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Abstract. Let 1 < p < q ≤ 2. The paper contains the identi�cation of the best con-
stant Cp,q such that the following holds. If X, Y are Hilbert-space valued martingales
such that Y is di�erentially subordinate to X, then we have

‖Y ‖p,∞ ≤ Cp,q‖X‖p,q .
The proof rests on the careful combination of Burkholder's method and optimization
arguments. As an application, related sharp Lorentz-norm inequalities for a wide class
of Fourier multipliers are obtained.

1. Introduction

The motivation for the results obtained in this paper comes from a very natural ques-
tion arising in martingale theory. To present this question from an appropriate perspec-
tive, let us start with the necessary background and notation. In what follows, (Ω,F ,P)
stands for a complete probability space, equipped with a continuous-time right-continuous
�ltration (Ft)t≥0 such that F0 contains all the events A with P(A) = 0. Assume further
that X, Y are two continuous-time cadlag martingales, adapted to (Ft)t≥0, taking values
in a separable Hilbert space H. The norm and scalar product in H will be denoted by
| · | and 〈·, ·〉, respectively; with no loss of generality, we may and do assume that H = `2
or H = `n2 for some integer n. The symbol [X,X] will stand for the quadratic variation
(square bracket) of X, given by [X,X] =

∑
n≥1[Xn, Xn], where Xn is the n-th coor-

dinate of X and [Xn, Xn] is the usual square bracket of the real-valued martingale Xn

(see Chapters VI and VII in Dellacherie and Meyer [13] or Chapter 4 in Métivier [20] for
details).

We will impose a certain domination principle on the processes X, Y under investiga-
tion. Following Bañuelos and Wang [6] and Wang [31], we say that the martingale Y is
di�erentially subordinate to X, if the process ([X,X]t− [Y, Y ]t)t≥0 is non-decreasing and
nonnegative as a function of t. Let us discuss a few examples. If we treat two discrete-
time martingales f = (fn)n≥0, g = (gn)n≥0 as continuous-time processes (via Xt = fbtc
and Yt = gbtc, t ≥ 0), then the above domination amounts to saying that, almost surely,

(1.1) |dgn| ≤ |dfn|, n = 0, 1, 2, . . . ,

which is the original de�nition of the di�erential subordination, introduced by Burkholder
in the eighties (cf. [11]). Here df = (dfn)n≥0, dg = (dgn)n≥0 are the di�erence sequences
of f and g, given by df0 = f0 and dfn = fn − fn−1, n ≥ 1, with a similar de�nition of dg.
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There is an important class of discrete-time processes for which (1.1) holds. We say
that a martingale g is the transform of a martingale f by a predictable sequence v, if for
any n ≥ 0 we have the identity dgn = vndfn. Here by predictability we mean that for
each n, the random variable vn is measurable with respect to F(n−1)∨0. Note that if each
term vn takes values in the interval [−1, 1], then the condition (1.1) is satis�ed.

We turn our attention to examples in continuous time. Suppose that X is an arbitrary
martingale and H is a predictable process taking values in the interval [−1, 1]. Then the
martingale Y = H ·X, given by the stochastic integral

(1.2) Yt = H0X0 +

∫ t

0+

HsdXs, t ≥ 0,

is di�erentially subordinate to X. This follows immediately from the identity

[X,X]t − [Y, Y ]t = (1− |H0|2)X2
0 +

∫ t

0+

(1− |Hs|2)d[X,X]s, t ≥ 0.

Obviously, this example is just the continuous-time extension of the context of martingale
transforms discussed above. Indeed, for any f , g, v as previously, one considers the
embedding Xt = fbtc, Yt = gbtc, Ht = vbtc, t ≥ 0, and veri�es the identity Y = H ·X.

As the �nal example, consider a Brownian motion B in Rd and let H, K be two
predictable processes with values in d× d matrices, satisfying ‖Ht‖HS ≥ ‖Kt‖HS for all
t > 0 (here ‖·‖HS stands for the Hilbert�Schmidt norm). Then the Rd-valued martingales

Xt =

∫ t

0+

Hs · dBs and Yt =

∫ t

0+

Ks · dBs, t ≥ 0,

satisfy the di�erential subordination, since

[X,X]t − [Y, Y ]t =

∫ t

0

(
‖Hs‖2HS − ‖Ks‖2HS

)
ds, t ≥ 0.

The di�erential subordination implies many interesting estimates between X and Y ,
which can be further applied in various problems of harmonic analysis, e.g., in the study
of sharp inequalities for Fourier multipliers in the Euclidean and non-Euclidean settings.
The literature on the subject is very extensive, so we will only discuss below several
selected results closely related to the theme of this paper. For the more detailed and
systematic exposition on martingale inequalities, we refer the reader to the monograph
[22]; for the applications, see e.g. [3, 6, 7, 14, 17, 25] and consult the references therein.

Probably the most prominent result in the area is the following sharp Lp estimate,
established by Burkholder in his seminal paper [11] in the discrete-time context. The
continuous-time extension presented below is taken for Wang's paper [31].

Theorem 1.1. Suppose that X, Y are H-valued martingales such that Y is di�erentially
subordinate to X. Then for any 1 < p <∞ we have the inequality

(1.3) ‖Yt‖p ≤ (p∗ − 1)‖Xt‖p, t ≥ 0,

where p∗ = max{p, p/(p− 1)}. The constant p∗ − 1 is the best possible, even for H = R:
for any 1 < p <∞ and any C < p∗−1, there exist t ≥ 0 and a pair (X,Y ) of di�erentially
subordinate real-valued martingales such that ‖Yt‖p > C‖Xt‖p.



LORENTZ-NORM ESTIMATES 3

This result can be extended in many directions. For example, one can ask about the
best constants in the corresponding weak-type estimates. As shown by Burkholder [11]
and Suh [29], if 1 ≤ p <∞, then we have

P(|Yt| ≥ 1)1/p ≤ cp‖Xt‖p, t ≥ 0,

where the optimal constant is given by (2/Γ(p+ 1))
1/p

if 1 ≤ p ≤ 2 and
(
pp−1/2

)1/p
for

remaining p. There is an alternative version of this result, established in [24], which refers
to a di�erent norming of weak Lp spaces. For any 1 < p < ∞ and an arbitrary random
variable ξ with values in H, de�ne

(1.4) ‖ξ‖p,∞ = sup

{
P(A)1/p−1

∫
A

|ξ|dP
}
,

where the supremum is taken over all events A of positive probability. Then, if Y is
di�erentially subordinate to X and 1 < p <∞, we have the sharp estimate

(1.5) ‖Yt‖p,∞ ≤ kp‖Xt‖p, t ≥ 0,

where kp = (Γ((2p− 1)/(p− 1)))
1/p

if 1 < p ≤ 2 and kp = cp =
(
pp−1/2

)1/p
for p ≥ 2.

One can investigate other families of estimates, including logarithmic, exponential and
restricted weak-type bounds (cf. [23, 25]); one can also consider maximal versions of such
results, as well as various modi�cations involving certain additional boundedness condi-
tions on X and Y : see [22] for an overview. There is a powerful technique, invented by
Burkholder [11], which is very e�cient in the study of such problems. Roughly speak-
ing the approach rests on the construction of an appropriate special function, enjoying
certain size and concavity requirements; we will discuss the technique brie�y in Section
2. However, the method has its limitations and allows the study of only those estimates,
which can be expressed in an appropriate integral form (see (2.1) below). On the other
hand, there are many function spaces in which the corresponding norms have a more
involved structure. In our considerations below, we will be concerned with a class of
Lorentz-norm estimates. For a random variable ξ, let ξ∗ : (0, 1] → [0,∞) stand for its
decreasing rearrangement, de�ned by

ξ∗(t) = inf
{
λ ≥ 0 : P(|ξ| > λ) ≤ t

}
.

Then for any 0 < p, q <∞, we de�ne the Lorentz space Lp,q = Lp,q(Ω,F ,P) as the family
of all (equivalence classes of) random variables ξ for which

‖ξ‖p,q =

(∫ 1

0

(t1/pξ∗(t))q
dt

t

)1/q

.

Our main result can be stated as follows. In our considerations below, we use the weak
norming (1.4), and the symbol p′ is the Hölder conjugate to p, i.e., p′ = p/(p− 1).

Theorem 1.2. Suppose that 1 < p ≤ q ≤ 2. Let X, Y be two H-valued martingales such
that Y is di�erentially subordinate to X. Then we have the estimate

(1.6) ‖Yt‖p,∞ ≤ 2−1/p′(p′/q′)1+1/q′Γ(q′ + 1)1/q′‖Xt‖p,q, t ≥ 0.

The constant is the best possible, even in the context of stochastic integrals (1.2) and for
H = R.
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It should be emphasized that Burkholder's method is not applicable here directly:
in the next section we describe the main idea behind our approach, in particular, we
present the obstacles arising due to the appearance of Lorentz norms and outline the
argument which will allow us to overcome these di�culties. Section 3 contains the proof
of an auxiliary estimate which is dual to (1.6), while Section 4 is devoted to the proof of
Theorem 1.2. The �nal section contains applications to wide class of Fourier multipliers,
including the real part of Beurling�Ahlfors operator and more general class of linear
combinations of second-order Riesz transforms.

2. On the approach

2.1. Burkholder's method. As we mentioned in the previous section, inequalities for
di�erentially subordinated martingales can be handled by constructing certain special
functions. The idea behind this method is the following. Suppose that D is an open
domain contained inH×H, such that (0, 0) ∈ D (typically, D isH×H itself orD = B×H,
where B is the unit ball of H). Assume further that V : D → R is a given Borel function
and we are interested in the estimate

(2.1) EV (Xt, Yt) ≤ 0, t ≥ 0,

for all pairs (X,Y ) of martingales taking values in D, such that Y is di�erentially subor-
dinate to X. To study such a problem, one searches for a special function U on D, which
satis�es the following three requirements:

1◦ We have U(x, y) ≤ 0 for all (x, y) ∈ D such that |y| ≤ |x|.
2◦ We have U ≥ V .
3◦ For any t ≥ 0 and any pair (X,Y ) as above, we have EU(Xt, Yt) ≤ EU(X0, Y0).

The existence of such a function U immediately yields (2.1): we have EV (Xt, Yt) ≤
EU(Xt, Yt) ≤ EU(X0, Y0) ≤ 0, where the �rst passage follows from the majorization
condition 2◦, the second is due to 3◦ and the �nal follows from 1◦ (and the estimate
|Y0| ≤ |X0|, by the di�erential subordination). While the conditions 1◦ and 2◦ are simple
pointwise estimates which can be investigated directly, the third requirement seems more
intricate to analyze. It is more or less clear that this condition is related to some sort of
concavity of U . For instance, 3◦ holds if U is concave on D, but, roughly speaking, it is
enough to assume the concavity in certain directions. Precisely, we have the following fact,
which is a slight modi�cation of the results of Wang [31] (see Proposition 2 there). In what
follows, for any r > 0, the symbol rD stands for the dilated set {(rx, ry) : (x, y) ∈ D}.

Lemma 2.1. Let U : D → R be a continuous function which is of class C1 in the
interior of D and of class C2 on Di, where D1, D2, . . . , Dm are open subsets of D
such that D1 ∪ D2 ∪ . . . ∪ Dm = D. Assume in addition that there is a Borel function
c : D1 ∪D2 ∪ . . . ∪Dm → [0,∞) satisfying

(2.2) sup
(x,y)∈(D1∪D2∪...∪Dm)∩rD

c(x, y) <∞ for all 0 < r < 1

and such that for all (x, y) ∈ D1 ∪D2 ∪ . . . ∪Dm with |x||y| 6= 0 and all h ∈ R, k ∈ H,

(2.3) 〈Uxx(x, y)h, h〉+ 2〈Uxy(x, y)h, k〉+ 〈Uyy(x, y)k, k〉 ≤ −c(x, y)(|h|2 − |k|2).

Let (X,Y ) be a martingale pair taking values in rD for some 0 < r < 1, such that Y is
di�erentially subordinate to X. Then for any t ≥ 0 there is a non-decreasing sequence
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(τn)n≥0 of stopping times converging to ∞ almost surely, such that

(2.4) EU(Xτn∧t, Yτn∧t) ≤ EU(X0, Y0).

Though the formulation of the above lemma might look a little complicated, its meaning
is very simple: up to some boundedness requirements (expressed in (2.2)) and straightfor-
ward limiting arguments (which involve letting r → 1 in the requirement (X,Y ) ∈ rD and
n→∞ in the assertion (2.4)), the desired condition 3◦ is a consequence of the concavity
inequality (2.3). Putting all the above observation together, we see that the validity of
the estimate (2.1) can be deduced from the existence of a function U on D, which satis�es
the pointwise inequalities 1◦, 2◦ and (2.3).

The method described above has been successful in the study of various sharp estimates
for di�erentially subordinate martingales. For example, the choice V (x, y) = |y|p−Cpp |x|p
corresponds to the moment inequality (1.3); Burkholder proved that the corresponding
special function U is given by

U(x, y) = αp(|y| − (p∗ − 1)|x|)(|x|+ |y|)p−1,

where αp is a certain positive constant depending only on p. As another example, func-
tions of the form V (x, y) = (|y| − α)+ − β|x|p for some α, β > 0 lead to weak-type
estimates. Let us discuss this connection in a more detailed manner, as we will need
similar arguments later on. For simplicity, let us restrict ourselves to p ≥ 2 (analogous,
but slightly di�erent and more complex calculations work for 1 < p < 2 as well). As
shown in Section 2.6 of [5], we have the inequality

E
(
|Yt| − 1 +

1

p

)
+

≤ pp−2

2
E|Xt|p, t ≥ 0,

which corresponds to the above function V with α = 1−1/p and β = pp−2/2. The special
function U has quite a complicated formula and we will not present it here: we refer to
[5] for details. Fix an auxiliary parameter λ > 0 and apply the above estimate to the
martingale pair (X(1 − p−1)/λ, Y (1 − p−1)/λ): note that the di�erential subordination
of the processes is inherited from (X,Y ). After some straightforward manipulations, we
obtain

E(|Yt| − λ)+ ≤
(p− 1)p−1λ1−p

2p
E|Xt|p, t ≥ 0.

Pick an arbitrary event A of positive probability. By the estimate above, we have∫
A

|Yt|dP =

∫
A

(|Yt| − λ)dP + λP(A)

≤ E(|Yt| − λ)+ + λP(A) ≤ (p− 1)p−1λ1−p

2p
E|Xt|p + λP(A).

Minimizing the right-hand side with respect to λ gives∫
A

|Yt|dP ≤
pp−1

2
‖Xt‖p P(A)1−1/p,

which is the weak-type bound.
We see that the above method enables the study of only those estimates, which can

be rewritten in the `integral' form (2.1). Since the norms in the Lorentz spaces Lp,q are
not of that shape (unless p = q or q =∞), some new ideas need to be developed. Let us
sketch the main steps of our approach.
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2.2. A dual estimate. It turns out that it is convenient to study �rst a related dual
result (the reason for this will be clari�ed in a moment). For the sake of brevity, let

Cp,q = 2−1/p′ (p′/q′)
(q′+1)/q′

Γ(q′ + 1)1/q′

be the constant appearing in (1.6). The associated dual estimate reads

(2.5) ‖Yt‖p,q ≤ Cp′,q′‖Xt‖1/p1 ‖Xt‖1/p
′

∞ ,

for 2 ≤ q < p < ∞ and t ≥ 0. Here, as before, X, Y are H-valued martingales such
that Y is di�erentially subordinate to X. Fix t and note that in (2.5), we may assume
‖Xt‖∞ = 1, by homogeneity. Now the argument splits into two steps. The �rst part is
the following. Suppose that Φ, Ψ are some Young functions such that for all u ≥ 0 and
v > 0 we have

(2.6) uqvq/p−1 ≤ Φ(u) + Ψ(v).

Then the direct integration yields

(2.7) ‖Yt‖qp,q =

∫ 1

0

(Y ∗t (s))qsq/p−1ds ≤
∫ 1

0

Φ
(
Y ∗t (s)

)
ds+

∫ 1

0

Ψ(s)ds.

Here the assumption q < p is crucial: then (Y ∗(s))q and sq/p−1 are equimonotone and

Young's inequality can be applied. Note that the latter integral
∫ 1

0
Ψ(s)ds is deterministic.

The second step is to prove the sharp bound of the form

(2.8)

∫ 1

0

Φ
(
Y ∗t (s)

)
ds ≤ cp,q‖Xt‖1,

for some cp,q > 0. Observe that this estimate can be rewritten in the `integral' form
E
(
Φ(|Yt|) − cp,q|Xt|

)
≤ 0, so it can be studied with the use of Burkholder's method

described above. Combining these two steps and applying a certain homogenization
argument (which involves dividing by ‖Xt‖1 when applying (2.7)), we will get the desired
claim. Of course, it is absolutely not clear whether the functions Φ, Ψ can be chosen so
that we obtain the best constant in (2.5); we will address this issue later.

Before we proceed, let us mention that (2.5) implies (1.6), but unfortunately, in the
context of stochastic integrals only. Nevertheless, the proof of this weaker statement will
provide us with certain auxiliary objects, to be needed later.

Proof of (1.6) for stochastic integrals, assuming (2.5). Let X be an H-valued martingale
and let Y be the stochastic integral, with respect to X, of some predictable process H
with values in [−1, 1]. Let A be an arbitrary event of positive probability. For x ∈ H, let
x′ be the `sign' of x, given by x′ = x/|x| if x ∈ H \ {0} and 0′ = 0. We have∫

A

|Yt|dP = E〈Yt, 1AY ′t 〉 = E〈Yt, ξ〉.

Let (ξt)t≥0 be the H-valued martingale induced by ξ: that is, put ξt = E(ξ|Ft) for t ≥ 0.
By the properties of stochastic integrals, we obtain∫

E

|Yt|dP = E〈Yt, ξ〉 = E
∫ t

0

d[Y, ξ]s = E
∫ t

0

Hsd[X, ξ]s = E
∫ t

0

d[X, ζ]s = E〈Xt, ζt〉,
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where ζ = (ζt)t≥0 is the stochastic integral of H with respect to ξ. But ξ is bounded by 1;
therefore, by Hardy�Littlewood�Polyá inequality, Hölder's inequality and (2.5) (applied
to the martingales ξ, ζ and the exponents p′ > q′ ≥ 2), we obtain

E〈Xt, ζt〉 ≤
∫ 1

0

X∗t (s)ζ∗t (s)ds

≤
(∫ 1

0

(s1/pX∗t (s))q
ds

s

)1/q (∫ 1

0

(s1/p′ζ∗t (s))q
′ ds

s

)1/q′

=

(∫ 1

0

(s1/p′ζ∗t (s))q
′ ds

s

)1/q′

‖Xt‖p,q

≤ Cp,q‖ξt‖1/p
′

1 ‖Xt‖p,q.

(2.9)

However, we have ‖ξt‖1 ≤ ‖ξ‖1 = P(A); putting all the above facts together, we get

1

P(A)1/p′

∫
A

|Yt|dP ≤ Cp,q‖Xt‖p,q,

and hence (1.6) follows, since A was arbitrary. �

2.3. The desired Lp,q → Lp,∞ inequality. The proof of the estimate (1.6), under the
general di�erential subordination, will rest on a somewhat similar two-step procedure.
We establish �rst the intermediate sharp bound

(2.10) E(|Yt| − α)+ ≤ EΘ(|Xt|),

where α is a certain positive constant and Θ is an appropriate Young function. Observe
that this estimate is of `integral' form (2.1) and hence Burkholder's method applies here.
The second step is to relate EΘ(|Xt|) to the Lorentz norm ‖Xt‖p,q. This will be handled
by means of the pointwise (`Young-type') estimate

(2.11) Θ(u) ≤ uqv

q
+ ρ(v),

for all u, v ≥ 0 and some function ρ on [0,∞). The application of this inequality to
u = X∗t (s), v = sq/p−1 and integrating over s ∈ (0, 1] gives

(2.12) EΘ(|Xt|) =

∫ 1

0

Θ(X∗t (s))ds ≤ 1

q
‖Xt‖qp,q +

∫ 1

0

ρ(sq/p−1)ds.

Combining this with (2.10) and using some additional homogenization/optimization ar-
guments (similar to those above, leading to Lp → Lp,∞ estimates), will yield the desired
assertion.

Before we proceed to the rigorous proof, let us comment that the special Young func-
tions Φ, Ψ and Θ used above, as well as other parameters involved, will be given by quite
complicated formulas. There is a natural question how to search for these objects; this
will be discussed in detail in Remarks 3.7 and 4.6 below. Roughly speaking, the idea is
as follows. First, one guesses the distributions of the extremal martingales in (1.6) and
(2.5) (i.e., those X, Y , for which equalities hold); second, one construct Φ, Ψ and Θ so
that equalities hold in the intermediate bounds (2.7), (2.8), (2.10) and (2.12).
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3. A dual estimate

The purpose of this section is to prove the following fact.

Theorem 3.1. Suppose that X, Y are H-valued martingales such that Y is di�erentially
subordinate to X. Then for any p > q ≥ 2 the estimate (2.5) holds.

As we have discussed in the previous section, the proof will be carried out in two steps.
Consider Young functions Φ = Φp,q, Ψ = Ψp,q : [0,∞)→ [0,∞) given by

Φ(s) = 21−q/p
∫ sq

0

exp

(
p− q
p

u1/q

)
du

and

Ψ(t) =

{
(− ln(2t))qtq/p−1 − Φ(− ln(2t)) if t < 1/2,

0 if t ≥ 1/2.

The �rst step is to establish the Young-type inequality (2.6). This is straightforward,
but we include the proof for the sake of completeness.

Lemma 3.2. For u ≥ 0 and v > 0, the estimate (2.6), and hence also (2.7), is valid.

Proof. Fix v > 0, substitute r = uq and consider the function F : [0,∞)→ R, given by

F (r) = rvq/p−1 − Φ(r1/q)−Ψ(v).

We compute that F ′(r) = vq/p−1−21−q/p exp
(
(p− q)r1/q/p

)
. Therefore, if v ≥ 1/2, then

F is decreasing and F (r) ≤ F (0) = 0. On the other hand, if v < 1/2, then F attains its
maximal value at r = (− ln(2v))q: so, F (r) ≤ F ((− ln(2v))q) = 0. �

The main technical di�culty lies in the proof of the second step, the inequality (2.8).
Consider the constant

(3.1) cp,q =
1

2

∫ ∞
0

Φ(t)e−tdt = 2−q/p
(
p

q

)q
Γ(q + 1) =

q

p
Cqp′,q′ .

We will prove the following fact.

Theorem 3.3. Let t ≥ 0 be a �xed parameter and suppose that X, Y are H-valued
martingales such that ‖Xt‖∞ ≤ 1. Then (2.8) is true.

We will apply Burkholder's method, described in the previous section. Consider the
domain D = {(x, y) ∈ H ×H : |x| ≤ 1} and let

D1 = {(x, y) ∈ D : |x|+ |y| < 1}, D2 = {(x, y) ∈ D : |x|+ |y| > 1}.

The estimate (2.8) can be rewritten in the form (2.1), with V : D → R given by V (x, y) =
Φ(|y|)− cp,q|x|. De�ne the special function U : D → R by

U(x, y)

=

{
cp,q(|y|2 − |x|2) if (x, y) ∈ D1,

|x|Φ
(
|x|+ |y| − 1

)
+ (1− |x|)e|x|+|y|

∫∞
|x|+|y| Φ(t− 1)e−tdt− cp,q if (x, y) ∈ D2.

We will check that U enjoys the required properties 1◦, 2◦ and 3◦. We start with the
observation that the function is of class C1, and proceed to the proof of the condition 3◦.
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Lemma 3.4. The estimate (2.3) holds with

c(x, y) =


2cp,q if (x, y) ∈ D1,∫ ∞

0

Φ′′(t+ |x|+ |y| − 1)e−tdt if (x, y) ∈ D2.

The function c is nonnegative and satis�es the boundedness condition (2.2).

Proof. If (x, y) ∈ D1, then the estimate (2.3) is evident: actually, both sides are equal.
If (x, y) ∈ D2, then some lengthy, but rather straightforward calculations reveal that the
left-hand side of (2.3) equals I1 + I2 + I3, where

I1 = −
∫ ∞

0

Φ′′′(t+ u)e−tdt · (〈x′, h〉+ 〈y′, k〉)2|x|,

I2 =

[
Φ′(u)− uΦ′′(u)− u

∫ ∞
0

Φ′′′(t+ u)e−tdt

]
(|k|2 − 〈y′, k〉2)

|y|
,

I3 =

∫ ∞
0

Φ′′(t+ u)e−tdt · (|k|2 − |h|2),

where u = |x| + |y| − 1. Here, as before, we use the notation x′ = x/|x| for x 6= 0, and
x′ = 0 otherwise. Observe that both terms I1 and I2 are nonpositive. Indeed, this follows
at once from the fact that the third derivative

Φ′′′(s) = q21−q/p exp

(
p− q
p

s

)
sq−3

[(
p− q
p

)2

s2 + 2

(
p− q
p

)
(q − 1)s+ (q − 1)(q − 2)

]
is nonnegative (then by the mean-value property we have Φ′(u) − uΦ′′(u) ≤ 0). Here
is the place where we use the assumption q ≥ 2. This establishes the estimate (2.3).
The nonnegativity of c and the boundedness condition (2.2) are evident. The proof is
complete. �

The next step is to establish the size requirements.

Lemma 3.5. The conditions 1◦ and 2◦ are satis�ed.

Proof. The estimate 1◦ depends on x and y through their norms only, so we may assume
that x, y ∈ R. By the previous lemma, the function F : t 7→ U(tx, ty) is concave on
{t ∈ R : |tx| ≤ 1}, it is also even there. This implies F (1) ≤ F (0) = 0, which is exactly
the �rst condition. The proof of 2◦ will be more involved. As previously, we may assume
that H = R, actually, we may even restrict ourselves to nonnegative x and y. By the
previous lemma, the function t 7→ U(tx, y) is concave on the set {t ∈ [0,∞) : tx ≤ 1} and
hence it is enough to establish the majorization for x ∈ {0, 1}. If x = 1 then both sides are
equal, so let us assume that x = 0. Consider the auxiliary function F (y) = U(0, y)−Φ(y)
for y ≥ 0. Note that F (0) = F ′(0) = 0, F ′′(0) = 2cp,q > 0 and F ′′′(y) = −Φ′′′(y) < 0 for
y ∈ (0, 1), which, by the continuity of F , implies that it is enough to prove F (y) ≥ 0 on
[1,∞). To this end, we need more calculations. If y ∈ (1,∞), then we have the identity

F (y) = ey
[∫ ∞

y

Φ(t− 1)e−tdt− cp,qe−y − Φ(y)e−y
]

= eyJ(y).

A direct di�erentiation shows that

J ′(y) = e−y
[
Φ(y)− Φ(y − 1)− Φ′(y) + cp,q

]
.
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Denote the expression in the square brackets by K(y) and note that

K ′(y) =
(

Φ′(y)− Φ′(y − 1)− Φ′′(y)
)
≤ 0,

where the latter bound is due to the mean-value theorem (since Φ′′′ ≥ 0). Furthermore,
as we will prove now, K is negative for large y. Indeed,

Φ(y)− Φ(y − 1) = 21−q/pq

∫ y

y−1

exp

(
p− q
p

s

)
sq−1ds

≤ 21−q/p exp

(
p− q
p

y

)
· (yq − (y − 1)q),

which implies

Φ(y)− Φ(y − 1)− Φ′(y) ≤ 21−q/p exp

(
p− q
p

y

)
(yq − (y − 1)q − qyq−1).

The latter expression tends to −∞ as y →∞, so indeed K(y) ≤ 0 for y big enough. Now,
observe that F (1) = cp,q−Φ(1). If this quantity were negative (equivalently: cp,q < Φ(1)),
then we would also have J(1) < 0 and

K(1) = Φ(1)− Φ′(1) + cp,q < 2Φ(1)− Φ′(1) ≤ 0.

To see the latter estimate, note that the function λ 7→ 2Φ(λ) − λΦ′(λ) is concave (since
Φ′′′ ≥ 0) and it vanishes, along with its derivative, at λ = 0. But K is decreasing, as we
proved above: therefore, we would have K < 0 and hence also J < J(1) < 0 on (1,∞).
But this is a contradiction: we have J(y)→ 0 as y →∞. This proves that F (1) ≥ 0 and
J(1) ≥ 0. Since K is decreasing on (1,∞), it is either negative there, or it changes its sign
once from plus to minus. Therefore, J is either decreasing, or there is y0 ∈ (1,∞) such
that J is increasing on (1, y0) and decreasing on (y0,∞). Since J(1) ≥ 0 and J(y) → 0
as y → ∞, this proves that J , and hence also F , are nonnegative on [1,∞). This is the
desired claim. �

We are ready for the proof of the auxiliary Φ-estimate.

Proof of Theorem 3.3. Fix arbitrary X, Y as in the statement and an auxiliary parameter
r ∈ (0, 1). By Lemma 2.1, applied to the dilated pair (rX, rY ), there is a sequence (τn)n≥1

of stopping times increasing to in�nity such that

EU(rXτn∧t, rYτn∧t) ≤ EU(rX0, rY0).

Therefore, the application of 1◦ and 2◦ yields the estimate EV (rXτn∧t, rYτn∧t) ≤ 0, or

EΦ(|rYτn∧t|) ≤ cp,qE|rXτn∧t| ≤ cp,qE|Xτn∧t|.

Letting r → 1 and n → ∞ gives the estimate (2.8), by means of Fatou's lemma. The
sharpness follows from the fact that the constant cp,q is already the best possible in the
weaker inequality EΦ(|Yt|) ≤ cp,q. See Theorem 6.1 in [11] for details. �

We proceed to the proof of the dual Lorentz-norm estimate.
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Proof of (2.5). By homogeneity, we may and do assume that ‖Xt‖∞ ≤ 1. The estimate
(2.6), with u = X∗(s) and v = s/‖Xt‖1, combined with (2.8), gives∫ 1

0

(Y ∗t (s))qsq/p−1ds = ‖Xt‖q/p−1
1

∫ 1

0

(Y ∗t )q (s/‖Xt‖1)
q/p−1

ds

≤ ‖Xt‖q/p−1
1

[∫ 1

0

Φ
(
Y ∗t (s)

)
ds+

∫ 1

0

Ψ
(
s/‖Xt‖1

)
ds

]
= ‖Xt‖q/p−1

1

[
EΦ(|Yt|) + ‖Xt‖1

∫ ‖Xt‖−1
1

0

Ψ(s)ds

]

≤ ‖Xt‖q/p1

[
cp,q +

∫ 1/2

0

Ψ(s)ds

]
= Cqp′,q′‖Xt‖q/p1 .

(3.2)

This is the desired estimate. �

As we have seen in Section 2, the estimate (2.5) yields (1.6) for stochastic integrals.
We will now show that the latter result is sharp, thus proving that the constant in (2.5)
is also the best possible. It will be convenient for us to work in the discrete-time case;
this context will also be useful in our further considerations on Fourier multipliers.

Sharpness of (1.6) for martingale transforms. Fix p ≤ q ≤ 2. We will construct an
appropriate martingale example which attains the constant Cp,q in the limit. Let κ :
(0,∞)→ [0,∞) be a non-increasing function given by

(3.3) κ(t) = (− ln(2t))1/(q−1)tq
′/p′−1χ(0,1/2](t).

Pick α ∈ (0, 1) and let f = f (α) be the discretized version of κ, de�ned by f(t) =
κ(αn−1/2) if t ∈ (αn/2, αn−1/2] and f(t) = 0 for t ∈ (1/2, 1]. Note that f is non-
increasing and f ≤ κ, so

‖f‖p,q ≤ ‖κ‖p,q =

(∫ 1/2

0

(− ln(2t))qtq/p−1dt

)1/q

= Cq−1
p,q .

Consider the probability space equal to ((0, 1],B(0, 1), |·|), the interval (0, 1] with its Borel
subsets and the Lebesgue measure, equipped with the following �ltration: F0 is the trivial
σ-�eld, while for n ≥ 1, Fn is generated by the intervals (0, αn−1/2], (αn−1/2, αn−2/2],
(αn−2/2, αn−3/2], . . ., (α/2, 1/2] and (1/2, 1]. Next, for any n = 0, 1, 2, . . ., let fn =
E(f |Fn) and de�ne g = (gn)n≥0 as the transform of (fn)n≥0, determined by g0 = f0 and
dgn = − sgn(gn−1)dfn (with the convention sgn(0) = 1). Note that

(3.4) lim
n→∞

‖fn‖p,q = ‖f‖p,q ≤ Cq−1
p,q .

Furthermore, as we have already mentioned above, the function f is non-increasing: this
implies that for n ≥ 1 and t ∈ (αn/2, αn−1/2] we have

fn(t) =
2

αn−1

∫ αn−1/2

0

fdx ≥ f(t) = fn+1(t) = fn+2(t) = . . . ,

that is, dfn+1(t) ≤ 0 and dfn+2(t) = dfn+3(t) = . . . = 0. By the choice of the transforming
sequence, we obtain that g∞, the almost sure limit of (gn)n≥0, satis�es

|g∞(t)| = |gn+1(t)| = |gn(t)|+ |dfn+1(t)| ≥ −dfn+1(t) = fn(t)− fn+1(t) = fn(t)− f(t).
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Therefore,∫
Ω

|g∞|dP =

∫ 1/2

0

|g∞(t)|dt+

∫ 1

1/2

|g∞(t)|dt

=
∑
n≥1

∫ αn−1/2

αn/2

|g∞(t)|dt+

∫ 1

1/2

2f0dt

≥
∑
n≥1

∫ αn−1/2

αn/2

(
fn(t)− f(t)

)
dt+

∫ 1/2

0

f(t)dt

=
∑
n≥1

∫ αn−1/2

αn/2

fn(t)dt =

∫ 1/2

0

∑
n≥1

fn(t)χ(αn/2,αn−1/2](t)dt.

Now, observe that as α ↑ 1, we have the pointwise convergence∑
n≥1

fn(t)χ(αn/2,αn−1/2](t)→
1

t

∫ t

0

κ(u)du

and hence, by Fatou's lemma,

lim inf
α↑1

∫
Ω

|g∞|dP ≥
∫ 1/2

0

1

t

∫ t

0

κ(u)dudt =

∫ 1/2

0

(− ln(2t))qtq/p−1dt = Cqp,q.

Combining this with (3.4), we see that with a proper choice of n and α, the ratio∫
Ω
|gn|dP/‖fn‖p,q, and hence also ‖gn‖p,∞/‖fn‖p,q, can be made bigger than Cp,q − ε.

This gives the desired sharpness. �

Remark 3.6. We conclude with a remark which will be useful later in Section 5, during
the study of Fourier multipliers. Namely, by a simple symmetrization, we may assume
that the extremal martingales constructed above have expectation zero. Suppose that
α ∈ (0, 1) is given and (f, g) is the corresponding pair of martingales on (0, 1]. We
consider the new probability space ([−1, 1],B([−1, 1]), | · |/2) and for any n ≥ 0, de�ne

f̃n(ω) =

{
fn(ω) if ω ∈ (0, 1],

−fn(−ω) if ω ∈ [−1, 0),
g̃n(ω) =

{
gn(ω) if ω ∈ (0, 1],

−gn(−ω) if ω ∈ [−1, 0)

(the values for ω = 0 are irrelevant). Finally, we set f−1 = g−1 = 0. Then f = (fn)n≥−1,
g = (gn)n≥−1 are martingales relative to natural �ltration, they have expectation zero, g
is the transform of f by a predictable sequence with values in {−1, 1} and the distributions
of (|fn|, |gn|) and (|f̃n|, |g̃n|) coincide for each n. Hence, by a proper choice of n and α,

we may make the ratio ‖g̃n‖p,∞/‖f̃n‖p,q arbitrarily close to Cp,q.

Remark 3.7. Now we present the details on the search for Φ and Ψ, which was outlined
in the previous section. Suppose that there is a nontrivial pair (X,Y ) for which both
sides of (2.5) equal. Then equality holds in (2.7) and (2.8) as well; let us take a look at
the �rst bound. Equality holds here, so both sides of (2.6), with u = Y ∗t (s) and v = s,
should also be the same, for all s. This suggests to inspect for which u, v the estimate
(2.6) becomes an equality. As we have seen in the proof of Lemma 3.2, this holds if
quq−1vq/p−1 = Φ′(u), and coming back to the function Y ∗t , we obtain

(3.5) qY ∗t (s)q−1sq/p−1 = Φ′(Y ∗t (s)).
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Therefore, if we knew the explicit formula for the non-increasing rearrangement Y ∗t , this
would lead us to the derivative of Φ and hence also to the function Φ itself; the formula
for the second function, Ψ, would then be immediate and would follow from the fact that
equality holds in (2.6) for u = Y ∗t (s) and v = s.

So, all we need is the explicit formula for Y ∗t ; here the second inequality (2.8) comes
into play. In [11] (see Theorem 6.1 there), Burkholder studied a wide class of general
sharp inequalities of the form EΦ(|Yt|) ≤ CΦ, t ≥ 0, under the requirement ‖Xt‖∞ ≤ 1
and certain mild growth assumptions of Φ. Although these inequalities are a little weaker
than what we need - the term ‖Xt‖1 is not present on the right - we may still take a look
at the extremal martingale pairs constructed by Burkholder. It can be veri�ed readily
that for such processes, we have Y ∗t (s) = (− ln(2s))+. Plugging this into (3.5), we obtain
the functions Φ and Ψ de�ned at the beginning of this section.

We should point out here that the assumption p ≥ q ≥ 2 is essential here. Without this
condition, we may still perform the above procedure and obtain the function Φ given by
the same formula, but then the estimate (2.8) fails. In other words, either the inequality
(2.5) cannot be proven with the splitting into two intermediate bounds, or our guess for
the extremal Y was incorrect.

4. Proof of Theorem 1.2 for general martingales

We start with the introduction of some auxiliary objects. Let κ : (0, 1/2] → [0,∞)
be the function given by (3.3). The restriction to the domain (0, 1/2] guarantees that
the function κ is strictly decreasing, hence invertible: let κ−1 : [0,∞) → (0, 1/2] be the
inverse. De�ne Θ : [0,∞)→ [0,∞) by the formula

Θ(t) = −
∫ t

0

ln(2κ−1(s))ds.

Since κ is decreasing, so is κ−1 and hence Θ is a convex function. Some steps leading to
this somewhat strange object are described in Remark 4.6 below.

As we discussed in Section 2, the proof of the Lorentz-norm inequality (1.6) will be
based on two-step procedure, exploiting the estimates (2.10) and (2.11). Let us start with
the second bound, whose analysis is straightforward.

Lemma 4.1. For any u ≥ 0 and v > 0 we have the inequality

(4.1) Θ(u)− uqv

q
≤ Θ

((
− ln(2vp/(q−p))

v

)1/(q−1)

+

)
− v

q

(
− ln(2vp/(q−p))

v

)q/(q−1)

+

.

Proof. Fix v > 0 and denote the left-hand side by F (u). By the de�nition of Θ, we have

F ′(u) = Θ′(u)− uq−1v = − ln(2κ−1(u))− uq−1v.

Therefore, F ′ > 0 if and only if u > κ(exp(−uq−1v)/2), or u <
(
−ln(2vp/(q−p))/v

)1/(q−1)

+
.

This yields F (u) ≤ F
((
−ln(2vp/(q−p))/v

)1/(q−1)

+

)
, which is the claim. �

We turn our attention to the inequality (2.10). We will show the following statement.

Theorem 4.2. Suppose that p ≤ q ≤ 2. Let X, Y be two H-valued martingales such that
Y is di�erentially subordinate to X. Then we have

(4.2) E
(
|Yt| −

γ(0)

2

)
+

≤ EΘ(|Xt|), t ≥ 0.
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This result will be proved by Burkholder's method. Let D = H × H. The estimate
(4.2) is of the form (2.1), with V : D → R given by V (x, y) = (|y| − γ(0)/2)+ − Θ(|x|).
To introduce the corresponding special function U , we need an additional object. Let
γ : [0,∞)→ [0,∞) be de�ned by

(4.3) γ(t) = exp
(
Θ′(t)

) ∫ ∞
t

exp
(
−Θ′(s)

)
ds.

Let us prove some basic facts about γ, which will be needed later.

Lemma 4.3. The function γ is increasing and satis�es the di�erential equation

(4.4)
1 + γ′(t)

γ(t)
= Θ′′(t), t > 0.

Furthermore, for any t ≥ 0 we have

(4.5) t ≤ Θ′(t)γ(t).

Proof. Since κ is decreasing, the monotonicity of γ will follow if we show that the function

(4.6) u 7→ γ(κ(u)) = − 1

u

∫ u

0

sκ′(s)ds

is decreasing. This, in turn, will be established if we prove that sκ′(s) increases as s
increases. However, we compute that

(sκ′(s))′ = (− ln(2s))
1
q−1−2s

q′
p′−2

[
2− q
q − 1

+
2

q − 1

(
q′

p′
− 1

)
ln(2s) +

(
q′

p′
− 1

)2

(ln(2s))2

]
is positive, since so are the three terms in the square brackets. (Here is the place where
the assumption q ≤ 2 plays a role: for q > 2, the above expression becomes negative for
s close to 1/2.) The equation (4.4) follows by a direct di�erentiation of (4.3). Finally, to
show (4.5), note that both sides are equal for t = 0, and by the previous two properties,(

t

γ(t)
−Θ′(t)

)′
=

1

γ(t)
− tγ′(t)

γ(t)2
−Θ′′(t) = − tγ

′(t)

γ(t)2
− γ′(t)

γ(t)
≤ 0.

The proof is complete. �

Now we may introduce the special function U . Recall that D = H ×H and consider
the subdomains

D1 = {(x, y) ∈ D : |x|+ |y| < γ(0)},
D2 = {(x, y) ∈ D : |y| > γ(|x|)},
D3 = {(x, y) ∈ D : γ(0)− |x| < |y| < γ(|x|)}.

The function U is given by

U(x, y) =



|y|2 − |x|2

2γ(0)
if (x, y) ∈ D1,

|y| −Θ(|x|)− γ(0)

2
if (x, y) ∈ D2,

γ(s)− t−Θ(s)−Θ′(s)t− γ(0)

2
if (x, y) ∈ D3.

Here in the de�nition of U(x, y) for (x, y) ∈ D3, the letters s, t denote the unique positive
numbers such that |x| = s + t and |y| = γ(s) − t. The formula for U on the domain



LORENTZ-NORM ESTIMATES 15

D3 might look a little intricate, but it has a very nice geometric interpretation, which
is conveniently explained in the case H = R. Namely, given (x, y) ∈ D3 with x, y ≥ 0,
we draw a line segment of slope −1 which joins (x, y) with a point at the boundary ∂D3

(which is precisely (s, γ(s))). Then we require that U is linear along this segment, and
that U is of class C1; this yields the above formula.

Now we will check that U satis�es the appropriate conditions. As previously, we start
with the concavity property 3◦.

Lemma 4.4. The function U satis�es (2.3) with

c(x, y) =


(γ(0))−1 if (x, y) ∈ D1,

(γ(|x|))−1 if (x, y) ∈ D2,

(γ(s))−1 if (x, y) ∈ D3.

(On D3, the number s ≥ 0 is uniquely determined by the requirements s + t = |x| and
γ(s)− t = |y|). The function c is nonnegative and satis�es the condition (2.2).

Proof. The second and the third part of the lemma is evident, so we may focus on the
inequality (2.3). If (x, y) ∈ D1, then both sides of this estimate are equal. If (x, y) ∈ D2,
then the bound becomes

|k|2 − 〈y′, k〉2

|y|
−Θ′′(|x|)〈x′, h〉2 −Θ′(|x|) · |h|

2 − 〈x′, h〉2

|x|
≤ |k|

2 − |h|2

γ(|x|)
.

However, we have (|k|2 − 〈y′, k〉2)/|y| ≤ |k|2/|y| ≤ |k|2/γ(|x|). Furthermore, we have
Θ′(|x|)/|x| ≥ 1/γ(|x|), so

−
(

Θ′(|x|)− 1

γ(|x|)

)
|h|2 ≤ −

(
Θ′(|x|)− 1

γ(|x|)

)
〈x′, h〉2.

Finally, we have −Θ′′(|x|) + 1/γ(|x|) = −γ′(|x|)/γ(|x|) ≤ 0, so

(−Θ′′(|x|) + 1/γ(|x|)) 〈x′, h〉2 ≤ 0.

Summing the three displayed inequalities above, we get (2.3). If (x, y) ∈ D3, then the
analysis is a little more involved. Let us, for a moment, use the notation UH to indicate
the Hilbert space we work in. Then UH(x, y) = UR(|x|, |y|) and the inequality (2.3) is
equivalent to

UR
xx(p)〈x′, h〉2 + 2UR

xy(p)〈x′, h〉〈y′, k〉+ UR
yy(p)〈y′, k〉2

+ UR
x (p) · |h|

2 − 〈x′, h〉2

|x|
+ UR

y (p) · |k|
2 − 〈y′, k〉2

|y|
≤ |k|

2 − |h|2

γ(s)
,

(4.7)

where p = (|x|, |y|) = (s+ t, γ(s)− t). Recall that by the very de�nition of UR, we have

(4.8) UR(s+ t, γ(s)− t) = γ(s)− t−Θ(s)−Θ′(s)t.

Di�erentiating with respect to s and with respect to t gives the identities

UR
y (p) + UR

y (p)γ′(s) = γ′(s)−Θ′(s)−Θ′′(s),

UR
x (p)− UR

y (p) = −1−Θ′(s).
(4.9)
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This yields

UR
x (p)(1 + γ′(s)) = −Θ′(s)(1 + γ′(s))−Θ′′(s)t

= −Θ′(s)(1 + γ′(s))− 1 + γ′(s)

γ(s)
· t ≤ −1 + γ′(s)

γ(s)
· (s+ t),

(4.10)

where the latter bound follows from (4.5). By above inequality, we obtain(
UR
x (p)

|x|
+

1

γ(s)

)
|h|2 ≤

(
UR
x (p)

s+ t
+

1

γ(s)

)
〈x′, h〉2,

so we may assume |h| = 〈x′, h〉 in (4.7). Similarly, we may assume there that |k| = 〈y′, k〉:
by (4.9), we have

(4.11) UR
y (p)(1 + γ′(s)) = 1 + γ′(s)− Φ′′(s)t = 1 + γ′(s)− 1 + γ′(s)

γ(s)
· t.

Consequently, UR
y (p)/(γ(s)− t) = 1/γ(s) and hence

UR
y (p)

γ(s)− t
(|k|2 − 〈y′, k〉2)− |k|

2

γ(s)
= −〈y

′, k〉2

γ(s)
.

Therefore, it is enough to prove that

UR
xx(p)〈x′, h〉2 + 2UR

xy(p)〈x′, h〉〈y′, k〉+ UR
yy(p)〈y′, k〉2 ≤ 〈y

′, k〉2 − 〈x′, h〉2

γ(s)
.

To do this, we di�erentiate the equations (4.10), (4.11) with respect to s and with respect
to t, and compute as above, to obtain

UR
xx(p)(1 + γ′(s)) = −1 + γ′(s)

γ(s)
− γ(s)− t

γ2(s)
· γ′(s),

UR
xy(p)(1 + γ′(s)) = −γ(s)− t

γ2(s)
· γ′(s),

UR
yy(p)(1 + γ′(s)) =

1 + γ′(s)

γ(s)
− γ(s)− t

γ2(s)
· γ′(s).

This gives the desired estimate: we have

UR
xx(p)〈x′, h〉2 + 2UR

xy(p)〈x′, h〉〈y′, k〉+ UR
yy(p)〈y′, k〉2

= − γ(s)− t
γ2(s)(1 + γ′(s))

· γ′(s)(〈x′, h〉+ 〈y′, k〉)2 +
〈y′, k〉2 − 〈x′, h〉2

γ(s)
≤ 〈y

′, k〉2 − 〈x′, h〉2

γ(s)
.

The proof is complete. �

Now, we will verify that U satis�es the appropriate size requirements.

Lemma 4.5. The conditions 1◦ and 2◦ hold true.

Proof. The proof of 1◦ is the same as that in Lemma 3.5. In the proof of the majorization
2◦, we may restrict ourselves to the case H = R and nonnegative x, y. Fix such an x and
consider the function F (y) = U(x, y)−(y−γ(0)/2)++Θ(x), y ≥ 0. Observe that F (y) = 0
for y ≥ γ(x) (i.e., for (x, y) ∈ D2. If the reverse estimate holds, then 0 ≤ Uy(x, y) ≤ 1:
this is trivial if (x, y) ∈ D1, and follows at once from (4.11) if (x, y) ∈ D3 (indeed: we
have Uy(s + t, γ(s) − t) = 1 − t/γ(s)). Putting all the above facts together, we see that
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the function F is increasing on [0, γ(0)/2], decreasing on [γ(0)/2, γ(x)] and vanishes for
y ≥ γ(x). Consequently, it is enough to prove that F (0) ≥ 0, i.e.,

G(x) := U(x, 0) + Θ(x) ≥ 0

for all x ≥ 0. Let us study the properties of G. First, note that we have G(0) = G′(0) = 0
and G′′(x) = Θ′′(x)− (γ(0))−1 for x ≤ γ(0)/2. However, by the very de�nition of Θ, we
have Θ′(κ(u)) = − ln(2u) and hence Θ′′(κ(u))·(−uκ′(u)) = 1 by the direct di�erentiation.
If u→ 1/2, then κ(u) and κ′(u) tend to zero. Furthermore, as we have proved in Lemma
4.3, the nonnegative function u 7→ −uκ′(u) is decreasing. Since κ is also decreasing (on
(0, 1/2)), we conclude that G′′ is decreasing on (0, γ(0)/2) and G′′(x) → ∞ as x → 0.
Therefore, there are scenarios possible on [0, γ(0)/2]: either G is convex there, or there
is x0 ∈ (0, γ(0)/2) such that G is convex on [0, x0] and concave [x0, γ(0)/2]. No matter
which case happens, there is no x ∈ (0, γ(0)/2] for which G′(x) = 0 and G(x) < 0.

Next, we turn our attention to the analysis of G on [γ(0)/2,∞). We rewrite the
estimate G > 0 in the equivalent form

G(s) = Θ(s+ γ(s))−Θ(s)−Θ′(s)γ(s)− γ(0)

2
≥ 0,

for s ≥ 0. Note that by a direct di�erentiation,

−uκ′(u) =

[
− 1

(q − 1) ln(2u)
+ 1− q′

p′

]
κ(u),

so if u is close to 0, then −uκ′(u) ∼ κ(u). Precisely, if u ∈ (0, (2e)−1], then

(4.12)

(
1− q′

p′

)
κ(u) ≤ −uκ′(u) ≤

(
1

q − 1
+ 1− q′

p′

)
κ(u).

Consequently,

Θ′′(κ(u)) = − 1

uκ′(u)
≥
(

1

q − 1
+ 1− q′

p′

)−1
1

κ(u)
=

p

q′κ(u)
,

so Θ′′(s) ≥ p/(q′s) for su�ciently large s. For such s, by the mean-value theorem and
the fact that Θ′′′ < 0 (will show this at the end of the proof), we get

G(s) ≥ Θ′′(s+ γ(s)) · γ(s)2

2
− γ(0)

2
≥ pγ(s)2

q′(s+ γ(s))
− γ(0)

2
.

But by (4.4) and the �rst inequality in (4.12),

γ(s) =
1 + γ′(s)

Θ′′(s)
≥ 1

Θ′′(s)
= −sκ′(s) ≥

(
1− q′

p′

)
s

for all s. Plugging this into the previous inequality, we see that G(s), and hence also G(s),
is positive for su�ciently large s. So, suppose thatG(s) < 0 for some (intermediate) s > 0;
therefore, there exists s0 > 0 at which G attains its minimum. But

G(s0) =

∫ s0+γ(s0)

s0

Θ′(s)ds−Θ′(s0)γ(s0)− γ(0)

2

≥ Θ′(s0) + Θ′(s0 + γ(s0))

2
· γ(s0)−Θ′(s0)γ(s0)− γ(0)

2

=
Θ′(s0 + γ(s0))−Θ′(s0)

2
· γ(s0)− γ(0)

2
,
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where in the second passage we have used the inequality Θ′′′ < 0. However, the condition

G
′
(s0) = 0 implies

(1 + γ′(s0))(Θ′(s0 + γ(s0))−Θ′(s0))−Θ′′(s0)γ(s0) = 0,

which, by (4.4) and the inequality 1+γ′(s0) > 0 is equivalent to Θ′(s0 +γ(s0))−Θ′(s0) =
1. Plugging this above, we get G(s0) = (γ(s0) − γ(0))/2, which is positive, since γ is
increasing. This is a contradiction, which shows that G is positive on the whole [0,∞).

It remains to show that Θ′′′ < 0, but this is due to the following two facts. First, by a
direct di�erentiation we have Θ′′(κ(u))(−uκ′(u)) = 1; second, the function u 7→ −uκ′(u)
is decreasing on (0, 1/2] (see the proof of Lemma 4.3). �

We are ready for the proof of the martingale inequalities.

Proof of Theorem 4.2. Fix t ≥ 0 and an arbitrary pair (X,Y ) as in the statement. By
1◦, 2◦ and Lemma 2.1, there is a sequence (τn)n≥1 of stopping times increasing to in�nity
such that EV (Xτn∧t, Yτn∧t) ≤ 0 for each n. So, arguing as in Section 2, if A is an arbitrary
event of positive probability, then∫

A

|Yτn∧t|dP ≤ EΘ(|Xτn∧t|) +
γ(0)P(A)

2
.

Letting n→∞, we obtain

(4.13)

∫
A

|Yt|dP ≤ EΘ(|Xt|) +
γ(0)P(A)

2
.

Next we apply (4.1) with u = X∗t (s) and v = (λs)q/p−1, where λ is an auxiliary positive
parameter. We obtain

EΘ(|Xt|) =

∫ 1

0

Θ(X∗t (s))ds

≤ λq/p−1

q

∫ 1

0

(s1/pX∗t (s))q
ds

s
+

∫ ∞
0

Θ

((
−(λs)1−q/p ln(2λs)

)1/(q−1)

+

)
− 1

q

∫ ∞
0

(
−(λs)1−q/p ln(2λs)

)1/(q−1)

+
(− ln(2λs))ds

=
λq/p−1

q
‖Xt‖qp,q + λ−1

∫ ∞
0

Θ (κ(s)) ds− λ−1

q

∫ ∞
0

κ(s)(− ln(2s))ds.

Integrating by parts and using the de�nition of Θ, we get∫ ∞
0

Θ(κ(s))ds = −
∫ ∞

0

sΘ′(κ(s))κ′(s)ds

=

∫ ∞
0

s ln(2s)κ′(s)ds = −
∫ ∞

0

κ(s)(1 + ln(2s))ds.

But ∫ ∞
0

κ(s)ds =

∫ ∞
0

t1/(q−1)(e−t/2)q
′/p′dt = 2−q

′/p′
(
p′

q′

)q′
Γ(q′)

and, similarly, ∫ ∞
0

κ(s)(− ln(2s))ds = p′ · 2−q
′/p′
(
p′

q′

)q′
Γ(q′),
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so plugging this above, we get

EΘ(|Xt|) ≤
λq/p−1

q
‖X‖qp,q + λ−1 · 2−q

′/p′
(
p′

q′

)q′
Γ(q′) · q − p

q(p− 1)
.

We minimize the right-hand side over λ: the choice λ = ‖X‖−pp,qC
p/(q−1)
p,q yields

EΘ(|Xt|) ≤ C(q−p)/(q−1)
p,q ·

‖Xt‖pp,q
p

.

Combining this with (4.13) and recalling that γ(0)/2 = Cq
′

p,q/p
′, we get∫

A

|Yt|dP ≤ C(q−p)/(q−1)
p,q ·

‖Xt‖pp,q
p

+ Cq
′

p,q ·
P(A)

p′
.

Now we exploit an additional homogenization argument: we apply the above estimate

to the pair (X/µ, Y/µ), where µ = C
1/(q−1)
p,q ‖X‖−1

p,qP(A)1/p. The obtained inequality
becomes ∫

A

|Yt|dP ≤ Cp,q‖X‖p,qP(A)1−1/p,

so the claim follows, since A was arbitrary. The sharpness has already been shown
above. �

Remark 4.6. Let us brie�y sketch some steps which have led to the special function Θ.
The indication is hidden in the estimates (2.10) and (2.11). Namely, we have identi�ed
the almost extremal pairs (X,Y ), or rather (f, g) in (1.6) specialized to the context of
martingale transforms/stochastic integrals. In particular, the non-increasing rearrange-
ment of the extremal Xt is close to κ. For the extremal pairs, we must have (almost)
equality in (2.10), and both sides of (2.11) should also be (almost) equal for u = X∗t (s)
and v = sq/p−1 (for all s > 0). The latter occurs if Θ′(u) = uq−1v, which leads to the
equation Θ′(X∗t (s)) = (X∗t (s))q−1sq/p−1. Plugging X∗t = κ gives Θ′(κ(s)) = − ln(2s),
which yields the special function Θ considered above.

5. An application: weak-type inequalities for Fourier multipliers

Inequalities for di�erentially subordinate martingales lead to the corresponding results
for the class of the so-called Lévy multipliers, introduced in [3, 4]. Furthermore, such
estimates are optimal for the real part of the Beurling�Ahlfors operator, a fundamental
object for the study of quasiconformal mappings and geometric function theory (cf. [2]).
This interplay between the probabilistic and analytic contexts is well-known, so we will
be brief. For clarity, it is convenient to split the material into a few separate subsections.

5.1. Fourier multipliers and their stochastic representation. For a given bounded
function m : Rd → C, there exists a uniquely bounded linear operator Tm on L2(Rd),
called the Fourier multiplier with the symbol m, which is de�ned, in terms of Fourier

transforms, by the identity T̂mf = mf̂ . By Plancherel's theorem, the norm of Tm on
L2(Rd) is equal to ‖m‖∞, and there is a natural problem to investigate those symbols
m, for which the associated multipliers extend to bounded operators on (all or some)
Lp(Rd), or some other function spaces. This problem seems to be too hard to study in
such a generality; typically, one restricts oneself to a �xed class of symbols, enjoying some
size/regularity conditions. We will study the so-called Lévy multipliers, which can be
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de�ned as follows. Let ν be a Lévy measure on Rd, i.e., a nonnegative Borel measure on
Rd satisfying ν({0}) = 0 and the integrability requirement∫

Rd
min{|x|2, 1}ν(dx) <∞.

Assume further that µ is a �nite Borel measure on the unit sphere S of Rd and �x two
Borel functions φ on Rd and ψ on S with values in R. We de�ne m = mφ,ψ,µ,ν on Rd by

(5.1) m(ξ) =
1
2

∫
S 〈ξ, θ〉

2
ψ(θ)µ(dθ) +

∫
Rd [1− cos 〈ξ, x〉]φ(x)ν(dx)

1
2

∫
S 〈ξ, θ〉

2
µ(dθ) +

∫
Rd [1− cos 〈ξ, x〉]ν(dx)

if the denominator is not 0, and m(ξ) = 0 otherwise; 〈·, ·〉 is the scalar product in Rd.
This class contains many important examples; we present here two multipliers and

refer the reader to [4] for the extended list. Let e1, e2, . . ., ed be the collection of unit
vectors in Rd and let δej be the Dirac measure concentrated on ej . If we take ν = 0,
µ = δe1 + δe2 + . . . δed and consider ψ which is equal to 1 on ei, −1 on ej and vanishes
for all other ek's, then m(ξ) = (ξ2

i − ξ2
j )/|ξ|2, i.e., Tm is the combination R2

i − R2
j of

second-order Riesz transforms on Rd (cf. [27]). In particular, setting d = 2, i = 1 and
j = 2, we obtain the operator R2

1 − R2
2, the real part of the so-called Beurling�Ahlfors

operator B = R2
1 −R2

2 + 2iR1R2 on the plane.
We will prove the following statement.

Theorem 5.1. For any Fourier multiplier Tm associated with the symbol m of the form
(5.1) we have

(5.2) ‖Tmf‖Lp,q(Rd) ≤ Cp′,q′‖f‖
1/p

L1(Rd)
‖f‖1/p

′

L∞(Rd)
, 2 ≤ q ≤ p <∞,

and

(5.3) ‖Tmf‖Lp,∞(Rd) ≤ Cp,q‖f‖Lp,q(Rd), 1 < p < q ≤ 2.

In both estimates the constants are the best possible: for the real part of the Beurling-
Ahlfors operator they cannot be replaced by smaller numbers.

This result will be obtained by probabilistic methods: there is a beautiful connection
between the class (5.1) and di�erentially subordinate martingales. Letm be the multiplier
as in (5.1), with the corresponding parameters φ, ψ, µ and ν. Assume in addition that
ν(Rd) is �nite and nonzero. Then for any s < 0 there is a Lévy process (Xs,t)t∈[s,0] with
Xs,s ≡ 0, for which Lemmas 5.2 and 5.3 below hold true. To state these, we need some
notation. For a given f ∈ L∞(Rd), de�ne the corresponding parabolic extension Uf to
(−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, �x x ∈ Rd, s < 0 and let f, φ ∈ L∞(Rd). We introduce the processes F =

(F x,s,ft )s≤t≤0 and G = (Gx,s,f,φt )s≤t≤0 by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
(Fu − Fu−) · φ(Xs,u −Xs,u−)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)

]
φ(z)ν(dz)dv.

(5.4)
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Now, �x s < 0 and de�ne the operator S = Ss,φ,ν by the bilinear form

(5.5)

∫
Rd
Sf(x)g(x)dx =

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx,

where f, g ∈ C∞0 (Rd). We have the following facts, proved in [3] and [4].

Lemma 5.2. For any �xed x, s, f, φ as above, the processes F x,s,f , Gx,s,f,φ are martin-
gales with respect to (Ft)s≤t≤0 = (σ(Xs,t : s ≤ t))s≤t≤0. Furthermore, if ‖φ‖∞ ≤ 1, then
Gx,s,f,φ is di�erentially subordinate to F x,s,f .

Let us stress here that φ, and hence also G, are complex valued. The aforementioned
representation of Fourier multipliers in terms of Lévy processes is as follows.

Lemma 5.3. Let 1 < p <∞ and d ≥ 2. The operator Ss,φ,ν is well de�ned and extends
to a bounded operator on Lp(Rd), which can be expressed as the Fourier multiplier with
the symbol

M(ξ) = Ms,φ,ν(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)

if
∫
Rd(1− cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise.

5.2. Proof of (5.2). We may and do assume that at least one of the measures µ, ν is
nonzero. We split the reasoning into three parts.

Step 1. We will �rst establish an auxiliary Φ estimate for the multipliers with the
symbols of the special form

(5.6) Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
.

Assume that 0 < ν(Rd) < ∞; then the above representation in terms of Lévy processes
is applicable. Fix s < 0 and complex-valued functions f, g ∈ C∞0 (Rd). By homogeneity,

we may and do assume that ‖f‖L∞(Rd) = 1. Let Φ̃ be the Legendre transform of Φ:

Φ̃(s) = supt≥0(st− Φ(t)). Then, by Young's inequality, (2.8) and Fubini's theorem,∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx ≤

∫
Rd

EΦ(|Gx,s,f,φ0 |)dx+

∫
Rd

EΦ̃(|g(x+Xs,0)|)dx

≤ cp,q
∫
Rd

E|F x,s,f,φ0 |dx+ E
∫
Rd

Φ̃(|g(x+Xs,0)|)dx

= cp,q

∫
Rd
|f(x)|dx+

∫
Rd

Φ̃(|g(x)|)dx.

By (5.5), this gives ∫
Rd

[
Sf(x)g(x)− Φ̃(|g(x)|)

]
dx ≤ cp,q‖f‖L1(Rd).

By the de�nition of the Legendre transform, one can take g so that Sf(x)g(x)−Φ̃(|g(x)|) =
Φ(|Sf(x)|). But such a function does not have to belong to C∞0 (Rd); nevertheless, for
any ε > 0 we may pick g so that∫

Rd

[
Sf(x)g(x)− Φ̃(|g(x)|)

]
dx ≥ (1− ε)

∫
Rd

Φ(|Sf(x)|)dx.
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Combining this with the previous estimate and letting ε→ 0, we obtain

(5.7)

∫
Rd

Φ(|Sf(x)|)dx ≤ cp,q‖f‖L1(Rd).

Now if we let s→ −∞, then Ms,φ,ν converges pointwise to the multiplier Mφ,ν given by
(5.6). By Plancherel's theorem, Ss,φ,νf → TMφ,ν

f in L2(Rd) and hence there is a sequence
(sn)∞n=1 converging to −∞ such that limn→∞ Ssn,φ,νf → TMφ,ν

f almost everywhere.
Thus Fatou's lemma combined with (5.7) yields

(5.8)

∫
Rd

Φ(|TMφ,ν
f(x)|)dx ≤ cp,q‖f‖L1(Rd).

Step 2. Now we turn to the general multipliers as in (5.1) and drop the assumption
0 < ν(Rd) < ∞. For a given ε > 0, de�ne a Lévy measure νε in polar coordinates
(r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ).

Here δε denotes Dirac measure on {ε}. Next, consider a multiplierMε,φ,ψ,µ,ν as in (5.6), in
which the Lévy measure is 1{|x|>ε}ν+νε and the jump modulator is given by 1{|x|>ε}φ(x)+
1{|x|=ε}ψ(x/|x|). Note that this Lévy measure is �nite and nonzero, at least for su�ciently
small ε. If we let ε→ 0, we see that∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =

∫
S
〈ξ, θ〉2φ(θ)

1− cos〈ξ, εθ〉
〈ξ, εθ〉2

µ(dθ)

→ 1

2

∫
S
〈ξ, θ〉2φ(θ)µ(dθ)

and, consequently, Mε,φ,ψ,µ,ν → mφ,ψ,µ,ν pointwise. So, by Fatou's lemma, (5.8) yields∫
Rd

Φ(|Tmφ,ψ,µ,νf(x)|)dx ≤ cp,q‖f‖L1(Rd).

Step 3. We complete the proof. By (2.6) and the above estimate, settingm = mφ,ψ,µ,ν ,∫ ∞
0

((Tmf)∗(s))qsq/p−1ds = ‖f‖q/p−1

L1(Rd)

∫ ∞
0

((Tmf)∗(s))q
(
s/‖f‖L1(Rd)

)q/p−1
ds

≤ ‖f‖q/p−1

L1(Rd)

[∫ ∞
0

Φ
(
(Tmf)∗(s)

)
ds+

∫ ∞
0

Ψ
(
s/‖f‖L1(Rd)

)
ds

]
= ‖f‖q/p−1

L1(Rd)

[∫
Rd

Φ(|Tmf |)dx+ ‖f‖L1(Rd)

∫ ∞
0

Ψ(s)ds

]
≤ ‖f‖q/p

L1(Rd)

[
cp,q +

∫ 1/2

0

Ψ(s)ds

]
= Cqp′,q′‖f‖

q/p

L1(Rd)
.

This is the desired claim.

5.3. Proof of (5.3). We deduce the estimate from (5.2) by a duality argument, analogous
to that used above in the context of stochastic integrals. Fix a function f on Rd and let
A be a subset of Rd of positive measure. We have∫

A

|Tmf(x)|dx =

∫
Rd
Tmf(x)g(x)dx,
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where g = χATmf/|Tmf | (we use the convention 0/0 = 0). By Plancherel's theorem,∫
A

|Tmf(x)|dx =

∫
Rd
T̂mf(ξ)ĝ(ξ)dξ =

∫
Rd
f̂(ξ)T̂m̄g(ξ)dξ,

where m̄ is the symbol obtained by replacing ψ and φ with the complex conjugates ψ̄ and
φ̄; in particular, m̄ is also of the form (5.1). But g is bounded by 1; therefore, applying
Hardy�Littlewood�Polyá inequality, Hölder's inequality and (5.2), we get∫

A

|Tmf(x)|dx ≤
∫ ∞

0

f∗(s)(Tm̄g)∗(s)ds

≤
(∫ ∞

0

(s1/pf∗(s))q
ds

s

)1/q (∫ ∞
0

(s1/p′(Tm̄g)∗(s))q
′ ds

s

)1/q′

≤ Cp,q‖g‖1/p
′

L1(Rd)
‖f‖Lp,q(Rd).

However, we have ‖g‖L1(Rd) ≤ |A|; this yields (5.3), since A was arbitrary.

5.4. Sharpness. Now we will prove that the constants in the estimates (5.2) and (5.3)
are optimal for any dimension d ≥ 2. It is enough to focus on the sharpness of the weaker
bound (5.3) (indeed: if the constant in (5.2) could be improved for some p, q, then (5.3)
would not be sharp for p′, q′). This will be done with the use of laminates, important
family of probability measures on matrices. It is convenient to split the reasoning into
several separate parts. For the sake of convenience and to make the presentation as self
contained as possible, we recall the preliminaries on laminates and their connections to
martingales from [8].

Laminates. Assume that Rm×n stands for the space of all real matrices of dimension
m×n and Rn×nsym denote the subclass of Rn×n which consists of all symmetric matrices of
dimension n× n.

De�nition 5.4. A function f : Rm×n → R is called rank-one convex, if for all A,B ∈
Rm×n with rank B = 1, the function t 7→ f(A+ tB) is convex.

Let P = P(Rm×n) be the class of all compactly supported probability measures on
Rm×n. For a measure ν ∈ P, we de�ne its center of mass by

ν =

∫
Rm×n

Xdν(X).

De�nition 5.5. We say that a measure ν ∈ P is a laminate and write ν ∈ L, if

f(ν) ≤
∫
Rm×n

fdν

for all rank-one convex functions f . The set of laminates with center 0 is denoted by
L0(Rm×n).

The key observation is that laminates can be regarded as probability measures that
record the distribution of the gradients of smooth maps: see Corollary 5.9 below. We
brie�y explain this and refer the reader to the works [15], [21] and [30] for full details.

De�nition 5.6. Let U be a subset of R2×2 and let PL(U) denote the smallest class of
probability measures on U which

(i) contains all measures of the form λδA + (1 − λ)δB with λ ∈ [0, 1] and satisfying
rank(A−B) = 1;
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(ii) is closed under splitting in the following sense: if λδA + (1 − λ)ν belongs to
PL(U) for some ν ∈ P(R2×2) and µ also belongs to PL(U) with µ = A, then
also λµ+ (1− λ)ν belongs to PL(U).

The class PL(U) is called the prelaminates in U .

It follows immediately from the de�nition that the class PL(U) only contains atomic
measures. Also, by a successive application of Jensen's inequality, we have the inclusion
PL ⊂ L. The following are two well known lemmas in the theory of laminates; see [1],
[15], [21], [30].

Lemma 5.7. Let ν =
∑N
i=1 λiδAi ∈ PL(R2×2

sym) with ν = 0. Moreover, let 0 < r <
1
2 min |Ai − Aj | and δ > 0. For any bounded domain B ⊂ R2 there exists u ∈ W 2,∞

0 (B)
such that ‖u‖C1 < δ and for all i = 1, 2, . . . , N ,∣∣{x ∈ B : |D2u(x)−Ai| < r}

∣∣ = λi|B|.

Lemma 5.8. Let K ⊂ R2×2
sym be a compact convex set and suppose that ν ∈ L(R2×2

sym)

satis�es supp ν ⊂ K. For any relatively open set U ⊂ R2×2
sym with K ⊂ U , there exists a

sequence νj ∈ PL(U) of prelaminates with νj = ν and νj
∗
⇀ ν, where

∗
⇀ denotes weak

convergence of measures.

These two lemmas and a simple molli�cation argument yield the following statement,
proved by Boros, Shékelyhidi Jr. and Volberg [8]. It exhibits the connection between
laminates supported on symmetric matrices and second derivatives of functions. It will
be our main tool in the proof of the sharpness. Let D denote the unit disc of C.

Corollary 5.9. Let ν ∈ L0(R2×2
sym). Then there exists a sequence uj ∈ C∞0 (D) with

uniformly bounded second derivatives, such that

1

|D|

∫
D
ϕ(D2uj(x)) dx →

∫
R2×2
sym

ϕ dν

for all continuous ϕ : R2×2
sym → R.

Biconvex functions and a special laminate. The next step in our analysis is devoted
to the introduction of a certain special laminate. We need some additional notation. A
function ζ : R × R → R is said to be biconvex if for any �xed z ∈ R, the functions
x 7→ ζ(x, z) and y 7→ ζ(z, y) are convex. Now, take the martingales f and g as in Remark
3.6 and consider the modi�ed pair

(Fk, Gk) :=

(
fk + gk

2
,
fk − gk

2

)
, k = −1, 0, 1, . . . , n.

This is a �nite martingale starting from (0, 0), which has the following zigzag property:
for any k ≥ 0 we have Fk = Fk−1 with probability 1 or Gk = Gk−1 almost surely; that is,
in each step (F,G) moves either vertically, or horizontally. Indeed, this follows directly
from the assumption that g is a transform of f by a predictable sequence with values in
{−1, 1}. This property combines nicely with biconvex functions: if ζ is such a function,
then a successive application of Jensen's inequality gives

(5.9) Eζ(Fn, Gn) ≥ Eζ(Fn−1, Gn−1) ≥ . . . ≥ Eζ(F−1, G−1) = ζ(0, 0).
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The distribution of the terminal variable (Fn, Gn) gives rise to a probability measure ν
on R2×2

sym: put

ν (diag(x, y)) = P
(
(Fn, Gn) = (x, y)

)
, (x, y) ∈ R2,

where diag(x, y) stands for the diagonal matrix

(
x 0
0 y

)
. Observe that ν is a laminate

of center 0. Indeed, if ψ : R2×2 → R is a rank-one convex, then (x, y) 7→ ψ(diag(x, y)) is
biconvex and thus, by (5.9),∫

R2×2

ψdν = Eψ(diag(Fn, Gn)) ≥ ψ(diag(0, 0)) = ψ(ν̄).

Sharpness for Fourier multipliers, in the dimension d = 2. By Corollary 5.9, there
is an appropriate functional sequence uj ∈ C∞0 (D). Taking the continuous function
ϕ : R2×2

sym → R given by ϕ(A) = |A11 −A22|, we get
1

|D|

∫
R2

ϕ(D2uj)dx =
1

|D|

∫
D
ϕ(D2uj)dx

j→∞−−−→
∫
R2×2
sym

ϕdν = E|gn|.

A similar argument shows that for ϕ(A) = |A11 +A12|, we have

liminf
j→∞

‖ϕ(D2uj)‖Lp,q(D;µ) = liminf
j→∞

|D|−1/p‖ϕ(D2uj)‖Lp,q(C) ≤ ‖fn‖p,q,

where µ is the normalized Lebesgue measure on D. Therefore, for su�ciently large j,

1

|D|

∫
D

∣∣∣∣∂2u

∂x2
1

− ∂2u

∂x2
2

∣∣∣∣ dx ≥ (Cp,q − ε)|D|−1/p‖∆uj‖Lp,q(C)

and hence, setting f = ∆uj ,

‖(R2
1 −R2

2)f‖Lp,∞(C) ≥ (Cp,q − ε)‖f‖Lp,q(C).

But ε was arbitrary and Tm = R2
1−R2

2, the real part of the Beurling-Ahlfors operator, is
a multiplier from class (5.1). This yields the desired sharpness.

Sharpness for Fourier multipliers, dimension d ≥ 3. Suppose that for some 1 < p <
q ≤ 2 and C > 0 we have

(5.10)

∫
A

|(R2
1 −R2

2)f(x)|dx ≤ C‖f‖Lp,q(Rd)|A|1/p
′

for all Borel subsets A of Rd and all Borel functions f : Rd → R. Note that the operator
R2

1 − R2
2 is a Fourier multiplier with a symbol belonging to (5.1). For t > 0, de�ne the

dilation operator δt as follows: for any function g : R2 × Rd−2 → R, we let δtg(ξ, η) =
g(ξ, tη); for any A ⊂ R2 × Rd−2, let δtA = {(ξ, tη) : (ξ, η) ∈ A}. By (5.10), the operator
Tt := δ−1

t ◦ (R2
1 −R2

2) ◦ δt satis�es∫
A

|Ttf(x)|dx = td−2

∫
δ−1
t A

|(R2
1 −R2

2) ◦ δtf(x)|dx

≤ Ctd−2||δtf ||Lp,q(Rd)|δ−1
t A|1/p

′
= C||f ||Lp,q(Rd)|A|1/p

′
.

(5.11)

Now �x f ∈ Lp(Rd) ∩ L2(Rd). It is not di�cult to check that the Fourier transform F
satis�es the identity F = td−2δt ◦ F ◦ δt and hence the operator Tt satis�es the identity

T̂tf(ξ, η) = − ξ2
1 − ξ2

2

(|ξ|2 + t2|η|2)1/2
f̂(ξ, η)
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for (ξ, η) ∈ R2 × Rd−2. By Lebesgue's dominated convergence theorem, we have

lim
t→0

T̂tf(ξ, η) = T̂0f(ξ, η)

in L2(Rd), where T̂0f(ξ, η) = − ξ
2
1−ξ

2
2

|ξ|2 f̂(ξ, η). Combining this with Plancherel's theorem,

we conclude that there is a sequence (tn)n≥1 decreasing to 0 such that Ttnf converges to
T0f almost everywhere. Using Fatou's lemma and (5.11), we obtain

(5.12)

∫
A

|T0f(x)|dx ≤ C‖f‖Lp,q(Rd)|A|1/p
′
.

Since L2(Rd)∩Lp(Rd) is dense in Lp(Rd), we easily verify that the above estimate holds

true for all f ∈ Lp(Rd). Now pick an arbitrary function f̃ ∈ Lp,q(R2) and set f(ξ, ζ) =

f̃(ξ)χ[0,1]d−2(ζ). We have T0f(ξ, ζ) = (R2
1 −R2

2)f̃(ξ)χ[0,1]d−2(ζ), because of the identity

T̂0f(ξ, η) = −ξ
2
1 − ξ2

2

|ξ|2
̂̃
f(ξ) ̂1[0,1]d−2(η).

Plugging this into (5.12) and setting A = B × [0, 1]d−1 for a �xed Borel subset B of R2,
we obtain ∫

B

|(R2
1 −R2

2)f |dx ≤ C‖f̃‖Lp,q(R2)|B|1/p
′
.

However, we have shown above that this implies C ≥ Cp,q. The proof is complete.
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