = 3,

7
2 − 2

√
2 if n = 4,

n− 2

n− 1
if n ≥ 5.

(1.2)

Thus, the supremum behaves in a quite surprising manner: we have a few “irregular”
terms corresponding to small values of n, and then, for n ≥ 5, it is given by a nice and
compact expression. We would like to point out that the result in special case n = 2

has been already known in the literature. As Burdzy and Pitman showed in [4], this is a
consequence of the identity

|X − Y | = 2 ·max(X,Y )−X − Y

and the following sharp estimate established in [10].

Theorem 1.3. For all n ∈ Z+ and any (X1, X2, . . . , Xn) ∈ C satisfying EXi = p for all i,
we have

E max
1≤i≤n

Xi ≤
p(n− p)

1 + p(n− 2)
.

A more general result, concerning the calculation of (1.1) still in the special case
n = 2, but for a nontrivial range of the parameters α, was established independently in
[1, 5] with the use of geometric techniques in Hilbert spaces.

Theorem 1.4. For any α ∈ (0, 2] we have

sup
(X,Y )∈C

E|X − Y |α = 2−α.

Finally, we would like to mention that our result can also be regarded as a generaliza-
tion of the martingale diameter problem, see e.g. [9, 11].

In the next section we apply an appropriate symmetrization and reduce the prob-
lem of calculating the left-hand side of (1.2) to the analysis of the simpler expression
supEmax1≤i≤nXi, where the supremum is taken over all coherent vectors satisfying

EJP 0 (2016), paper 0.
Page 2/17

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Experts’ Opinions

certain symmetry constraints. Then, in Section 3, using various technical combinatorial
arguments, we gradually simplify the context: we show that the extremal coherent
vectors (i.e. those for which the simpler supremum is attained) can be assumed to satisfy
more and more structural properties. After several steps, this allows us to express the
supremum as the extremal value of a certain function of one variable, which in turn can
be computed explicitly. Our approach was inspired by the paper [3] by Burdzy and Pal:
in that article, a related problem for coherent vectors was also studied with the use of a
certain discretization and subsequent combinatorial reductions.

2 Basic reductions and symmetrizations

Our starting point is the following discretization, which enables us to restrict our
argument to random variables taking values in a finite set. From now on, we will often
use the shorter notation and write X instead of (X1, X2, . . . , Xn).

Proposition 2.1. We have the identity

sup
X∈C

E max
1≤i<j≤n

|Xi −Xj | = sup
m∈{1,2,3,... },
X∈C(n,m)

E max
1≤i<j≤n

|Xi −Xj |,

where C(n,m) is the set of all X = (X1, X2, . . . , Xn) ∈ C such that Xi takes at most m
different values for every 1 ≤ i ≤ n.

Proof. See [3, 5]. We omit the details.

Next, we have the following simple, yet very useful observation.

Lemma 2.2. Let {G1, G2, . . . , Gm} be a finite partition of Ω, let A ∈ F be an arbitrary
event and put Y = E(1A|σ(G1, G2, . . . , Gm)). Then for any y ∈ (0, 1] such that P(Y = y) >

0, we have

P({Y = y} ∩Ac) = P({Y = y} ∩A) · 1− y
y

. (2.1)

Proof. For any G ∈ σ(G1, G2, . . . , Gm) such that E(1A|G) = y, we write

y =
P(A ∩G)

P(G)
=

P(A ∩G)

P(A ∩G) + P(Ac ∩G)
.

This implies y ·
(
P(A∩G)+P(Ac∩G)

)
= P(A∩G) and hence P(Ac∩G) = 1−y

y ·P(A∩G).

It remains to take G = {Y = y}; we have G ∈ σ(G1, G2, . . . , Gm), since Y is measurable
with respect to the latter σ-algebra.

Now we will establish the following reduction.

Proposition 2.3. We have the identity

sup
m∈{1,2,... },
X∈C(n,m)

E max
1≤i<j≤n

|Xi −Xj | = sup
m∈{1,2,... },
X∈C′(n,m)

E max
1≤i<j≤n

|Xi −Xj |, (2.2)

where C′(n,m) is the subset of all X ∈ C(n,m) which satisfy

P

({
max

1≤i≤n
Xi = 1

}
∪
{

min
1≤j≤n

Xj = 0
})

= 1. (2.3)
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Proof. Fix X ∈ C(n,m). Then there is a probability space (Ω,F ,P), an event A ∈ F and
σ-algebras G1, G2, . . ., Gn such that

Xi = E(1A|Gi), i = 1, 2, . . . , n.

With no loss of generality, we may assume that the probability space is non-atomic. Now
we will perform a sequence of transformations of the variables Xi (or rather of the
corresponding σ-algebras Gi), after which

· the maximum max1≤i≤nXi will increase to 1 on A;
· the minimum min1≤i≤nXi will decrease to 0 on Ac;
· the expectation Emax1≤i<j≤n |Xi −Xj | will increase or stay unchanged.

This will clearly yield the claim. For a given i ∈ {1, 2, . . . , n}, the transformation of Xi

can be described as follows. Split the set {max1≤j≤nXj = Xi} ∩A into the events

Ai,x =
{

max
1≤j≤n

Xj = Xi

}
∩A ∩

{
Xi = x

}
, x ∈ [0, 1].

Fix x ∈ [0, 1) such that P(Ai,x) > 0; there is a finite number of such parameters, since
Xi takes values in a finite set. Furthermore, we have x > 0, since max1≤j≤nXj > 0

almost surely on A. By Lemma 2.2, there exists an event Ãi,x ⊂ {Xi = x} ∩Ac satisfying
P(Ãi,x) = P(Ai,x) · 1−x

x . We introduce the modification X̃i of Xi, given by

X̃i(ω) =


1, for ω ∈ Ai,x
0, for ω ∈ Ãi,x
Xi(ω), otherwise,

or equivalently, X̃i = E(1A|σ(Gi, Ai,x, Ãi,x)). Setting X̃j ≡ Xj for j 6= i, we see that

E max
1≤k<l≤n

|X̃k − X̃l| − E max
1≤k<l≤n

|Xk −Xl| ≥ P(Ai,x) · (1− x) − P(Ãi,x) · x

= P(Ai,x) ·

[
(1− x) − 1− x

x
· x

]
= 0,

and hence the passage X 7→ X̃ does not decrease the maximized expectation. Further-
more, note that max1≤j≤n X̃j has increased to 1 on Ai,x. The desired transformation of
Xi is obtained by applying the above modification for all x ∈ (0, 1) with P(Ai,x) > 0.

Now, performing the above transformations of X1, X2, . . . , Xn, we obtain a new
vector X for which

P

({
max

1≤i≤n
Xi = 1

}
∩A

)
= P(A).

Furthermore, applying the above procedure to the coherent sequence (1 − X1, 1 −
X2, . . . , 1−Xn) (corresponding to the event Ac), we may also guarantee that

P

({
min

1≤i≤n
Xi = 0

}
∩Ac

)
= P(Ac),

which completes the proof.

Remark 2.4. It follows easily from the above argument that if X ∈ C′(n,m), then the
corresponding event A satisfies A = {max1≤i≤mXi = 1} and Ac = {min1≤i≤nXi = 0},
up to sets of probability zero.
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Our next step is to simplify the maxima in (2.2). Let X = (X1, X2, . . . , Xn) ∈ C′(n,m)

with Xi = E(1A|Gi), i = 1, 2, . . . , n, and let U be random variable, independent of
G1, G2, . . . , Gn and A, having the two-point distribution P(U = 0) = P(U = 1) = 1/2.
We may assume the existence of such a random variable, taking the larger, product
probability space if necessary. Next, note that

max
1≤i<j≤n

|Xi −Xj | = max
1≤i<j≤n

∣∣∣(1−Xi)− (1−Xj)
∣∣∣

almost surely. Thus we can rewrite the right-hand side of (2.2) as

sup
m∈{1,2,... },

(X1,X2,...,Xn)∈C′(n,m)

E max
1≤i<j≤n

|X̃i − X̃j |, (2.4)

where X̃ is a mixture of X and 1−X, given by

(X̃1, X̃2, . . . , X̃n) = U · (X1, X2, . . . , Xn) + (1− U) · (1−X1, 1−X2, . . . , 1−Xn).

Of course, X̃ takes values in a finite set. Furthermore, we have EX̃i = 1
2 for all i

and, as the set of coherent distributions on [0, 1]n is convex (see [4]), we conclude
that X̃ ∈ C. Let us be more specific here. We take the σ-algebras G̃i = σ(Gi, U) and
Ã = (A ∩ {U = 1}) ∪ (Ac ∩ {U = 0}); since U is measurable with respect to G̃i and
independent of A, we indeed obtain

E(1Ã|G̃i) = 1{U=1}E(1A|G̃i) + 1{U=0}E(1Ac |G̃i) = UXi + (1− U)(1−Xi)

for all i. A similar argument, based on the splitting Ω into Ω ∩ {U = 0} and Ω ∩ {U = 1},
shows that

P

(
n⋂
i=1

{X̃i = xi} ∩ Ã

)
= P

(
n⋂
i=1

{X̃i = 1− xi} ∩ Ãc
)
, (2.5)

for any sequence (xi)
n
i=1 ⊂ [0, 1]. See Figure 1.

Figure 1: The modified sequence X̃.

As a direct consequence of (2.4) and the above discussion, we obtain the following

Proposition 2.5. For any n ≥ 2, we have the equality

sup
X∈C

E max
1≤i<j≤n

|Xi −Xj | = sup
m∈{1,2,...},
X∈C′′(n,m)

E max
1≤i<j≤n

|Xi −Xj |,

where C′′(n,m) is the subset of all those X ∈ C(n,m) that satisfy (2.3) and (2.5).
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Remark 2.6. By (2.5), all the coordinates of an arbitrary vector X ∈ C ′′(n,m) have
expectation 1/2; this in particular implies that the event A which “generates” X satisfies
P(A) = 1/2. Actually, (2.5) yields the stronger symmetry property of X around 1

2 : we
have the equality of distributions(

Xi −
1

2

)n
i=1

D
=

(1

2
−Xi

)n
i=1

. (2.6)

The above remark enables the following further reduction.

Proposition 2.7. For any n ≥ 2, we have

sup
m∈{1,2,... },
X∈C′′(n,m)

E max
1≤i<j≤n

|Xi −Xj | + 1 = 2 · sup
m∈{1,2,... },
X∈C′′(n,m)

E max
1≤i≤n

Xi.

Proof. We may write

max
1≤i<j≤n

|Xi −Xj | = max
1≤i,j≤n

(Xi −Xj) = max
1≤i≤n

(
Xi −

1

2

)
+ max

1≤j≤n

{
−
(
Xj −

1

2

)}
,

and hence by (2.6) we get

sup
m∈{1,2,... },
X∈C′′(n,m)

E max
1≤i<j≤n

|Xi −Xj | = 2 · sup
m∈{1,2,... },
X∈C′′(n,m)

E max
1≤i≤n

(
Xi −

1

2

)
,

which completes the proof.

By the above reductions, we see that it is enough to handle the expression

sup
m∈{1,2,... },
X∈C′′(n,m)

E max
1≤i≤n

Xi = sup
m∈{1,2,... },
X∈C′′(n,m)

(
E

(
1A max

1≤i≤n
Xi

)
+ E

(
1Ac max

1≤i≤n
Xi

))
. (2.7)

Observe that for a fixed m and an X ∈ C′′(n,m), we have 1A ·max1≤i≤nXi = 1A almost
surely, due to Remark 2.4. In addition, we have the identity

P

({
max

1≤j≤n
Xj = Xi

}
∩
{
Xi = x

}
∩Ac

)
= P

({
min

1≤j≤n
Xj = Xi

}
∩
{
Xi = 1− x

}
∩A

)
,

for 1 ≤ i ≤ n and x ∈ [0, 1], which follows from (2.5). In other words, the distributions of
1Ac max1≤i≤nXi and 1A − 1A min1≤i≤nXi coincide, and we get the following.

Proposition 2.8. For a given n ≥ 2, a sequence X is a maximizer of (2.7) if and only if
it minimizes the quantity

inf
m∈{1,2,... },
X∈C′′(n,m)

E

(
1A · min

1≤i≤n
Xi

)
. (2.8)

The main advantage of this proposition is that it allows us to restrict the analysis of
the sequences X to the set A.

3 Combinatorial optimization

Now we are going to present a combinatorial analysis of (2.8), which will be done
by some geometrical considerations in a slightly different setup. Let us start with
introducing some auxiliary notation. Throughout, we assume that n ≥ 2 is a fixed integer.
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Let (Ω,F ,P) be a non-atomic probability space and let A be a fixed event satisfying
P(A) = 1/2. For an event S ⊂ A and any x ∈ (0, 1], we set

Sx := S × {x} ⊂ A× (0, 1].

In our considerations below, it will be convenient to interpret Sx as horizontal line
segments at level x, or finite unions of sets of this type. We assign to each Sx the
corresponding function Sx : A→ [0, 1], given by

Sx(ω) =

{
x, for ω ∈ S
1, for ω ∈ A \ S.

For k ∈ {1, 2, . . . }, we denote by Λ(n, k) the family of all sequences (Sx1
1 , Sx2

2 , . . . , Sxk

k )

which satisfy
k∑
i=1

P(Si) = (n− 1) · 1

2
, (3.1)

and ∑
{1≤i≤k: xi=x}

P(Si) =
x

1− x
·

∑
{1≤j≤k: xj=1−x}

P(Sj), (3.2)

for every x ∈ (0, 1). In this setup, we consider the following, new optimization problem:

inf
(Ω,F,P),

A∈F, P(A)= 1
2

inf
k∈{1,2,... },

(S
x1
1 ,S

x2
2 ,...,S

xk
k )∈Λ(n,k)

∫
A

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP.

By a straightforward measure-preserving transformation argument, we see that the
infimum inside does not depend on the choice of the probability space or the event A. In
other words, the above quantity is equal to

inf
k∈{1,2,... },

(S
x1
1 ,S

x2
2 ,...,S

xk
k )∈Λ(n,k)

∫
A

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP. (3.3)

Proposition 3.1. The value of (2.8) is not smaller than the value of (3.3).

Proof. Fix m ∈ {1, 2, . . . }, X ∈ C′′(n,m) and the corresponding “generating” event A.
As we have seen in Remark 2.6, we have P(A) = 1/2. For a given 1 ≤ i ≤ n, let
{xi1, xi2, . . . , xim} denote the set of values attained by Xi, 1 ≤ i ≤ n (if Xi takes less than
m different values, we add some extra, superfluous elements to the set). Introduce the
events

Ti,j = {ω ∈ A : Xi(ω) = xij},

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since P(A) = 1/2, we have the straightforward equality∑
1≤i≤n,
1≤j≤m

P(Ti,j) = n · 1

2
.

Next, for a fixed 1 ≤ i ≤ n and x ∈ (0, 1), we may also write∑
{1≤j≤m: xi

j=x}

P(Ti,j) =
x

1− x
·

∑
{1≤j≤m: xi

j=x}

P
(
{Xi = x} ∩Ac

)
=

x

1− x
·

∑
{1≤j≤m: xi

j=1−x}

P(Ti,j),

EJP 0 (2016), paper 0.
Page 7/17

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Experts’ Opinions

where the first equality is due to the Lemma 2.2 and the second one is a consequence
of (2.5). Adding up the above equalities for 1 ≤ i ≤ n yields the condition (3.2) for the

family (T
xi
j

i,j )i,j . Next, let (Ui)
n
i=1 be a partition of A such that Ui ∈ F and Ui ⊂ {Xi = 1}

for all 1 ≤ i ≤ n, up to a set of measure zero. The existence of such a partition is an

obvious consequence of Remark 2.4. Define a modification (S
xi
j

i,j)i,j of (T
xi
j

i,j )i,j by

Si,j =

{
Ti,j \ Ui, if xij = 1

Ti,j , if xij 6= 1.

Since P(A) = 1/2, we get ∑
1≤i≤n,
1≤j≤m

P(Si,j) = (n− 1) · 1

2
,

and the condition (3.2) is still satisfied for (S
xi
j

i,j)i,j (the sets Ti,j are modified only if

xij = 1, and these values are not considered in (3.2)). Consequently, we have (S
xi
j

i,j)i,j ∈⋃
k≥1 Λ(n, k) and hence

E

(
1A · min

1≤i≤n
Xi

)
=

∫
A

min
1≤i≤n,
1≤j≤m

Sx
i
j

i,j dP

is not smaller than the quantity in (3.3). Since m and X were arbitrary, the proof is
complete.

Our plan is to solve the problem (3.3), by performing a sequence of combinatorial and
geometrical reductions. We start with some simple observations. First, note that by (3.2),
a sequence (Sx1

1 , Sx2
2 , . . . , Sxk

k ) ∈ Λ(n, k) enjoys a sort of skew-symmetry around 1/2: in
particular, if a level x belongs to {x1, x2, . . . , xk}, then so does 1− x. Second, obviously,
the integral in (3.3) does not depend on the order of the sets Sx1

1 , Sx2
2 , . . . , Sxk

k , so we
may permute them arbitrarily. Furthermore, note that if we split Sxk

k into two sets S̃xk

k

and S̃xk

k+1 (of course, the level xk needs to be preserved) and replace (Sx1
1 , Sx2

2 , . . . , Sxk

k )

with (Sx1
1 , Sx2

2 , . . . , S
xk−1

k−1 , S̃
xk

k , S̃xk

k+1), then the integral will not change either; a similar
phenomenon occurs if we splice two disjoint sets lying at the same level. In other words,
given a sequence (Sx1

1 , Sx2
2 , . . . , Sxk

k ), we may cut some of the sets into pieces or merge
some of them, with no effect on the optimized expression (3.3).

The next step is the following.

Proposition 3.2. The problem (3.3) can be rewritten as

inf
k∈{1,2,... },

(S
x1
1 ,S

x2
2 ,...,S

xk
k )∈Λ?(n,k)

∫
A

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP, (3.4)

where Λ?(n, k) is the subset of all those (Sx1
1 , Sx2

2 , . . . , Sxk

k ) ∈ Λ(n, k), which satisfy

P(Si ∩ Sj) = 0 whenever xi, xj ≤
1

2
. (3.5)

Proof. Fix k ∈ {1, 2, . . . }, a vector (Sx1
1 , Sx2

2 , . . . , Sxk

k ) ∈ Λ(n, k) and assume that the
condition (3.5) is not satisfied for some 0 < xi ≤ xj ≤ 1

2 . Of course, the claim will follow

if we construct a modification (S̃x1
1 , S̃x2

2 , . . . , S̃xk

k ) ∈ Λ?(n, k) such that∫
A

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP ≥
∫
A

min(S̃x1
1 , S̃x2

2 , . . . , S̃xk

k ) dP. (3.6)

EJP 0 (2016), paper 0.
Page 8/17

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Experts’ Opinions

There are two possible scenarios: we either have

P

({
min(Sx1

1 ,Sx2
2 , . . . ,Sxk

k ) >
1

2

}
∩A

)
> 0, (3.7)

or

P

({
min(Sx1

1 ,Sx2
2 , . . . ,Sxk

k ) >
1

2

}
∩A

)
= 0. (3.8)

In the case of (3.7), we can simply cut off a part of Sj which is already covered by a smaller
value xi and transfer as much of it as possible to the set {min(Sx1

1 ,Sx2
2 , . . . ,Sxk

k ) > 1
2}.

See Figure 2. Observe that the modification obtained in this way satisfies (3.6). After
a finite number of such transformations, we obtain a sequence (Sx1

1 , Sx2
2 , . . . , Sxk

k ) for
which either (3.5) holds, or we have (3.8).

Figure 2: The horizontal line segments are (parts of) graphs of functions Sx1
1 , Sx2

2 , . . .,
Sxn
n . In the figure above, the whole problematic intersection (in red) has been moved

to the area in which all the other line segments lie above 1/2. However, if the set
{min(Sx1

1 ,Sx2
2 , . . . ,Sxk

k ) > 1
2} is too small, it might be impossible to remove the whole

problematic intersection – this leads to the scenario (3.8).

Now suppose that (3.5) does not hold for some 0 < xi ≤ xj ≤ 1
2 and we have the

equality (3.8). First, set

c = P(Si ∩ Sj), a =
1− xi
xi

· c and b =
1− xj
xj

· c.

Now, let us pick all those Sx`

` from the sequence (Sx1
1 , Sx2

2 , . . . , Sxk

k ), for which x` = 1−xi
or x` = 1− xj , and arrange them into two lists (S1−xi

i,1 , . . . , S1−xi
i,ni

) and (S
1−xj

j,1 , . . . , S
1−xj

j,nj
).

Next, we choose two sequences (Ti,m)ni
m=1, (Tj,m)

nj

m=1 ⊂ F such that

Ti,m ⊂ Si,m for 1 ≤ m ≤ ni,

Tj,m ⊂ Sj,m for 1 ≤ m ≤ nj ,

and
ni∑
m=1

P(Ti,m) = a,

nj∑
m=1

P(Tj,m) = b.
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By (3.2), such (Ti,m)m, (Tj,m)m exist (since we assumed that the probability space is
nonatomic). Assume further that x0 is a number satisfying

1− x0

x0
· c = a+ b+ c,

and observe that x0 < xi: indeed, we have a = (1 − xi)c/xi < a + b + c. We shall now
perform the following transformation:

1. remove (T 1−xi
i,m )ni

m=1, (T
1−xj

j,m )
nj

m=1, (Si ∩ Sj)xi and (Si ∩ Sj)xj ,

2. add (T 1−x0
i,m )ni

m=1, (T 1−x0
j,m )

nj

m=1, (Si ∩ Sj)1−x0 and (Si ∩ Sj)x0 ,

– see Figure 3. It is straightforward to check that the new, modified sequence (Sx`

` ) satis-

Figure 3: The transformation in the case (3.8). The integral
∫
A

min(Sxi
i )dP can only

decrease. Indeed, the new line segment of length c on the right picture lies below xi;
furthermore, though the line segment of length a+ b+ c might lie on a higher level, the
condition (3.8) guarantees that there must be a “layer” of line segments lying below it.

fies (3.1), (3.2) and (3.6). After a finite number of such transformations, we guarantee
the validity of (3.5).

Therefore, from now on, we may restrict our analysis of (3.3) to the class
⋃
k≥1 Λ?(n, k).

To proceed, consider a vector

(Sx1
1 , Sx2

2 , . . . , Sxk

k ) ∈ Λ?(n, k)

and introduce a partition of A into the following four basic components. Namely, we first
put

A1 =

{
ω ∈ A : min

1≤i≤k
Sxi
i =

1

2

}
and A2 =

{
ω ∈ A : min

1≤i≤k
Sxi
i >

1

2

}
.

Let y1, y2, . . . , ym be the collection of values taken by min1≤i≤k Sxi
i on the set A2. For

1 ≤ j ≤ m, we set

Myj = A2 ∩

{
min

1≤i≤k
Sxi
i = yj

}
.
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Figure 4: basic components of A: in a) before, in b) after the rearrangement.

By (3.2), we can find events (N1−yj )mj=1 satisfying

N1−yj ⊂ A ∩

{
min

1≤i≤k
Sxi
i = 1− yj

}
and P(N1−yj ) =

1− yj
yj

· P(Myj ).

Observe that (N1−yj )mj=1 are disjoint by virtue of Proposition 3.2. Lastly, we define

A3 =
⋃

1≤j≤m

N1−yj and A4 =

{
ω ∈ A : min

1≤i≤k
Sxi
i <

1

2

}
\A3,

– see Figure 4.a. We can think about the set A3 as being generated or induced by A2.

Proposition 3.3. The problem (3.4) can be rewritten as

inf
k∈{1,2,... },

(S
x1
1 ,S

x2
2 ,...,S

xk
k )∈Λ??(n,k)

∫
A

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP, (3.9)

where Λ??(n, k) is the subset of all (Sx1
1 , Sx2

2 , . . . , Sxk

k ) ∈ Λ?(n, k) which satisfy

P

A2 ∩
⋃

1≤i<j≤k

(Si ∩ Sj)

 = 0. (3.10)

Proof. Fix k ∈ {1, 2, . . . }, a sequence (Sx1
1 , Sx2

2 , . . . , Sxk

k ) ∈ Λ?(n, k) and assume that the
condition (3.10) is not satisfied. This in particular implies P(A2) > 0 and hence we must
also have P(A3∪A4) > 0 (see the skew-symmetry of (Sx1

1 , Sx2
2 , . . . , Sxk

k ), mentioned above
Proposition 3.2). Now, let us fix any i ∈ {1, 2, . . . , k} with xi ≥ 1

2 . Then, for any event
T ⊂ Si ∩A2 satisfying

T ⊂

{
min

1≤j≤k
Sxj

j < xi

}
or T ⊂

(
Si ∩

⋃
1≤j≤k,
j 6=i, xj=xi

Sj

)
,

we perform the following rearrangement:
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1. remove T xi ,

2. add a sequence (T xi
m )Nm=1 of events such that

Tm ⊂ A3 ∪A4 for 1 ≤ m ≤ N,

and
N∑
m=1

P(Tm) = P(T ),

– see Figure 4b). The existence of (T xi
m )Nm=1 follows trivially from the condition P(A3 ∪

A4) > 0: we allow the overlapping of the sets. The obtained modified sequence belongs
to Λ?(n, `) for some ` and the minimum of the corresponding functions is unchanged
almost surely on A, in comparison to the initial minimum minSx`

` . It remains to observe
that we may guarantee the validity of (3.10), by performing sufficiently many such
transformations.

Proposition 3.4. In the problem (3.9), we are allowed to restrict ourselves to those
vectors (Sx1

1 , . . . , Sxk

k ) ∈ Λ??(n, k), which additionally satisfy

P(A2 ∪A3) = 0, (3.11)

and ∣∣∣∣∣
{

1 ≤ i ≤ k : xi >
1

2

}∣∣∣∣∣ ≤ 1. (3.12)

Proof. The argument follows the above pattern. Namely, we fix k ∈ {1, 2, . . . }, a sequence
(Sx1

1 , . . . , Sxk

k ) ∈ Λ??(n, k) and assume that the condition (3.11) is not satisfied. Let x > 1
2

be such that P(Mx) > 0, where, as before,

Mx = A2 ∩

{
min

1≤i≤k
Sxi
i = x

}
.

Moreover, recall that N1−x is an event satisfying

N1−x ⊂ A3 ∩

{
min

1≤i≤k
Sxi
i = 1− x

}
and P(N1−x) =

1− x
x
· P(Mx).

Note that we have∫
Mx∪N1−x

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP = x · P(Mx) + (1− x) · P(N1−x)

= P(Mx ∪N1−x) ·
(
x2 + (1− x)2

)
> P(Mx ∪N1−x) · 1

2
.

(3.13)

Consider the following operation:

1. remove Mx
x and N1−x

1−x ,

2. add M
1
2
x and N

1
2

1−x,

– see Figure 5.a. By (3.13), such a transformation yields a sequence from the class⋃
`∈{1,2,... } Λ??(n, `), for which the integral in (3.9) is decreased. After a finite number of
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Figure 5: a: removing A2 ∪A3. b: leveling x1, x2 >
1
2 , x1 6= x2.

such operations, we remove A2 and thus enforce the validity of (3.11). To guarantee the
second condition, we proceed as previously. We start with an arbitrary sequence

(Sx1
1 , Sx2

2 , . . . , Sxk

k ) ∈ Λ??(n, k),

for which (3.11) is satisfied, but (3.12) is not. We may assume, performing a permutation
of the indices if necessary, that x1, x2 >

1
2 and s1 := P(S1) > 0, s2 := P(S2) > 0. By (3.2),

we can find T1−x1 , T1−x2 ∈ F such that

T1−x1 ⊂

{
min

1≤j≤k
Sxj

j = 1− x1

}
, T1−x2 ⊂

{
min

1≤j≤k
Sxj

j = 1− x2

}
,

and

t1 := P(T1−x1
) =

1− x1

x1
· s1, t2 := P(T1−x2

) =
1− x2

x2
· s2.

Consider the auxiliary equation

t1 ·
x1

1− x1
+ t2 ·

x2

1− x2
= (t1 + t2) · x0

1− x0
, (3.14)

that is, equivalently,

1− x0 =
t1 + t2

t1
1−x1

+ t2
1−x2

.

(if x1 or x2 is equal to 1, we understand this equation as x0 = 1). We will check that

(t1 + t2) · (1− x0) ≤ t1 · (1− x1) + t2 · (1− x2). (3.15)

This is obvious for x0 = 1, for the remaining x3 we substitute the previous identity and
rewrite the estimate in the form

(t1 + t2)2

t1
1−x1

+ t2
1−x2

≤ t1 · (1− x1) + t2 · (1− x2),

or

2 ≤ 1− x1

1− x2
+

1− x2

1− x1
,

which is evident. Having that in mind, let us consider the transformation:
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1. remove Sx1
1 , Sx2

2 and T 1−x1
1−x1

, T 1−x2
1−x2

,

2. add Sx0
1 , Sx0

2 , and T 1−x0
1−x1

, T 1−x0
1−x2

.

By (3.14), the obtained new sequence still belongs to
⋃
`≥1 Λ??(n, `) and enjoys (3.11).

Furthermore, by (3.15), the appropriate minimized integral over A does not increase. It
remains to note that after a finite number of the above transformations, the condition
(3.12) will become true.

We are almost ready for the proof of our main result. Introduce the auxiliary constant

s(n) := 1 − 2 inf
k∈{1,2,...},

(S
x1
1 ,S

x2
2 ,...,S

xk
k )∈Λ(n,k)

∫
A

min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k ) dP.

Theorem 3.5. For any n, the number s(n) is equal to the right-hand side of (1.2).

Proof. By the above reductions, in the definition of s(n) we may restrict ourselves to
those (Sx1

1 , Sx2
2 , . . . , Sxk

k ) ∈ Λ??(n, k), which additionally satisfy (3.11) and (3.12). This
is a very simple context: there are at most three different levels of the sets Sj . See
Figure 6. Put p := P(A1) and suppose that the maximal level is equal to x1. Note that

Figure 6: There are at most three different values in the set {x1, x2, . . . , xk}; we may
assume that x1 is the largest of them.

the random variable min(Sx1
1 ,Sx2

2 , . . . ,Sxk

k )1A is equal to 1/2 on A1 and to 1− x1 on A4,
so we have

s(n) = 1 − 2 · inf
p∈[0, 12 ]

[
p · 1

2
+

(
1

2
− p

)
· (1− x1)

]
.

To express x1 in terms of p, we apply (3.1) and (3.2) with x = x1 to obtain[
n− 1

2
− p−

(
1

2
− p

)]
· 1− x1

x1
=

1

2
− p. (3.16)
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If n = 2, we get p = 1/2 and s(n) = 1/2. For n ≥ 3, the equation (3.16) yields

x1 = x1(p) =
n− 2

n− 1− 2p
, (3.17)

and hence we obtain

s(n) = 1 − 2 · inf
p∈[0, 12 ]

[
p · 1

2
+

(
1

2
− p

)
· 1− 2p

n− 1− 2p

]
. (3.18)

Now we consider the cases n ∈ {3, 4} and n ≥ 5 separately. In the first case, we make
some elementary calculations to obtain

argmin
p∈[0, 12 ]

[
p · 1

2
+

(
1

2
− p

)
· 1− 2p

n− 1− 2p

]
=

{
1− 1√

2
, for n = 3,

3
2 −
√

2, for n = 4.

This gives s(3) = 2 −
√

2 and s(4) = 7
2 − 2

√
2, as announced above. For n ≥ 5, it is

straightforward to check the function

t(n, p) :=

[
p · 1

2
+

(
1

2
− p

)
· 1− 2p

n− 1− 2p

]
,

satisfies ∂t(n, p)/∂p > 0 for p ∈ (0, 1/2). Consequently, we get

s(n) = 1− 2t(n, 0) =
n− 2

n− 1
, for n ≥ 5,

and the proof is complete.

We turn the attention to our main result.

Proof of Theorem 1.2. We need to show that

sup
(X1,X2,...,Xn)∈C

E max
1≤i<j≤n

|Xi −Xj | = s(n).

By Propositions 2.7, 2.8 and 3.1, we get

sup
(X1,...,Xn)∈C

E max
1≤i<j≤n

|Xi −Xj | ≤ s(n),

and it is enough to check that those bounds cannot be improved. To this end, we
construct an appropriate coherent vector (X1, X2, . . . , Xn) on ([0, 1],B(0, 1); | · |), where
B(0, 1) is the σ-algebra of Borel subsets of [0, 1] and | · | is the Lebesgue measure. Fix
p ∈ (0, 1/2], put A = [0, 1/2], B = (1/2, 1] and for 1 ≤ i ≤ n− 1, consider the families of
intervals

Ai1 =

(
p(i− 1)

n− 1
,
pi

n− 1

]
, Ai2 =

(
p+

( 1
2 − p)(i− 1)

n− 1
, p+

( 1
2 − p)i
n− 1

]
,

and

Bi1 =

(
1

2
+
p(i− 1)

n− 1
,

1

2
+

pi

n− 1

]
, Bi2 =

(
1

2
+ p+

( 1
2 − p)(i− 1)

n− 1
,

1

2
+ p+

( 1
2 − p)i
n− 1

]
.

It is easy to check that all these intervals are pairwise disjoint and Ai1, A
i
2 ⊂ A, Bi1, B

i
2 ⊂

B for all i. Therefore, if we take

Gi = σ
(
Ai1 ∪Bi1, Ai2 ∪ (B \ (Bi1 ∪Bi2)), (A \ (Ai1 ∪Ai2)) ∪Bi2

)
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and Xi = E(1A|Gi), then some straightforward calculations show that

Xi =


1

2
on Ai1 ∪Bi1,

1− x1(p) on Ai2 ∪ (B \ (Bi1 ∪Bi2)),

x1(p) on (A \ (Ai1 ∪Ai2)) ∪Bi2

(3.19)

for all 1 ≤ i ≤ n− 1, where x1(p) is given by (3.17). We add a variable Xn = 1A (which
corresponds to taking Gn = σ(A)). Then the vector (X1, X2, . . . , Xn) is coherent. For any
ω ∈ (0, p], we have Xn(ω) = 1 and, by (3.19), there is an index i such that Xi(ω) = 1/2;
consequently,

E max
1≤i<j≤n

|Xi −Xj |1[0,p] ≥
1

2
p.

Similarly, we have

E max
1≤i<j≤n

|Xi −Xj |1(p,1/2] ≥
(

1

2
− p
)
x1(p),

E max
1≤i<j≤n

|Xi −Xj |1(1/2,1/2+p] ≥
1

2
p,

E max
1≤i<j≤n

|Xi −Xj |1(1/2+p,1] ≥
(

1

2
− p
)
x1(p)

and hence, summing the above four inequalities, we get

E max
1≤i<j≤n

|Xi −Xj | ≥ 1− p− (1− 2p)(1− x1(p)).

It remains to observe that the supremum of the right-hand side over p ∈ (0, 1/2] is
precisely s(n): see (3.18). This completes the proof.
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