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Abstract. The paper contains the study of the weighted maximal L1-
inequality for martingale transforms, under the assumption that the under-
lying weight satisfies Muckenhoupt’s condition A∞ and that the filtration is
regular. The obtained linear dependence of the constant on the A∞ charac-
teristic of the weight is optimal. The proof exploits certain special functions
enjoying appropriate size conditions and concavity.
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1. INTRODUCTION

Let (Ω,F ,P) be a probability space filtered by (Fn)n0, a nondecreasing sequence
of sub-σ-algebras of F . We additionally assume that this filtration is θ-regular for some
θ ∈ (0, 1/2]; that is, we have F0 = {∅,Ω} and every atom A of each Fn splits into a finite
number A1, A2, . . . , Ak of atoms of Fn+1 satisfying P(Aj)  θP(A), j = 1, 2, . . . , k.
Regular filtrations are natural extensions of dyadic filtrations used widely in harmonic
analysis: for a fixed dimension d, the dyadic filtration of the space

(
[0, 1]d,B([0, 1]d), | · |

)
is 2−d-regular in the above sense.

Next, suppose that f = (fn)n0, g = (gn)n0 are adapted, uniformly integrable
martingales. We will identify the martingales f , g with the pointwise limits f∞, g∞,
which exist due to the uniform integrability. Define the associated difference sequences
df = (dfn)n0 and dg = (dgn)n0 by

df0 = f0, dfn = fn − fn−1, n = 1, 2, . . . ,
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and similarly for dg. The maximal function of f is given by the formula |f |∗ = supk0 |fk|,
and truncated maximal function is |f |∗n = sup0¬k¬n |fk|, n = 0, 1, 2, . . .. The martingale
g is a transform of f , if there is a predictable sequence ε = (εn)n0 such that dgn = εndfn
for every n; here by predictability we mean that for each n, the random variable εn is mea-
surable with respect to F(n−1)∨0. Moreover if the sequence ε is deterministic and its terms
take values in {−1, 1}, then g is said to be a ±1-transform of f .

Inequalities for martingale transforms have played an important role in probability
theory and have had deep applications in harmonic analysis. There is a huge literature on
the subject, we mention here Burkholder’s papers [5], [6], [7], the monograph [20] and
the papers [26], [27] for an overview of probabilistic results; for the analytic applications,
consult e.g. [1], [2], [10], [25]. In this paper, we will be particularly interested in maximal
inequalities. In [7], Burkholder introduced a general method of proving such estimates in
the context of martingale transforms and exploited it to establish the following result.

THEOREM 1.1. If f, g are martingales satisfying dgn = εndfn, n = 0, 1, 2, . . . for
some predictable sequence ε = (εn)n0 with values in [−1, 1], then

(1.1) ||g||L1 ¬ η|| |f |∗||L1 ,

where η = 2.536 . . . is the unique solution of the equation η − 3 = − exp
(
1−η
2

)
. The

constant is the best possible.

See also [17], [19] and [18] for related results and generalizations. In this paper we
will be interested in the weighted versions of the above statement. In what follows, the
word ‘weight’ will refer to a positive, integrable random variable usually denoted by the
letter w. Given 1 < p <∞, we say that w satisfies Muckenhoupt’s condition Ap (or be-
longs to the Ap class), if

[w]Ap := sup

(
1

P(A)

∫
A

wdP

)(
1

P(A)

∫
A

w−1/(p−1)dP

)p−1
<∞,

where the supremum is taken over all n and all atoms A of Fn. There are versions of this
definition for p ∈ {1,∞}; we will recall the case p =∞ only, as we will not work with
A1 here. A weight w belongs to the class A∞, if

[w]A∞ := sup

(
1

P(A)

∫
A

wdP

)
exp

(
− 1

P(A)

∫
A

log(w)dP

)
<∞,

the supremum taken over the same class of A as above. Two comments are in order. First,
note that in the dyadic context (i.e., when the probability space equals ([0, 1]d,B([0, 1]d), | ·
|) and the filtration is dyadic), the above definitions lead to the classical dyadicAp weights.
The second observation is that the above definitions can be easily rephrased in the language
of conditional expectations: [w]Ap is the least number c such that for all n  0,

E(w|Fn)
(
E(w1/(1−p)|Fn)

)p−1 ¬ c
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almost surely, while [w]A∞ is the smallest c for which

E(w|Fn) exp
(
E(− log(w)|Fn)

)
¬ c,

almost surely, n = 0, 1, 2, . . .. It follows directly from Hölder’s inequality that [w]Ap


1 and that Ap classes grow as p increases. Furthermore, it is well-known (cf. [11]) that
A∞ =

⋃
1<p<∞Ap.

The main theme of this paper is to study the following weighted extension of (1.1):

(1.2) || |g|∗||L1(w) ¬ Cθ,w|| |f |∗||L1(w).

Note that the maximal function appears on both sides of the estimate. We will show that
if w belongs to the class A∞, then (1.2) holds for all martingales f and their transforms.
In addition, we will study the following aspect of the weighted bound. Namely, there is
a very interesting question of extracting the sharp dependence of the constant C on the
characteristics [w]A∞ . More precisely: what is the least exponent κ for which there exists
a constant C̃θ depending only on the regularity of the filtration such that

|| |g|∗||L1(w) ¬ C̃θ[w]κA∞ || |f |
∗||L1(w)

for all f , g, w as above? Such ‘extraction’ problems have gained a lot of interest in the
literature and have been studied for various classes of operators and estimates: see e.g. [4],
[13], [14], [15], [28].

The main result of this paper gives the full answer to the above question.

THEOREM 1.2. Fix θ ∈ (0, 1/2]. Let f , g be martingales adapted to a θ-regular
filtration such that g is a transform of f by a predictable sequence with values in [−1, 1].
Then for any A∞ weight w we have

(1.3) || |g|∗||L1(w) ¬ 769 θ−2[w]A∞ || |f |∗||L1(w).

The dependence on theA∞ characteristics of the weight is optimal in the sense that for any
κ < 1 and any K > 0, there is a weight w, a real-valued martingale f and a predictable
sequence ε with values in {−1, 1} such that

|| |g|∗||L1(w) > K[w]κA∞ || |f |
∗||L1(w).

A weaker result for Haar multipliers and Ap weights was obtained in [23]. It was
shown there that we have∣∣∣∣∣

∣∣∣∣∣ max
0¬n¬N

∣∣∣∣∣ n∑
k=0

εkakhk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L1(w)

¬ Cp[w]Ap

∣∣∣∣∣
∣∣∣∣∣ max
0¬n¬N

∣∣∣∣∣ n∑
k=0

akhk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L1(w)

,(1.4)

where 1 < p < ∞, w is a dyadic Ap weight, N is a nonnegative integer, a0, a1, . . . , aN
are real numbers, ε0, ε1, . . . , εN is a sequence of signs and (hk)∞k=0 is the Haar system
on [0, 1). Moreover, it was proved in [23] that the linear dependence on the characteristic



Weighted inequalities 4

is optimal. Observe that (1.3) generalizes this result in two directions. Firstly, we consider
the more general case of θ-regular filtrations. Secondly, since [w]A∞ ¬ [w]Ap

, the estimate
(1.3) is stronger; hence the optimality of the linear dependence in (1.3) follows at once from
the analogous sharpness in (1.4) and all we need is the proof of (1.3).

Let us now make an important comment on the θ-regularity of the underlying filtra-
tion. The multiplicative constant in the inequality (1.3) depends on θ and goes to infinity
when θ tends to 0. We will prove that this dependence is necessary, even if we consider the
weaker estimate for Ap weights for any given p > 1. Here is the precise formulation.

THEOREM 1.3. Let p > 1 and let K be an arbitrary positive constant. Then there
is a positive integer d, a martingale f on d-dimensional dyadic probability space, an Ap
weight w satisfying [w]Ap

¬ 2 and a predictable sequence v with values in {−1, 1} such
that the associated martingale transform g satisfies

||g||L1(w) > K|||f |∗||L1(w).

There is a well-known method of showing maximal inequalities for martingales and
their martingale transforms. This method, invented by Burkholder in [7] and modified by
the author in [19], [20], allows to deduce a given estimate from the existence of a certain
special function, enjoying appropriate majorization and concavity. This method is extended
in Section 2 to cover the setting of Ap weights, and successfully applied in Section 3 in the
proof of (1.3). Section 5 is devoted to Theorem 1.3, which is proved again with the use of
Bellman function method.

2. ON THE METHOD OF PROOF

We will now describe a general technique which can be used to study weighted esti-
mates for martingales. We start with the following helpful interpretation of A∞ weights.
Suppose that w is such a weight; we will often identify it with the associated martin-
gale (wn)n0 = (E(w|Fn))n0. Let σ = (σn)n0 be the dual martingale given by σn =

E(log(w)|Fn)n0 (the integrability of logw follows at once from the condition w ∈ A∞).
By Jensen’s inequality we havewn exp(−σn)  1 almost surely for all n  0, and the con-
dition A∞ implies the upper bound wn exp(−σn) ¬ [w]A∞ with probability 1. In other
words, an A∞ weight of characteristic less or equal to c gives rise to a two-dimensional
uniformly integrable martingale (w, σ) taking values in the hyperbolic domain equal to
{(u, v) ∈ (0,∞)× R : 1 ¬ ue−v ¬ c} . Actually, the implication can be reversed: any
uniformly integrable martingale pair (w, σ) taking values in the above set and terminat-
ing at its lower boundary (i.e., satisfying w∞e−σ∞ = 1) induces an A∞ weight: just take
the first coordinate w. A similar statement is true for Ap weights, 1 < p < ∞: the only
change is that now the dual martingale σ is generated by w1/(1−p) and the domain should
be modified to

{
(u, v) ∈ (0,∞)2 : 1 ¬ uvp−1 ¬ c

}
.

Now, suppose that M : R2 × [0,∞) × (0,∞) → R is a given continuous function
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and assume that we want to show that

(2.1) EM(fn, gn, |f |∗n, wn) ¬ 0, n  0,

for all f , g, w, where f, g are martingales such that g is the transform of f by a cer-
tain sequence with values in [−1, 1], and w is an A∞ weight satisfying [w]A∞ ¬ c. We
additionally assume that all these processes are adapted to a θ-regular filtration on some
probability space. The key to handle this problem is to consider the class B(M), which
consists of all functions B defined on the five-dimensional set

D = {(x, y, z, u, v) ∈ R2 × (0,∞)2 × R : |x| ¬ z, 1 ¬ ue−v ¬ c}

and enjoying the following three properties:

0◦ (Initial condition) We have B(x, y, |x|, u, v) ¬ 0 if |y| ¬ |x|, |x| > 0 and 1 ¬
ue−v ¬ c.

1◦ (Majorization property) We have

B(x, y, z, u, v) M(x, y, z, u) for (x, y, z, u, v) ∈ D.

2◦ (Concavity-type property) For any (x, y, z, u, v) ∈ D, any ε ∈ [−1, 1], any posi-
tive integer k ¬ 1/θ and any sequences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

(2.2) αj ∈ [θ, 1) and
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0

and
(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj) ∈ D,

we have

B(x, y, z, u, v) 
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj).

The relation between functions satisfying the above special properties and the validity
of (2.1) is described in the statement below.

THEOREM 2.1. If the class B(M) is nonempty, then the inequality (2.1) holds true.

P r o o f. By a standard limiting argument (using continuity of M and the fact that
the variables fn, gn, . . . take only a finite number of values), we may and do assume that
|f0| > 0 almost surely; then the process zn = (fn, gn, |f |∗n, wn, σn) takes values in D.
The key fact is that the process (B(zn))n0 is a supermartingale, which is an immediate
consequence of the concavity-type condition 2◦:

E[B(fn, gn, |f |∗n, wn, σn)|Fn−1]

= E[B(fn−1 + dfn, gn−1 + dgn, |f |∗n−1 ∨ |fn + dfn|, wn−1 + dwn, σn−1 + dσn)|Fn−1]

¬ B(fn−1, gn−1, |f |∗n−1, wn−1, σn−1).
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Therefore, if we apply the majorization 1◦ and then the initial condition 0◦, we get

EM(fn, gn, |f |∗n, wn) ¬ EB(fn, gn, |f |∗n, wn, σn) ¬ EB(f0, g0, |f |∗0, w0, σ0) ¬ 0,

which is the desired inequality (2.1). �

The beautiful fact is that the implication of the above theorem can be reversed.

THEOREM 2.2. If the inequality (2.1) holds true (for all f , g and all weights w with
[w]A∞ ¬ c), then the class B(M) is nonempty.

P r o o f. Define B : D → R by the abstract formula

B(x, y, z, u, v) = supEM(fn, gn, |f |∗n ∨ z, wn).

Here the supremum is taken over all n, all A∞ weights w satisfying [w]∞ ¬ c, w0 = u,
E logw = v and all martingale pairs (f, g) satisfying (f0, g0) = (x, y) and dgk = εkdfk,
k  1, for some predictable sequence (εk)k1 with values in [−1, 1]. Here the probabil-
ity space as well as the θ-regular filtration are also assumed to vary. We will show that
the function B satisfies conditions 0◦ − 2◦. The initial condition 0◦ follows immediately
from the assumed inequality (2.1). The majorization condition is also easy: it suffices to
compute the expression in the definition of B for n = 0. The most difficult issue is the
concavity-type condition 2◦. We will use the so-called “splicing” argument. Fix the pa-
rameters x, y, z, u, v, k, . . . as in the formulation of 2◦ and, for each j = 1, 2, . . . , k,
pick arbitrary martingales (f j , gj , wj) as in the definition of B(x + hj , y + εhj , |x +
hj | ∨ z, u + rj , v + sj). We may assume that these martingales are given on k pair-
wise disjoint probability spaces (Ωj ,F j ,Pj). Now we “glue” these spaces and the mar-
tingale triples into one space and one triple using the parameters (αj)

k
j=1. Namely, let

Ω = Ω1 ∪ Ω2 ∪ . . . ∪ Ωk, F = σ(F1,F2, . . . ,Fk) and define the probability measure P
on F by requiring that P(

⋃
Aj) =

∑
αjP(Aj) for any Aj ∈ F j , j = 1, 2, . . . , k. Next,

define (f, g, w) by (f0, g0, w0) = (x, y, w) and

(fn(ω), gn(ω), wn(ω)) = (f jn−1(ω), gjn−1(ω), wjn−1(ω)),

if ω ∈ Ωj . Finally, let (Fn)n0 be the natural filtration of (f, g, w).
Let us now study the properties of the object we have just constructed. Directly from

the above definition, we see that

E((f1, g1, w1)|F0) = E(f1, g1, w1) =
∑
αj(x+ hj , y + εhj , u+ rj) = (x, y, u).

Furthermore, since (f j , gj , wj) are martingales, the triple (f, g, w) has this property as
well. In addition,

E log(w) =
∑
αjEj log(wj) =

∑
αj(vj + sj) = v,

where Ej is the expectation with respect to probability measure Pj . Our next observa-
tion is that w is an A∞ weight with [w]A∞ ¬ c. Indeed, we have w0e

−σ0 = ue−v ¬ c,
and for n  1 the pointwise estimate wne−σn ¬ c follows from condition [wj ]A∞ ¬ c.
Consequently, by the very definition of B,

B(x, y, z, u, v)  EM(fn, gn, |fn| ∨ z, wn) =
∑
αjEjM(f jn−1, g

j
n−1, |f

j
n−1| ∨ z, w

j
n−1),



Weighted inequalities 7

so taking the supremum over all n and all triples (f j , gj , wj) as above, we obtain

B(x, y, z, u, v) 
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj).

This is precisely the desired condition 2◦. �

Three important comments are in order.

REMARK 2.1. The above method works for Ap weights as well: the only change
concerns the definition of the domain D, in which the double estimate 1 ¬ ue−v ¬ c

should be changed to 1 ¬ uvp−1 ¬ c.

REMARK 2.2. Suppose that we are interested in the estimate (2.1) in the d-dimen-
sional dyadic context. Then the above approach can be modified easily: we consider the
function B given by the abstract formula as above,

B(x, y, z, u, v) = supEM(fn, gn, |f |∗n ∨ z, wn).

Here the supremum taken over all martingales as in the above proof, the essential differ-
ence is that the probability space is fixed to be ([0, 1]d,B([0, 1]d), | · |) and the filtration is
assumed to be dyadic. Thanks to the fractal, self-similar structure of the dyadic filtration,
the above splicing argument is valid, and the function B satisfies 0◦, 1◦ and a weaker ver-
sion of 2◦, with all αj’s equal to 2−d. A similar modification can be applied in the context
of Ap weights (see the previous remark). This observation will be crucial in the last sub-
section where we show that (1.3) cannot hold universally, i.e., with a constant independent
of θ.

REMARK 2.3. The technique is quite flexible and general. For instance, it can be
used to study weighted non-maximal estimates, simply by working with the functions M
andB depending only on x, y, w and v. Another possible modification is that if we want to
show (2.1) for processes as previously, but satisfying the additional property ‖f‖∞ ¬ 1,
the domain of M and B needs to be changed: it is enough to consider M and B defined
on {(x, y, z, u, v) ∈ [−1, 1]× R× (0, 1]× (0,∞)× R : |x| ¬ z, 1 ¬ ue−v ¬ c}.

The remainder of this section contains some informal reasoning which leads to the
special function corresponding to (1.3); the reader might skip it and proceed to Section 3.
We have decided to insert this material, since we believe that the steps leading to the
discovery of the function may become useful in the study of other related estimates.

As we will see later, the main difficulty lies in proving the estimate

||gn||L1(w) ¬ C[w]A∞ |||f |∗n||L1(w), n  0,

which is slightly weaker than (1.3), since it does not involve the maximal function of g on
the left. This inequality is of the form (2.1) with M(x, y, z, u, v) = |y|u − Cczu, where
c = [w]A∞ , and hence all we need is an appropriate special function B. At the first glance,
it is absolutely not clear how to search for this object. To gain some intuition and indication,
let us review several results from the well-understood unweighted case.
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We start with the non-maximal L∞ → L2 inequality (as we will see in a moment, it
will be of key importance): if f , g are martingales such that ‖f‖∞ ¬ 1 and dgn = vndfn,
n = 0, 1, . . ., for some predictable sequence (vn)n0 taking values in [−1, 1], then we
have ‖g‖2 ¬ 1. This trivial result can be proved with the use of Burkholder’s method (see
[5]) and the corresponding function u : [−1, 1]× R→ R is

u(x, y) = y2 − x2.

Next, we turn towards maximal estimates in the unweighted setting. As shown in [19], the
special function U : {(x, y, z) : |x| ¬ z} → R corresponding to continuous analogue of
(1.1) is given by

(2.3) U(x, y, z) =
y2 − x2 − z

z
= z

(
u
(x
z
,
y

z

)
− 1
)
.

As we see, this special function uses two components: the multiplicative constant z which
controls the maximal function of f , and the special function on the strip which handles the
L∞ → L2 estimate.

A natural idea is to try to follow this path in the weighted setting. Suppose that w
is an A∞ weight. The main problem is to find an appropriate weighted analogue of the
function u above; indeed, having found such an object (let us denote it by ū, it is a function
of variables x, y, u and v), it seems plausible to put

B(x, y, z, u, v) = z
(
ū
(x
z
,
y

z
, u, v

)
− Lu

)
,

for some constant L to be found. The function ū should encode the L∞(W ) → L2(W )

inequality, or rather L∞(W ) → Lq(W ) estimate for some q, for martingale transforms.
Fortunately, some indications towards its discovery can be extracted from [22]. In that
paper, similar inequalities in the presence of Ap weights were studied. Roughly speaking,
to obtain L∞(W ) → Lq(W ) estimates in this context, the procedure is as follows. Take
a special function Ur associated with non-maximal and unweighted Lr → Lr bound (this
problem is well-understood, see Burkholder [5]) and then put

ū(x, y, u, v) = (Ur(x, y) + κ)β(uvp−1 − a)αv1−p

for some parameters α, β, κ and a. In the present paper we want to take p =∞, so some
change is needed. It turns out that the right choice for ū is

ū(x, y, u, v) = (Ur(x, y) + κ)β(ue−v − a)αev.

To see the reason for our modification “vp−1 → e−v”, compare the geometric interpreta-
tions of Ap and A∞ weights presented at the beginning of this section.

3. BURKHOLDER’S FUNCTION OF FIVE VARIABLES

In order to prove the inequality (1.3), we will first prove the weaker estimate

||gn||L1(w) ¬ C[w]A∞ || |f |∗n||L1(w), n = 0, 1, . . . .(3.1)
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From the previous section it is sufficient to find a function B : D → R which satisfies
conditions 0◦− 2◦ withM(x, y, z, u, v) = |y|u−Cczu.As we will see, this special object
will be built from several simpler ‘blocks’. To keep the notation short, define the constants

β = θ(8c(1− θ))−1, α = 1− (2c)−1, a = 3/4, p = 1/β, A = 4/θ− 1

and the auxiliary functions motivated by the discussion in the previous section. Observe
that p = 8c(1/θ − 1)  8. Let us define the domain

Dc = {(u, v) ∈ (0,∞)× R : 1 ¬ ue−v ¬ c}.

For (r, u, v) ∈ (0,∞)×Dc, set

F (r, u, v) = rβ(ue−v − a)αev.

Furthermore, for any x, y ∈ R we define

U(x, y) =

{
p(1− 1/p)p−1

(
|y| − (p− 1)|x|

)(
|x|+ |y|

)p−1
if |y|  (p− 1)|x|,

|y|p − (p− 1)p|x|p if |y| < (p− 1)|x|.

This is the celebrated special function invented by Burkholder [5] to establish sharp
Lp bounds for martingale transforms. Burkholder proved that U enjoys the following.

LEMMA 3.1. Function U has the following properties:
(i) (Initial condition) We have U(x, y) ¬ 0 if |y| ¬ |x|.
(ii) (Majorization property) We have U(x, y)  |y|p − (p− 1)p|x|p.
(iii) (Concavity-type property) For any (x, y) ∈ R2, any ε ∈ [−1, 1], any positive

integer k and any sequences (αj)
k
j=1, (hj)

k
j=1 satisfying

αj ∈ [0, 1),
k∑
j=1

αj = 1 and
k∑
j=1

αjhj = 0,

we have
U(x, y) 

∑
αjU(x+ hj , y + εhj).

We are ready to construct Burkholder’s function B described in the previous section.
Let B : D → R be given by the formula

B(x, y, z, u, v) =
[
F
(
U
(x
z
,
y

z

)
+ 2(p− 1)pAp, u, v

)
− 3Apu

]
z

= F (U (x, y) + 2(p− 1)pApzp, u, v)− 3Apuz.

Here the second equality follows from the homogeneity of the function U : U(λx, λy) =

|λ|pU(x, y) and the relation β = 1/p.
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3.1. The analysis of functions U and F . In this subsection we will prove proper-
ties of auxilliary functions U and F .

In what follows, we will also need fact stated below.

LEMMA 3.2. For any ε ∈ [−1, 1], t  0, η ∈ R the following estimate holds:

(U(1, η) + 2(p− 1)pAp)
β−1

(U(1, η) + 2(p− 1)pAp + βUy(1, η)(ε− η)) ¬ 3Ap.

P r o o f. Recall that β = 1/p. If |η| < p− 1 we use the second formula in the defi-
nition of U and calculate that

Uy(1, η) = psgn(η)|η|p−1.

Hence

U(1, η) + βUy(1, η)(ε− η) = ε|η|p−1sgn(η)− (p− 1)p ¬ (p− 1)p−1 − (p− 1)p

¬ 0 ¬ p(1 + |η|)p−1.(3.2)

Next, consider the case |η|  p − 1. We use the first formula in the definition of U and
calculate that

Uy(1, η) = p(1− 1/p)p−1sgn(η)(1 + |η|)p−2(p|η|+ p(2− p)|x|).

Hence

U(1, η) + βUy(1, η)(ε− η) = p(1− 1/p)p−1(1 + |η|)p−2[(|η| − (p− 1))(1 + |η|)
+ sgn(η)βp(|η|+ 2− p)(ε− η)].

The expression in the square bracket is equal to

εη − 1 + (εsgn(η) + 1)(2− p).

Thus if |η|  p− 1 then

U(1, η) + βUy(1, η)(ε− η)

= p(1− 1/p)p−1(1 + |η|)p−2 (εη − 1 + (εsgn(η) + 1)(2− p))
¬ p(1− 1/p)p−1(1 + |η|)p−1 ¬ p(1 + |η|)p−1.(3.3)

In the first inequality above we used rough estimates εη − 1 ¬ 1 + |η| and (εsgn(η) +
1)(2− p) ¬ 0. We showed in (3.2) and (3.3) that for every η ∈ R we have the inequality

(3.4) U(1, η) + βUy(1, η)(ε− η) ¬ p(1 + |η|)p−1.

Hence, from the above estimate and the second part of Lemma 3.1 (recall that the exponent
β − 1 = 1/p− 1 is negative), it is sufficient to establish that

(ηp − (p− 1)p + 2(p− 1)pAp)
β−1

(2(p− 1)pAp + p(1 + η)p−1) ¬ 3Ap,(3.5)
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for every η  0. Derivative of the expression on the left with respect to η is equal to

p(ηp + (2Ap − 1)(p− 1)p)β−2[ηp−1(β − 1)2(p− 1)pAp+

ηp−1p(β − 1)(1 + η)p−1 + (p− 1)(1 + η)p−2(ηp − (p− 1)p + 2(p− 1)pAp)].

From the identity p(β − 1) = 1 − p, we obtain that the expression in a square bracket is
equal to

2(β − 1)(p− 1)pApηp−1 + (1 + η)p−2((1− p)ηp−1 + (2Ap − 1)(p− 1)p(p− 1))

Now we can omit a negative summand (1 + η)p−2((1 − p)ηp−1 − (p − 1)p+1) and esti-
mate this expression from above by

2Ap(p− 1)p((β − 1)ηp−1 + (1 + η)p−2(p− 1)).

This is nonpositive for η  4(p− 2). Indeed, we have that

(1 + η)p−2(p− 1) = ηp−2p(1− β)(1 + 1/η)p−2 ¬ ηp−2p(1− β)e1/4

¬ ηp−2(1− β)p
4(p− 2)

p
¬ (1− β)ηp−1.

Here in the first and third inequality we used the assumption η  4(p − 2) and in the
second inequality we used the bound p  8. We proved that the expression on the left-
hand side of (3.5) is decreasing for η  4(p − 2). Hence to establish (3.5) it is sufficient
to prove this for η ∈ [0, 4(p − 2)). We estimate the left-hand side of this inequality from
above by

((2Ap − 1)(p− 1)p)β−1(2(p− 1)pAp + p(4p− 7)p−1)

= A(2−A−p)β−1
(

2(p− 1) + p

(
4p− 7

Ap−A

)p−1
A−1

)
¬ A(2− 4−p)β−1(2(p− 1) + pA−1)

¬ 3Ap.

Here in the equality we used the identity p(β − 1) = 1 − p, in the first inequality we
used the bound A  4. Finally, in the last step we applied the estimate 2 − 4−p  1 and
estimated the expression in a second bracket from above by 3p. This completes the proof
of the lemma. �

Concerning F , we start with the following fact.

LEMMA 3.3. For any (r, u, v) ∈ (0,∞)3 with 1 ¬ ue−v ¬ c, we have

(3.6)
1

4
urβ ¬ F (r, u, v) ¬ urβ .

P r o o f. Recall that α = 1− (2c)−1 and a = 3/4. We must show the estimate

1

4
¬ (ue−v − a)α

ue−v
¬ 1.
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Let us denote t = ue−v . Observe that the function [1, c] 3 t 7−→ (t− a)α/t is increasing.
Indeed, we have (

(t− a)α

t

)′
=

(t− a)α−1((α− 1)t+ a)

t2
 0.

Thus the assertion follows from the trivial estimates 1/4 ¬ (1 − a)α and (c − a)α/c ¬
1. �

LEMMA 3.4. Function F is θ-concave:
For any x, x1, . . . , xn ∈ (0,∞)×Dc and sequence (aj)

n
j=1 satisfying

αj ∈ [θ, 1) and
n∑
j=1

αj = 1,

∑
αjxj = x,

we have
F (x) 

∑
αjF (xj).

P r o o f. Observe that from hogeneity of the function F without loss of generality
we may and do assume that v = 0. In other words, it is sufficient to prove the inequality

(3.7) rβ(u− a)α 
∑
αjr

β
j

(
uje
−vj − a

)α
evj ,

where
∑
αj(rj , uj , vj) = (r, u, 0) and (r, u, 0), (r1, u1, v1), . . . (rn, un, vn) ∈ (0,∞) ×

Dc. Because α+ β + β < 1, the function (0,∞)× (1,∞)× (0,∞) 3 (k, s, t) 7→ kβ(s−
a)αtβ is concave. Hence we obtain that

∑ (
rje
−vj
)β (

uje
−vj − a

)α
(evj )

β e
vjαj
P
¬
( r
P

)β ( u
P
− a
)α(Q

P

)β
,

where P =
∑
αje

vj and Q =
∑
αje

2vj . Thus to prove (3.7) it is sufficient to establish
the inequality

(3.8) P 1−β
( u
P
− a
)α(Q

P

)β
¬ (u− a)α.

We will need the following estimate involving expressions P and Q:

Q ¬ 1

θ
P 2 − 1− θ

θ
.

This follows from the assumption αj ∈ [θ, 1) and applying convexity of the function ex

twice. Indeed we have that

P 2− θQ =
∑
j

αje
vj

(
(αj − θ)evj +

∑
k 6=j

αke
vk

)

∑
j

αje
vj (1− θ)e−vjθ/(1−θ)  1− θ.
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Hence to prove (3.8) it is sufficient to establish that

P
( u
P
− a
)α(1

θ
− 1− θ

θP 2

)β
¬ (u− a)α.

Moreover we know that u ∈ [1, c] and P ∈ [1, u] (here the lower bound is just convexity
of ex and the upper bound follows from conditions uje−vj  1 for each j). Let us denote
s = 1/P . It is enough to show that the inequality

s−1(us− a)α
(
1− (1− θ)s2

)β ¬ θβ(u− a)α

holds for any u ∈ [1, c] and s ∈ [1/u, 1]. Observe that for s = 1 both sides are equal.
Hence it is sufficient to show that the function s 7→ s−1(us − a)α

(
1− (1− θ)s2

)β
is

nondecreasing. By differentiating we obtain the condition

((α− 1)us+ a)
(
1− (1− θ)s2

)
− 2β(1− θ)s2(us− a)  0.

From s ¬ 1 we have that the expression on the left is greater than

((α− 1)us+ a)θ − 2β(1− θ)(us− a) =(
α− 1− 2β

1− θ
θ

)
θus+

(
1 + 2β

1− θ
θ

)
θa 

(
α− 1− 2β

1− θ
θ

)
θc+ θa = 0.

Here in the last step we just plugged values of the parameters: a = 3/4, α = 1− 1/2c and
β = θ(8c(1− θ)−1. This completes the proof. �

REMARK 3.1. It can be shown that the regularity assumption αj  θ is necessary
here. In other words, the function F does not satfisfy concavity condition if we do not
assume any lower bound on αj .

3.2. The Burkholder’s function B of five variables. We are ready for the main
step: we will check that the function B satisfies conditions 0◦, 1◦ and 2◦.

LEMMA 3.5. The function B satisfies the initial condition 0◦.

P r o o f. Recall the initial condition 0◦: for every (x, y, |x|, u, v) ∈ D such that |y| ¬
|x| and 1 ¬ ue−v ¬ c we have

B(x, y, |x|, u, v) ¬ 0.

From the definition of B this is equivalent to showing the estimate

(3.9)
[
F

(
U

(
x

|x|
,
y

|x|

)
+ 2(p− 1)pAp, u, v

)
− 3Apu

]
|x| ¬ 0.

From Lemma 3.3 we have that

(ue−v − a)
α

ue−v
¬ 1.
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Recall the key identity pβ = 1. From the condition (i) in Lemma 3.1, if |y| ¬ |x|, then
U (x/|x|, y/|x|) ¬ 0 and hence(

U

(
x

|x|
,
y

|x|

)
+ 2(p− 1)pAp

)β
(ue−v − a)

α

ue−v
¬ 2A(p− 1) ¬ 3Ap,

which is precisely the required estimate (3.9). �

LEMMA 3.6. The function B satisfies the majorization condition

B(x, y, z, u, v)  1

4
(|y|u− 12Apzu).

P r o o f. From the second part of Lemma 3.1, the estimate |x|/z ¬ 1 ¬ A and the
identity pβ = 1 we have(
U
(x
z
,
y

z

)
+ 2(p− 1)pAp

)β

((
|y|
z

)p
− (p− 1)p

(
|x|
z

)p
+ 2(p− 1)pAp

)β
 |y|

z

and, as we have proved in Lemma 3.3, we also have

(3.10)
(ue−v − a)α

ue−v
 1

4
.

Consequently, we obtain

B(x, y, z, u, v)  1

4
|y|u− 3Apuz =

1

4
(|y|u− 12Apzu). �

It remains to check the most difficult condition 2◦. Recall that we need to show that
the function B satisfies the following concavity-type condition:
For any (x, y, z, u, v) ∈ D, any ε ∈ [−1, 1], any positive integer k ¬ 1/θ and any se-
quences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

αj ∈ [θ, 1) and
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0

and
(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj) ∈ D,

we have

(3.11) B(x, y, z, u, v) 
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj).

We have already established that auxillary functions U and F have appropriate con-
cavity properties (Lemmas 3.1 and 3.4). From this it is almost immediate to deduce that
composition B satisfies the inequality

B(x, y, z, u, v) 
∑
αjB(x+ hj , y + kj , z, u+ rj , v + sj),
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for points satisfying additional condition |x+ hj | ¬ z. The main difficulty is to show the
inequality (3.11) where |x + hj | > z for some j. To solve this problem we will consider
the extension of B on the domain:

D̄ = {(x, y, z, u, v) ∈ R2 × (0,∞)× (0,∞)× R : |x| ¬ Az, 1 ¬ ue−v ¬ c}.

The function B̄ : D̄ 7→ R will be given by the same formula:

B̄(x, y, z, u, v) =
[
F
(
U
(x
z
,
y

z

)
+ 2Ap(p− 1)p, u, v

)
− 3Apu

]
z.

In the next theorem we will prove the concavity and monotonicity properties of B̄.

THEOREM 3.1. The function B̄ has the following properties:
1) (Concavity-type property) For any (x, y, z, u, v) ∈ D̄, any ε ∈ [−1, 1], any positive

integer k ¬ 1/θ and sequences (αj)
k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

αj ∈ [θ, 1) and
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0

and
(x+ hj , y + εhj , z, u+ rj , v + sj) ∈ D̄,

we have

(3.12) B̄(x, y, z, u, v) 
∑
αjB̄(x+ hj , y + εhj , z, u+ rj , v + sj).

2) (Vertical monotonicity) We have B̄z(x, y, z, u, v) ¬ 0 for every (x, y, z, u, v) ∈ D̄.
3) (Diagonal monotonicity) Let (x1, y1, |x1|, u, v), (x2, y2, |x2|, u, v) ∈ D. If |x2| <

|x1| and |y2 − y1| ¬ |x2 − x1|, then

B(x1, y1, |x1|, u, v) ¬ B(x2, y2, |x2|, u, v).

P r o o f. The first part of the theorem follows immediately from Lemma 3.1, Lemma
3.4 and monotonicity Fr  0. Indeed, we have:

F
(
U
(x
z
,
y

z

)
+ 2Ap(p− 1)p, u, v

)
 F

(∑
αjU

(
x+ hj
z

,
y + εhj

z

)
+ 2Ap(p− 1)p, u+

∑
αjrj , v +

∑
αjsj

)

∑
αjF

(
U

(
x+ hj
z

,
y + εhj

z

)
+ 2Ap(p− 1)p, u+ rj , v + sj

)
,

which is equivalent to the desired inequality. It remains to show the monotonicity prop-
erties. We start with 2). By symmetry, we may assume that x  0. Because β = 1/p, the
condition B̄z(x, y, z, u, v) ¬ 0 is equivalent to the inequality(

U
(x
z
,
y

z

)
+ 2Ap(p− 1)p

)β−1
2Ap(p− 1)p

(ue−v − a)α

ue−v
¬ 3Ap.
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From the second part of Lemma 3.1 and Lemma 3.3 the left hand side is smaller than((
|y|
|z|

)p
− (p− 1)p

(
|x|
|z|

)p
+ 2Ap(p− 1)p

)β−1
2Ap(p− 1)p ¬ 2Ap.

This gives the assertion. To handle 3), we first apply the symmetry and homogeneity to as-
sume that x1 > 0 and x2 = 1. Consider the function φ : [0,∞) 7→ R given by the formula

φ(t) = B(1 + t, y + εt, 1 + t, u, v),

where ε ∈ [−1, 1] and (u, v) ∈ Dc are fixed. It is sufficient to show that φ′(t) ¬ 0. This is
equivalent to proving that the expression

(U(1, η) + 2(p− 1)pAp)
β−1×

× (U(1, η) + 2(p− 1)pAp + βUy(1, η)(ε− η))
(ue−v − a)

α

ue−v
u− 3Apu,

where η = (y + εt)/(1 + t), is nonpositive. This follows from Lemma 3.2 and Lemma
3.3. This completes the proof of the theorem. �

We are ready to prove that the function B satisfies the concavity-type condition.

THEOREM 3.2. The functionB satisfies the following concavity-type condition: For
any (x, y, z, w, v) ∈ D, any number ε ∈ [−1, 1], any positive integer k ¬ 1/θ and se-
quences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

αj ∈ [θ, 1) and
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0

and
(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj) ∈ D,

we have

(3.13) B(x, y, z, u, v) 
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj).

P r o o f. Observe that the function B satisfies the following homogeneity condition:

B(λx, λy, λz, u, v) = λB(x, y, z, u, v),

for every λ > 0. Hence, we can divide both sides of (3.13) by z to obtain the equivalent
condition:

B(x/z, y/z, 1, u, v) 
∑
αjB(x/z+hj/z, y/z+ εhj/z, |x/z+hj/z| ∨ 1, u+ rj , v+ sj).

Thus, to prove the general case, it is sufficient to prove the statement for z = 1.
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For convenience let us denote xj = x + hj , yj = y + εhj , uj = u + rj and vj =
v + sj and sort the points in the increasing order, that is: x1 ¬ x2 ¬ . . . ¬ xk. We will
divide the proof into two steps.

Step 1. Let us consider two special cases: when x1  −1 or when xk ¬ 1. From
symmetry it is enough to solve only the first one, the second is analogous. From x1 
−1 and the lower bound on probabilities we can deduce that xn cannot be large. More
precisely:

xk =

(
x−

k−1∑
j=1

αjxj

)
/αk ¬ (x+ 1− αk)/αk = (x+ 1)/αk − 1 ¬ 2/θ − 1 ¬ A.

Hence (xj , yj , 1, uj , vj) ∈ D̄ and from the second part of Theorem 3.1 we obtain that

B̄(xj , yj , |xj | ∨ 1, uj , vj) ¬ B̄(xj , yj , 1, uj , vj).

Combining this with the first part of Theorem 3.1, we get∑
αjB(xj , yj , |xj | ∨ 1, uj , vj) ¬

∑
αjB̄(xj , yj , 1, uj , vj) ¬ B̄(x, y, 1, u, v)

= B(x, y, 1, u, v).

Step 2. In this step we will reduce the general case to the one considered before.
Assume that x1 < −1 and xk > 1. The idea is to replace x1, y1, xk, yk by x̂1, ŷ1, x̂k, ŷk in
such a way that:

1◦ We “pull” the points closer to the center: x̂1 ∈ (x1,−1] and x̂k ∈ [1, xk).
2◦ We have that ŷ1 − y1 = ε(x̂1 − x1) and ŷk − yk = ε(x̂k − xk).
3◦ The average is preserved: α1x1 + αkxk = α1x̂1 + αkx̂k.

Then in the light of the third part of Theorem 3.1,

B(x1, y1, |x1|, u1, v1) ¬ B(x̂1, ŷ1, |x̂1|, u1, v1)

and
B(xk, yk, |xk|, uk, vk) ¬ B(x̂k, ŷk, |x̂k|, uk, vk).

Hence the replacement does not change the left hand side of (3.13) and does not decrease
the right hand side making the inequality stronger. Moreover we will also ensure that

4◦ We “pull” the points as close as possible: x̂1 = −1 or x̂k = 1.
Now we repeat the replacement procedure until all the first coordinates x1, . . . , xk are
contained either in the set [−1,∞) or in the set (−∞, 1], which is the case solved in Step 1.
The condition 4◦ ensures that this algorithm will stop after at most n − 1 replacements.
It remains to find the points x̂1, ŷ1, x̂k, ŷk satisfying conditions 1◦-4◦. This will be done
explicitly. Let us consider two cases. If

α1x1 + αkxk  αk − α1,

then we put x̂1 = −1, x̂k = (α1x1 + αkxk + α1)/αk, ŷ1 = ε(x̂1 − x1) + y1 and ŷk =
ε(x̂k − xk) + yk. Conditions 1◦-4◦ are easy to check. The case

α1x1 + αkxk < αk − α1,

is analogous. We put x̂k = 1, x̂1 = (α1x1 + αkxk − αk)/α1, ŷ1 = ε(x̂1 − x1) + y1 and
ŷk = ε(x̂k − xk) + yk. Again it is easy to check the required conditions. This completes
the proof. �
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We have shown that B satisfies the conditions 0◦−2◦. By the method of Section 2,
this yields the estimate (3.1) with C = 12Apc−1 ¬ 384θ−2.

4. PROOF OF THE MAIN INEQUALITY

To prove the main inequality (1.3) we will construct the function of six variables. Let

D = {(x, y, z, r, u, v) ∈ R2× (0,∞)×R× (0,∞)×R : |x| ¬ z, y ¬ r, 1 ¬ ue−v ¬ c}.

The additional variable r is associated with the one-sided maximal function defined as
g∗n = supn0 gn. We define Burkholder’s function B : D→ R by

B(x, y, z, r, u, v) =

[
F

(
U

(
x

z
,
r − y
z

)
+ 2Ap(p− 1)p, u, v

)
− 12cu

]
z

= B(x, r − y, z, u, v).

This new function satisfies the following properties:
0◦ (Initial condition) We have that B(x, y, |x|, y, u, v) ¬ 0 if 1 ¬ ue−v ¬ c.
1◦ (Majorization property) For any (x, y, z, r, u, v) ∈ D we have

B(x, y, z, r, u, v)  1

4
((r − y)u− 12Apzu).

2◦ (Concavity-type property) For any (x, y, z, r, u, v) ∈ D, any ε ∈ [−1, 1], any
positive integer k ¬ 1/θ and sequences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

αj ∈ [θ, 1) and
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0

and
(x+ hj , y + εhj , |x+ hj | ∨ z, (y + εhj) ∨ r, u+ rj , v + sj) ∈ D,

we have

B(x, y, z, r, u, v) 
∑
αjB(x+ hj , y+ εhj , |x+ hj | ∨ z, (y+ εhj)∨ r, u+ rj , v+ sj).

Conditions 0◦ and 1◦ are immediate consequences of analogous properties of B. Now
consider the concavity-type condition. It is easy to check that Burkholder’s function U has
the following property: U(x, y)  U(x, 0) for every (x, y) ∈ R2. Hence

B(x, y, z, u, v)  B(x, 0, z, u, v),

for every (x, y, z, u, v) ∈ D. From the above estimate and inequality (3.13) we have∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, (y + εhj) ∨ r, u+ rj , v + sj)

=
∑
αjB(x+ hj , (r − y − εhj) ∨ 0, |x+ hj | ∨ z, u+ rj , v + sj)

¬
∑
αjB(x+ hj , r − y − εhj , |x+ hj | ∨ z, u+ rj , v + sj)

¬ B(x, r − y, z, u, v) = B(x, y, z, r, u, v).
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Now we repeat, word-by-word, the reasoning of Section 2: the only change is that the
process (zn)n0 is six-dimensional and involves the one-sided maximal function of g:
zn = (fn, gn, |f |∗n, g∗n, wn, σn). Hence, we obtain

E (g∗n − gn)wn ¬ 12Ap[w]A∞E|f |∗nwn ¬ 384θ−2[w]A∞E|f |∗nwn

and, by symmetry, E ((−g)∗n + gn)wn ¬ 384θ−2[w]A∞E|f |∗nwn. Add these two bounds
to get

(4.1) E(g∗n + (−g)∗n)wn ¬ 768θ−2[w]A∞E|f |∗nwn.

Now observe that if g started from 0, we would have the pointwise inequality |g|∗n ¬ g∗n +

(−g)∗n and (4.1) would give

E|g|∗nwn ¬ 768θ−2[w]A∞E|f |∗nwn,

as desired (see the limiting argument below). To prove (1.3) in full generality, note that
if (gn)n0 is a ±1-transform of f , then the martingale g̃ = (gn − g0)n0 also has this
property and additionally starts from 0. Hence by the above estimate,

E|g|∗nwn ¬ E(|g̃|∗n + |g0|)wn ¬ 768θ−2[w]A∞E|f |∗nwn + E|f0|wn ¬ 769θ−2[w]A∞E|f |∗nwn.

Since wn = E(w|Fn), this gives E|g|∗nw ¬ 769θ−2[w]A∞E|f |∗nw and the claim follows
by letting n→∞ and applying Lebesgue’s monotone convergence theorem.

5. NECESSITY OF THE θ-REGULARITY CONDITION

The purpose of this section is to establish Theorem 1.3, and from now on we work
with dyadic filtrations only. We could prove the theorem by constructing appropriate ex-
amples, but these seem to have quite involved, fractal-type structure and their analysis is a
little complicated. Our approach will rest on Remark 2.2, which enables us to avoid most
of these technical issues. Roughly speaking, the argument is as follows. First we assume,
on contrary, that the inequality does hold universally, i.e., with the constant independent of
the dimension. Then the Bellman method yields the existence of an abstract function satis-
fying the appropriate size and concavity requirements. Finally, we exploit these properties
in the right order to obtain a contradiction (with the assumption that the constant involved
is dimension-free).

So, suppose that there is 1 < p < ∞ and a constant K depending only on p, such
that for any dimension d, any martingales f and g adapted to the d-dimensional dyadic
filtration on [0, 1)d such that dgn = vndgn for predictable sequence of signs vn, and any
Ap weight w on [0, 1)d with [w]Ap

¬ 2, we have

||g||L1(w) ¬ K|||f |∗||L1(w).(5.1)

Fix d and let B be the associated Bellman function, given by

B(x, y, z, u, v) = supE
{
|gn|w −K(|fn|∗ ∨ z)w

}
.
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Here the probability space is equal to ([0, 1]d,B([0, 1]d), | · |), the filtration is dyadic and
the above supremum is taken over:

· all adapted martingale pairs (f, g) satisfying (f0, g0) = (x, y) and dgk = vkdfk for
all k  1, for some deterministic sequence v1, v2, . . . of signs.

· all dyadic Ap weights w satisfying [w]Ap ¬ 2, Ew = u and Ew1/(1−p) = v.

This Bellman function enjoys the appropriate initial, majorization and concavity condi-
tions, proved in Section 2. We will also need the following additional properties which
follow from the special form of the function M .

THEOREM 5.1. (i) We have

(5.2) B(x, y, z, u, v) = B(|x|, |y|, |x| ∨ z, u, v).

(ii) For any λ 6= 0 and any µ > 0 we have

(5.3) B(λx, λy, |λ|z, µu, µ−1/(p−1)v) = |λ|µB(x, y, z, u, v).

(iii) We have

(5.4) B(x, y, z, u, v)  B(x, 0, z, u, v).

P r o o f. The symmetry B(x, y, z, u, v) = B(|x|, |y|, z, u, v) follows directly from
the definition. Indeed, if f , g,w are arbitrary martingales as in the definition ofB(x, y, z, u, v),
then−f, g, w satisfies all the requirements needed in the definition ofB(−x, y, z, u, v), so

B(−x, y, z, u, v)  E
{
| − gn|w −K(|fn|∗ ∨ z)w

}
= E

{
| − gn|w −K(|fn|∗ ∨ z)w

}
.

Taking the supremum over all f , g and w we get B(−x, y, z, u, v)  B(x, y, z, u, v),
and the passage from x to −x shows that we actually have equality here. The identi-
ties B(x, y, z, u, v) = B(x,−y, z, u, v) is shown in the same manner, and the equality
B(|x|, |y|, z, u, v) = B(|x|, |y|, |x| ∨ z, u, v) follows from the fact that

E
{
|gn|w −K(|fn|∗ ∨ z)w

}
= E

{
|gn|w −K(|fn|∗ ∨ |f0| ∨ z)w

}
.

The proof of the homogeneity property (ii) is analogous: pick arbitrary martingales f, g, w
as in the definition of B(x, y, z, u, v). Then λf has the average λx, λg has the average λy,
while µw is an Ap weight with the characteristics bounded by 2 satisfying Eµw = µu and
E(µw)−1/(p−1) = µ−1/(p−1)v. Consequently,

B(λx, λy, |λ|z, µu, µ−1/(p−1)v)  E
{
|λgn|(µw)−K(|λfn|∗ ∨ |λz|)(µw)

}
= |λ|µE

{
|gn|w −K(|fn|∗ ∨ z)w

}
.

Hence, taking the supremum over all f , g and w as above, we get

B(λx, λy, |λ|z, µu, µ−1/(p−1)v)  |λ|µB(x, y, z, u, v).(5.5)

To get the reverse bound, apply the above estimate to the point (λx, λy, |λ|z, µu, µ−1/(p−1)v)
in the place of (x, y, z, u, v) and the numbers λ−1, µ−1 in the place of λ and µ.
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Finally, to check (iii), we will prove that the function y 7→ B(x, y, z, u, v) is convex;
together with its symmetry (which is guaranteed by (i)), we will get the claim. Pick α ∈
(0, 1), two real numbers y1, y2 and set y = α1y1 + (1− α1)y2. If f, g, w are martingales
as in the definition of B(x, y, z, u, v), then the convexity of the function t 7→ |t| yields

E
{
|gn|w −K(|fn|∗ ∨ z)w

}
¬ α1E

{
|y1 − y + gn|w −K(|fn|∗ ∨ z)w

}
+ α2E

{
|y2 − y + gn|w −K(|fn|∗ ∨ z)w

}
¬ α1B(x, y1, z, u, v) + α2B(x, y2, z, u, v).

Therefore, taking the supremum over all f , g, w and n gives the desired convexity. �

We will exploit the concavity of B in appropriate directions; to this end, we need the
following auxiliary geometrical fact, taken from [24]. We provide an easy proof for the
sake of completeness.

LEMMA 5.1. Suppose that N is a huge positive integer, u = 1 and v = 21/(p−1).
Then there are two pointsR, T ∈ R2 such thatR = (Rx, Ry) lies on the curve xyp−1 = 2,
T = (Tx, Ty) lies on the curve xyp−1 = 1, Rx ¬ Tx and

(5.6) (1− (1− 2−d)N )R+ (1− 2−d)NT = (u, v).

Furthermore,

(5.7) (1− (1− 2−d)N )2dRx < 1/2

provided d is sufficiently large.

P r o o f. The existence of the points R, T follows from a very simple continuity
argument. Pick any point R = (Rx, Ry) on the curve xyp−1 = 2, such that Rx ¬ u and
let T be defined by the condition (5.6) (then of course Rx ¬ u ¬ Tx). Note that T is a
continuous function of R. Furthermore, if Ry is huge, then Ty is negative, so T lies below
the curve xyp−1 = 1. On the other hand, when Ry = v, then R = T = (u, v), so T lies
above the curve xyp−1 = 1. Thus, by Darboux property, there must be a point R for which
the desired configuration is satisfied.

To show (5.7), we exploit (5.6). Recall that u = 1. We have

1 = (1− (1− 2−d)N )Rx + (1− 2−d)NTx

and since Rx < 1 < Tx,

21/(p−1) = (1− (1− 2−d)N )

(
2

Rx

)1/(p−1)

+ (1− 2−d)NT−1/(p−1)x

< (1− (1− 2−d)N )

(
2

Rx

)1/(p−1)

+ (1− 2−d)N ,

which implies

Rx <

(
1− (1− 2−d)N

1− (1− 2−d)N/21/(p−1)

)p−1
.
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Thus if d→∞, then Rx → 0; on the other hand we have (1 − (1 − 2−d)N )2d ¬ N for
each d. This proves the assertion. �

Let u, v,R and T be as in (ii) above. In what follows, we will also exploit the points
T0, T1, . . . , TN given by T0 = (u, v) and the recursive equation

(5.8) Tk = 2−dR+ (1− 2−d)Tk+1.

By straightforward induction, we see that (u, v) = (1 − 2−d)kTk + (1 − (1 − 2−d)k)R

for each k and hence in particular TN = T .

P r o o f. of Theorem 1.3. We will sometimes use the following notation: if x ∈
R, y ∈ R, z  0 and P = (u, v) ∈ D, we will write B(x, y, z;P ) = B(x, y, z, u, v). Let
x̄ = 1/(2d+1 − 1). As we have shown in Section 2 (see Remark 2.2), the function B
satisfies the initial condition 0◦: for every |y| ¬ |x| we have B(x, y, |x|, u, v) ¬ 0. Now
observe that this condition combined with Theorem 5.1 (iii) gives

0  B
(

1, 1, 1, 1, 21/(p−1)
)
 B

(
1, 0, 1, 1, 21/(p−1)

)
.(5.9)

Next, the concavity property combined with (5.8) yields, for each k,

B(x̄, 2kx̄, x̄;Tk)  2−dB(1, (2k + 1)x̄− 1, x̄;R) + (1− 2−d)B(−x̄, 2(k + 1)x̄, x̄;Tk+1).

By part (i) of Theorem 5.1, this expression is equal to

2−dB(1, (2k + 1)x̄− 1, 1;R) + (1− 2−d)B(x̄, 2x̄(k + 1), x̄;Tk+1),

which, by parts (ii) and (iii) is not smaller than

2−dRxB
(

1, 0, 1, 1, 21/(p−1)
)

+ (1− 2−d)B (x̄, 2x̄(k + 1), x̄;Tk+1) .

Hence, by induction, we obtain

x̄B
(

1, 0, 1, 1, 21/(p−1)
)

= B (x̄, 0, x̄;T0)

 (1− 2−d)NB(x̄, 2x̄N, x̄;TN )

+
N−1∑
k=0

(1− 2−d)k2−dRxB
(

1, 0, 1, 1, 21/(p−1)
)

= (1− 2−d)NTxx̄B(1, 2N, 1, 1, 1)

+ (1− (1− 2−d)N )RxB
(

1, 0, 1, 1, 21/(p−1)
)
.

Now we assume that d is large; if we apply (5.9) and (5.7), we obtain

B(1, 2N, 1, 1, 1) ¬
x̄−

(
1−

(
1− 2−d

)N)
Rx

(1− 2−d)
N
Txx̄

B
(

1, 0, 1, 1, 21/(p−1)
)
¬ 0.(5.10)

As we have shown in Section 2 (see Remark 2.2), the function B satisfies the majorization
condition 1◦: B(x, y, z, u, v)  |y|u −Kzu, where K is a finite constant in our key as-
sumption (5.1). Hence, the left-hand side of (5.10) is greater than 2N −K. This implies
2N −K ¬ 0, a contradiction, since N was arbitrary. The claim is proved. �
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[18] A. Osȩkowski, Sharp maximal inequality for martingales and stochastic integrals, Electron.
Commun. Probab. 14 (2009), 17–30.
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