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ADAM OSȨKOWSKI

Abstract. We study sharp local LlogL estimates for Fourier multipliers aris-

ing from modulation of jumps of Lévy processes. Precisely, we exhibit a large

class of symbols m on Rd such that the corresponding multiplier Tm satisfies∫
A
|Tmf(x)|dx ≤ ||f ||L logL(A),

for all Borel subsets A of Rd and all Borel functions f on Rd belonging to the

appropriate class L logL. In particular, this estimate holds true and is sharp

for the real part of the Beurling-Ahlfors operator on C. The proof rests on
probabilistic methods.

1. Introduction

The motivation for the results obtained in this paper comes from a natural
question about the action of Fourier multipliers on the class L logL. Recall that
for any bounded function m : Rd → C, there is a unique bounded linear operator
Tm on L2(Rd), called the Fourier multiplier associated with the symbol m, which is

defined by the equality T̂mf = mf̂ . A straightforward use of Plancherel’s theorem
shows that the norm of Tm on L2(Rd) is equal to ||m||L∞(Rd). A classical problem,
which has been studied intensively in the literature, is to analyze those m, for
which the associated multiplier extends to a bounded linear operator on Lp(Rd),
1 < p < ∞. A related important question, on which we will focus in this work,
is to compute the exact norm of a given multiplier, as an operator between given
spaces. This problem is in general very difficult, and so far, it has been successfully
treated only for a relatively small class of symbols. To the best of our knowledge,
the first statement in this direction is that of Pichorides [28], which identifies the
norm of the Hilbert transform HR as an operator on Lp(R). Recall that the Hilbert
transform on the line is given by the equality

ĤRf(ξ) = −i sgn ξ · f̂(ξ), ξ ∈ R.

Pichorides showed that if 1 < p < ∞, then ||HR||Lp(R)→Lp(R) = cot(π/2p∗), where
p∗ = max{p, p/(p − 1)}. This result was generalized to the higher dimensional
setting by Iwaniec and Martin [17] and Bañuelos and Wang [6]. If d ≥ 1 is a fixed
integer, then the collection R1, R2, . . . , Rd of Riesz transforms (cf. Stein [29]) is
defined by

R̂jf(ξ) = −i ξj
|ξ|
f̂(ξ), ξ ∈ Rd \ {0}, j = 1, 2, . . . , d.
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These operators indeed generalize the Hilbert transform: if d = 1, then the family
contains only one element, equal to HR. The aforementioned result of Iwaniec,
Martin, Bañuelos and Wang asserts that

||Rj ||Lp(Rd)→Lp(Rd) = cot

(
π

2p∗

)
for all d, all j ∈ {1, 2, . . . , d} and all 1 < p <∞. For related sharp or almost sharp
estimates for Hilbert and Riesz transforms, see e.g. Aarão and O’Neill [1], Davis
[14], Janakiraman [18] and Osȩkowski [24], [27].

In the present paper we will be interested in a slightly different class of symbols,
which can be obtained with the use of probabilistic methods (more precisely, by
the modulation of jumps of certain Lévy processes). This class has been introduced
and studied by Bañuelos and Bogdan [3] and Bañuelos, Bielaszewski and Bogdan
[4]. Let ν be a Lévy measure on Rd, i.e., a nonnegative Borel measure on Rd such
that ν({0}) = 0 and ∫

Rd
min{|x|2, 1}ν(dx) <∞.

Assume further that µ is a finite Borel measure on the unit sphere S of Rd and fix
two Borel functions φ on Rd and ψ on S, both of which take values in the unit ball
of C. We define the associated multiplier m = mφ,ψ,µ,ν on Rd by

(1.1) m(ξ) =
1
2

∫
S〈ξ, θ〉

2ψ(θ)µ(dθ) +
∫
Rd [1− cos〈ξ, x〉]φ(x)ν(dx)

1
2

∫
S〈ξ, θ〉2µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]ν(dx)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the
scalar product in Rd. This class includes many important examples (for the list of
these, consult [3] and [4]), for instance it contains the real and imaginary parts of the
Beurling-Ahlfors transform B on the complex plane. Recall that the latter operator
is a Fourier multiplier with the symbol m(ξ) = ξ/ξ, ξ ∈ C. This object is of funda-
mental importance in the study of partial differential equations and quasiconformal
mappings; in particular, it changes the complex derivative ∂ to ∂. By some sim-
ple computations, one shows the identity B = (R2

1 −R2
2) + 2iR1R2 which links the

Beurling-Ahlfors operator with planar second-order Riesz transforms. Now, it is not
difficult to see that both R2

1−R2
2 and 2R1R2 can be represented as the Fourier multi-

pliers with the symbols of the form (1.1). Indeed, the choice d = 2, µ = δ(1,0)+δ(0,1),

ψ(1, 0) = −1 = −ψ(0, 1) and ν = 0 gives rise to Tm = R2
1−R2

2; furthermore, d = 2,

µ = δ(1/
√

2,1/
√

2) +δ(1/
√

2,−1/
√

2), ψ(1/
√

2, 1/
√

2) = 1 = ψ(1/
√

2,−1/
√

2) and ν = 0

leads to Tm = 2R1R2. For a higher-dimensional example, pick a proper subset
J of {1, 2, . . . , d} and take µ = δe1 + δe2 + . . . + δed , ν = 0 and ψ(ej) = χJ(j),
j = 1, 2, . . . , d, where e1, e2, . . . , ed are the versors in Rd. This yields the opera-
tor

∑
j∈J R

2
j on Rd.

What about the estimates for the Fourier multipliers associated with the symbols
from the class (1.1)? One of the principal results of [4] is the following Lp bound.

Theorem 1.1. Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.1). Then for
any f ∈ Lp(Rd) we have

(1.2) ||Tmf ||Lp(Rd) ≤ (p∗ − 1)||f ||Lp(Rd).

It turns out that the constant p∗−1 is the best possible: see Geiss, Montgomery-
Smith and Saksman [16] or Bañuelos and Osȩkowski [5] for details.
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Essentially, all the tight estimates mentioned above are proved with the use of
probabilistic methods (Pichorides exploits certain special superharmonic functions,
but these, in fact, lead to more general inequalities for orthogonal martingales:
see Bañuelos and Wang [6]). It turns out that martingale methods lead to other
results for Fourier multipliers (see e.g. [25] and [26]). The purpose of this paper is
to continue the study in this direction. The question we plan to address is: what
can be said in the limit case p = 1 of (1.2)? Clearly, the Lp estimate does not
hold for the class (1.1), since it already fails for the Beurling-Ahlfors operator. As
shown by the author [25], we have the following L logL bound: for any K > 1 and
any Borel subset A of Rd, we have

(1.3)

∫
A

|Tmf(x)|dx ≤ K
∫
Rd

Ψ(|f(x)|)dx+
|A|

2(K − 1)
,

where Ψ stands for the LlogL function Ψ(t) = (t + 1) log(t + 1) − t. In this paper
we will provide a related sharp bound under a different norming of the L logL
space, which is sometimes more convenient to work with (see e.g. the papers [7, 8]
by Bennett and the monograph [10] by Bennett and Sharpley). We need more
definitions. For a real-, complex-, or Hilbert-space-valued function ξ, given on a
non-atomic measure space (X,S, η), we define ξ∗, the decreasing rearrangement of
ξ, by

ξ∗(t) = inf{λ ≥ 0 : η({x ∈ X : |ξ(x)| > λ}) ≤ t}.
Then ξ∗∗ : (0, η(X)]→ [0,∞), the maximal function of ξ∗, is given by the formula

ξ∗∗(t) =
1

t

∫ t

0

ξ∗(s)ds, t ∈ (0, η(X)).

One easily verifies that ξ∗∗ can alternatively be defined by

ξ∗∗(t) =
1

t
sup

{∫
E

|ξ|dη : E ∈ S, η(E) = t

}
.

Now, given A ∈ S with η(A) > 0, we define the associated space L logL(A) as the
class of all ξ for which

||ξ||L logL(A) :=

∫ |A|
0

ξ∗∗(t)dt <∞.

See [7] and [10] for the list of basic properties of these spaces and much more on
the subject. We are ready to formulate the main result of this paper.

Theorem 1.2. Suppose that m is a symbol from the class (1.1). Then for any
Borel set A ⊂ Rd of positive measure and any Borel function f : Rd → C we have

(1.4)

∫
A

|Tmf(x)|dx ≤ ||f ||L logL(A).

The inequality is sharp even for the real part of the Beurling-Ahlfors transform: for
an arbitrary c < 1, there is a real-valued function f supported on the unit ball B of
C such that ∫

B
|(R2

1 −R2
2)f(x)|dx > c||f ||L logL(B).

It is worth mentioning here that a related statement for the periodic Hilbert
transform (conjugate function) was obtained by Bennett in [9]. Namely, if f is an
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integrable function on the unit circle T and f̃ denotes the conjugate function to f ,
then ∫

T
|f̃(x)|dx ≤

1− 1
32 + 1

52 − 1
72 + . . .

1 + 1
32 + 1

52 + 1
72 + . . .

||f ||L logL(T)

and the constant (1− 1
32 + 1

52 − 1
72 + . . .)/(1 + 1

32 + 1
52 + 1

72 + . . .) = 0.7424537 . . .
is the best possible.

A few words about the organization of the paper is in order. In the next section
we study martingale inequalities, which lead to the probabilistic counterpart of
(1.4). In Section 3 we combine these estimates with the representation of Fourier
multipliers (1.1) in terms of Lévy processes, and provide the proof of the inequality
(1.4). In the final section we address the sharpness of our result. This will be
based on the technique of laminates, an important object in the convex integration
theory.

2. Martingale inequalities

The key ingredient of the proof of the estimate (1.4) is an appropriate inequality
for differentially subordinated martingales. We begin with introducing the neces-
sary probabilistic background and notation, and start with the discrete-time case.
Suppose that (Ω,F ,P) is a probability space, filtered by a nondecreasing family
(Fn)n≥0 of sub-σ-algebras of F . Let f = (fn)n≥0, g = (gn)n≥0 be two adapted
martingales, taking values in a certain separable Hilbert space H (we may and
will assume that H = `2), with the norm denoted by | · |. Let df = (dfn)n≥0,
dg = (dgn)n≥0 be the difference sequences of f and g, respectively; that is,

df0 = f0, dfn = fn − fn−1 for n ≥ 1,

and similarly for dg. Following Burkholder [12], we say that g is differentially
subordinate to f , if we have

(2.1) |dgn| ≤ |dfn| for all n ≥ 0.

For example, this relation holds true if g is a ±1-transform of f , i.e., there is a
predictable sequence ε = (εn)n≥0 of signs such that dgn = εndfn for all n.

Now, let us turn our attention to the continuous-time case. Assume that the
probability space (Ω,F ,P) is complete and equip it with a continuous-time filtration
(Ft)t≥0 such that F0 contains all the events of probability 0. Let X, Y be two
adapted martingales taking values in H; as usual, we assume that the processes
have right-continuous trajectories with the limits from the left. The symbol [X,Y ]
will stand for the quadratic covariance process of X and Y . See e.g. Dellacherie
and Meyer [15] for details in the case when the processes are real-valued, and
extend the definition to the vector setting by [X,Y ] =

∑∞
k=0[Xk, Y k], where Xk,

Y k are the k-th coordinates of X, Y , respectively. Following Bañuelos and Wang
[6] and Wang [31], we say that Y is differentially subordinate to X, if the process
([X,X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing as a function of t. Note
that any two martingales f , g can be thought of as continuous-time martingales
(via Xt = fbtc, Yt = gbtc, t ≥ 0) and then the above domination means that the
process

[f, f ]n − [g, g]n =

(
n∑
k=0

(|dfk|2 − |dgk|2)

)
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is nonnegative and nondecreasing (as a function of n). This is equivalent to (2.1)
and hence the definition above is consistent with the discrete-time differential sub-
ordination.

Now we are ready to formulate the main probabilistic results. Here and below,
we use the notation ||X||p = supt≥0 ||Xt||p, 1 ≤ p ≤ ∞.

Theorem 2.1. Assume that X, Y are H-valued martingales such that Y is differ-
entially subordinate to X. Then for any λ ≥ 1,

(2.2) sup
t≥0

E
(
|Yt| − λ||X||∞

)
+
≤ e1−λ

4
||X||1.

The proof of this fact rests on the direct application of Burkholder’s method: we
shall deduce the inequality (2.2) from the existence of a family {Uλ}λ≥1 of certain
special functions defined on the set S = {(x, y) ∈ H × H : |x| ≤ 1}. In order
to simplify the technicalities, we shall combine the technique with an “ integration
argument ”, invented in [22] (see also [23]): first we introduce a simple function
u∞ : H×H → R, for which the calculations are relatively easy; then define Uλ by
integrating u∞ against appropriate nonnegative kernel. Let

u∞(x, y) =

{
0 if |x|+ |y| ≤ 1,

(|y| − 1)2 − |x|2 if |x|+ |y| > 1.

We have the following fact (see Lemma 2.2 in [23] for a slightly stronger statement
in which the differential subordination is replaced by a less restrictive assumption).

Lemma 2.2. Let X, Y be H-valued martingales such that ||X||2 < ∞ and Y is
differentially subordinate to X. Then for any t ≥ 0 we have

Eu∞(Xt, Yt) ≤ 0.

Keeping the above fact in mind, we fix λ ≥ 1 and define Uλ : S → R by

Uλ(x, y) =
1

4

∫ λ

1

r2er−λu∞(x/r, y/r)dr +
e1−λ

4
(|y|2 − |x|2)

(recall that S, the domain of Uλ, is the strip {(x, y) ∈ H ×H : |x| ≤ 1}). A little
calculation shows that the function Uλ admits the following explicit formula. If
|x|+ |y| ≤ 1, then

Uλ(x, y) =
e1−λ

4
(|y|2 − |x|2).

If 1 < |x|+ |y| ≤ λ, then

Uλ(x, y) =
1− |x|

2
e|x|+|y|−λ − e1−λ

4
.

Finally, if |x|+ |y| > λ, then

Uλ(x, y) =
|y|2 − |x|2

4
+

1− λ
2
|y|+ 1− e1−λ + (λ− 1)2

4
.

In what follows, we shall need the following majorization property.

Lemma 2.3. For any λ ≥ 1 and any (x, y) ∈ S we have

(2.3) Uλ(x, y) ≥ (|y| − λ)+ −
e1−λ

4
|x|.
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Proof. Of course, it suffices to prove the majorization forH = R only. Furthermore,
note that Uλ satisfies the symmetry condition Uλ(x, y) = Uλ(−x, y) = Uλ(x,−y)
for all (x, y) ∈ S; hence we may restrict ourselves to x, y ≥ 0. The next observation
is that for each y, the function x 7→ Uλ(x, y) is concave: indeed, one easily verifies
that both u∞ and (x, y) 7→ |y|2−|x|2 have this property. On the other hand, for any
fixed y, the right-hand side of (2.3) is convex function of x ∈ [0, 1]. Consequently,
it is enough to verify the majorization under the additional assumption x ∈ {0, 1}.
If x = 1 and y ≤ λ− 1, then both sides of (2.3) are equal. If x = 1 and y > λ− 1,
the majorization can be rewritten in the equivalent form

(y − λ+ 1)2

4
≥ (y − λ)+.

This bound is evident when y ≤ λ, while for λ > 1 it can be transformed into
(y − λ − 1)2/4 ≥ 0, which is also true. Suppose next that x = 0. If y = 0, both
sides of (2.3) are equal; then, for y ∈ (0, λ], the left-hand side increases, while the
right-hand side is constant; thus, the majorization is also valid for this choice of x
and y. Finally, if x = 0 and y > λ, the inequality is equivalent to

(y − λ− 1)2

4
+

1− e1−λ

4
≥ 0,

which clearly holds true. This completes the proof. �

Now we are ready to establish Theorem 2.1.

Proof of (2.2). By homogeneity, it suffices to show that for each t ≥ 0 we have

E(|Yt| − λ)+ ≤
e1−λ

4
||X||1,

provided X, Y are as in the statement and satisfy the additional condition ||X||∞ =
1. So, let us fix t ≥ 0. We have E|Yt|2 = E[Y, Y ]t ≤ E[X,X]t ≤ E|Xt|2 ≤ 1, in
the light of the differential subordination and the boundedness assumption on X.
Therefore, Lemma 2.2 and Fubini’s theorem imply

(2.4) EUλ(Xt, Yt) ≤
1

4

∫ λ

1

r2er−λEu∞(Xt/r, Yt/r)dr ≤ 0.

To see that Fubini’s theorem is applicable, note that |u∞(x, y)| ≤ c(|x|2 + |y|2 + 1)
for all x, y ∈ H and some absolute constant c; thus

E
∫ λ

1

r2er−λ|u∞(Xt/r, Yt/r)|dr ≤ c̃E(|Xt|2 + |Yt|2 + 1) <∞,

where c̃ is another universal constant. Hence (2.4) is indeed true, and combining
this bound with (2.3) yields

(2.5) E(|Yt| − λ)+ ≤
e1−λ

4
E|Xt| ≤

e1−λ

4
||X||1.

This is exactly the claim. �

The above theorem implies the following statement, which will be useful in our
further considerations.
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Corollary 2.4. Assume that X, Y are martingales taking values in H such that
||X||∞ ≤ 1 and Y is differentially subordinate to X. Then for any λ ≥ 1, t ≥ 0
and any A ∈ F we have

(2.6) E|Yt|1A ≤
e1−λ

4
E|Xt|+ λP(A).

Proof. Fix λ, t, A as in the statement and consider the decomposition A = A−∪A+,
where

A− = A ∩ {|Yt| < λ}, A+ = A ∩ {|Yt| ≥ λ}.

Then, of course,

E(|Yt| − λ)1A− ≤ 0

and

E(|Yt| − λ)1A+ ≤ E(|Yt| − λ)+ ≤
e1−λ

4
E|Xt|,

where in the last passage we have exploited (2.5). Adding the two estimates above,
we get

E(|Yt| − λ)1A ≤
e1−λ

4
E|Xt|,

and this inequality is equivalent to (2.6). �

Before we proceed to the estimates for Fourier multipliers, let us establish here
a sharp L logL estimate for martingale transforms, which can be regarded as a
probabilistic version of Theorem 1.2. Unfortunately, we do not know how to show
the bound in the general setting of continuous-time differentially subordinated mar-
tingales: in the proof we exploit a duality argument which seems to be available
only for martingale transforms. However, we believe that the result deserves to
be stated separately. We use the notation ||f ||L logL(Ω) = supn≥0 ||fn||L logL(Ω),
||g||1 = supn≥0 ||gn||1 and denote the inner product of H by 〈·, ·〉.

Theorem 2.5. If f = (fn)n≥0 is an H-valued martingale and g = (gn)n≥0 is its
transform by a predictable sequence v = (vn)n≥0 with values in [−1, 1], then

(2.7) ||g||1 ≤ ||f ||L logL(Ω).

The inequality is sharp: for any c < 1 there is a martingale f = (fn)n≥0 and its
±1-transform g = (gn)n≥0 such that

||g||1 > c||X||L logL(Ω).

Proof of (2.7). We may assume that ||f ||L logL(Ω) < ∞, since otherwise there is
nothing to prove. Fix a nonnegative integer n and consider the random variable
η = gn/|gn|, with the convention η = 0 ∈ H when gn = 0. Clearly, this variable
is bounded by 1 and hence the associated martingale (ηn)n≥0 = (E(η|Fn))n≥0 also
enjoys this property. Using the orthogonality of the martingale differences and
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Hardy-Littlewood inequality E〈ξ, ζ〉 ≤
∫ 1

0
ξ∗(s)ζ∗(s)ds, we may write

||gn||1 = E〈gn, η〉 = E〈gn, ηn〉

= E

〈
n∑
k=0

vkdfk,

n∑
k=0

dηk

〉

= E
n∑
k=0

vk〈dfk, dηk〉

= E

〈
n∑
k=0

dfk,

n∑
k=0

vkdηk

〉

≤
∫ 1

0

f∗n(s)

(
n∑
k=0

vkdηk

)∗
(s)ds.

(2.8)

However, for any u ∈ (0, 1] we have∫ u

0

(
n∑
k=0

vkdηk

)∗
(s)ds = sup

{∫
A

∣∣∣∣∣
n∑
k=0

vkdηk

∣∣∣∣∣dP : P(A) = u

}
,

which, as we will show now, does not exceed u(1−log u). Suppose first that u ≤ 1/4.
The martingale (

∑m
k=0 vkdηk)m≥0 is differentially subordinate to (ηm)m≥0, and the

latter is bounded by 1. Consequently, by the above corollary,∫ u

0

(
n∑
k=0

vkdηk

)∗
(s)ds ≤ inf

λ≥1

{
λu+

e1−λ

4

}
.

Now a straightforward analysis shows that the infimum is attained for λ = 1 −
log(4u) ≥ 1 and equal to u(1− log(4u)) = u(1− log u) +u(1− log 4) ≤ u(1− log u).
On the other hand, if u = P(A) ≥ 1/4, we use Schwarz inequality and a trivial L2

bound for martingale transforms (with constant 1) to obtain∫
A

∣∣∣∣∣
n∑
k=0

vkdηk

∣∣∣∣∣dP ≤ (P(A))1/2

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

vkdηk

∣∣∣∣∣
∣∣∣∣∣
2

≤ u1/2

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

dηk

∣∣∣∣∣
∣∣∣∣∣
2

≤ u1/2,

where in the latter passage we have exploited the boundedness of (ηm)m≥0 again.

Now it is elementary to prove that u1/2 ≤ u(1− log u): indeed, the function F (u) =
u1/2(1−log u)−1 is concave on [1/4, 1] and satisfies F (1) = 0, F (1/4) = log 2−1/2 >
0. Thus, we have shown that∫ u

0

(
n∑
k=0

vkdηk

)∗
(s)ds ≤ u(1− log u) =

∫ u

0

log
1

s
ds

for all u ∈ (0, 1]. By Hardy’s lemma, this implies that for any nonincreasing function
ξ : (0, 1]→ [0,∞) we have∫ 1

0

ξ(s)

(
n∑
k=0

vkdηk

)∗
(s)ds ≤

∫ 1

0

ξ(s) log
1

s
ds.
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Choosing ξ(s) = f∗n(s) and coming back to (2.8), we see that

||gn||1 ≤
∫ 1

0

f∗n(s) log
1

s
ds =

∫ 1

0

f∗∗n (s)ds = ||fn||L logL(Ω) ≤ ||f ||L logL(Ω).

Taking the supremum over n completes the proof. �

Sharpness. Now we will show that the constant 1 cannot be decreased in the mar-
tingale bound. Fix a large positive integer n and consider a sequence ξ0, ξ1, . . .,
ξ2n+1 of independent random variables, with the distribution given by ξ0 ≡ 1
and P(ξk = −k) = 1 − P(ξk = 1) = (k + 1)−1. Introduce the stopping time
τ = inf{k : ξk < 0}, with the convention inf ∅ =∞. All the variables ξk, except for
the first of them, have mean zero; hence Doob’s optional sampling theorem implies
that the sequence f = (fk)2n+1

k=0 , given by

fk = ξ0 + ξ1 + . . .+ ξτ∧k, k ≤ 2n+ 1,

is a martingale adapted to the natural filtration. This sequence behaves as follows:
it starts from 1 and, in each step, it either jumps to zero and stays there forever,
or increases by 1. Therefore, for any 0 ≤ k ≤ 2n + 1 we have P(fk = k + 1) =
(k + 1)−1 = 1− P(fk = 0). This in turn implies f∗k = (k + 1)χ[0,(k+1)−1], f

∗∗
k (s) =

(k + 1)χ[0,(k+1)−1](s) + s−1χ((k+1)−1,1](s) and, finally,

||fk||L logL(Ω) =

∫ 1

0

f∗∗k (s)ds = 1 +

∫ 1

(k+1)−1

s−1ds = 1 + log(k + 1).

Thus, we see that ||f ||L logL(Ω) = sup0≤k≤2n+1 ||fk||L logL(Ω) = 1 + log(2n + 2).
Now, let g be the transform of f by the deterministic sequence 1, −1, 1, −1, . . ..
It is easy to see that the terminal random variable |g2n+1| takes values in the set
{0, 2, 4, 6, . . . , 2n+ 2}. More precisely, for any k ∈ {1, 2, . . . , n} we have

P(|g2n+1| = 2k) = P(τ = 2k − 1) + P(τ = 2k)

= P(ξ0 = ξ1 = . . . = ξ2k−2 = 1, ξ2k−1 = 1− 2k)

+ P(ξ0 = ξ1 = . . . = ξ2k−1 = 1, ξ2k = −2k)

=
1

2
· 2

3
· 2k − 2

2k − 1
· 1

2k
+

1

2
· 2

3
· 2k − 1

2k
· 1

2k + 1

=
1

2k

(
1

2k − 1
+

1

2k + 1

)
.

One can compute similarly the probabilities P(|g2n+1| = 0) and P(|g2n+1| = 2n+1),
but we will not need them. From the above formulas, we infer that

||g2n+1||1 ≥
n∑
k=1

(
1

2k − 1
+

1

2k + 1

)
,

and the latter expression is of order log(2n). Hence, the above bound implies

lim inf
n→∞

||g2n+1||1
||f2n+1||L logL

≥ 1,

and the desired sharpness follows. �
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3. L logL inequality for Fourier multipliers

Let us now describe the machinery which can be used to deduce inequalities for
Fourier multipliers from the corresponding results from the martingale theory. Let
m = mφ,ψ,µ,ν be a multiplier as in (1.1). By the results in [4], we may assume that
the Lévy measure ν satisfies the symmetry condition ν(B) = ν(−B) for all Borel
subsets B of Rd. More precisely, there are µ̄, ν̄, φ̄, ψ̄ such that ν̄ is symmetric and
mφ,ψ,µ,ν = mφ̄,ψ̄,µ̄,ν̄ . Assume in addition that |ν| = ν(Rd) is finite and nonzero,
and define ν̃ = ν/|ν|. Consider the independent random variables T−1, T−2, . . .,
Z−1, Z−2, . . . such that for each n = −1, −2, . . ., Tn has exponential distribution
with parameter |ν| and Zn takes values in Rd and has ν̃ as the distribution. Next,
put Sn = −(T−1 + T−2 + . . .+ Tn) for n = −1, −2, . . . and let

Xs,t =
∑

s<Sj≤t

Zj , Xs,t− =
∑

s<Sj<t

Zj , ∆Xs,t = Xs,t −Xs,t−,

for −∞ < s ≤ t ≤ 0. For a given f ∈ L∞(Rd), define its parabolic extension Uf to
(−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, fix x ∈ Rd, s < 0 and f ∈ L∞(Rd). We introduce the processes F =

(F x,s,ft )t∈[s,0] and G = (Gx,s,f,φt )t∈[s,0] by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
∆Fu · φ(∆Xs,u)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)

]
φ(z)ν(dz)dv.

(3.1)

Note that the sum in the definition of G can be seen as the result of modulating
of the jumps of F by φ, and the subsequent double integral can be regarded as an
appropriate compensator. We have the following statement, proved in [3].

Lemma 3.1. For any fixed x, s, f as above, the processes F x,s,f , Gx,s,f,φ are
martingales with respect to (Ft)t∈[s,0]. Furthermore, if ||φ||∞ ≤ 1, then Gx,s,f,φ is

differentially subordinate to F x,s,f .

Now, fix s < 0 and define the operator S = Ss,φ,ν by the bilinear form

(3.2)

∫
Rd
Sf(x)g(x)dx =

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx,

where f, g ∈ C∞0 (Rd). By a simple density argument, we can show that this identity
holds for all f ∈ C∞0 (Rd) and all g ∈ L1(Rd)∩L∞(Rd) (see Lemma 3.2 in [24] for a
similar reasoning). The following fact, proved in [3], represents the above operators
as Fourier multipliers.

Lemma 3.2. Let 1 < p < ∞ and d ≥ 2. The operator Ss,φ,ν is well defined
and extends to a bounded operator on Lp(Rd), which can be expressed as a Fourier
multiplier with the symbol

M(ξ) = Ms,φ,ν(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
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if
∫
Rd(1− cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise.

Our first step in the analysis of the estimate (1.4) is to establish the following
counterpart of Theorem 2.1.

Theorem 3.3. Let m be a symbol belonging to the class (1.1) and take f ∈ L1(Rd)∩
L∞(Rd) satisfying ||f ||L∞(Rd) ≤ 1. Then for any λ ≥ 1, t ≥ 0 and any A ∈ F we
have

(3.3)

∫
A

|Tmf(x)|dx ≤ e1−λ

4
||f ||L1(Rd) + λ|A|.

Proof. We have split the reasoning into a few intermediate parts.

Step 1. First we show the estimate for the multipliers of the form

(3.4) Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
,

with ν satisfying 0 < ν(Rd) < ∞ (this assumption makes the above machinery
using Lévy processes applicable). Fix s < 0, a function f ∈ C∞0 (Rd) taking values
in the unit ball of C and a function g on Rd, supported on the set A and also taking
values in the unit ball of C. Of course, then the associated martingale F x,s,f is
bounded by 1. By Fubini’s theorem and (2.6), we have, for any λ ≥ 1,∣∣∣∣∫

Rd
E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx

∣∣∣∣ ≤ ∫
Rd

E
∣∣Gx,s,f,φ0

∣∣1{x+Xs,0∈A}dx

≤
∫
Rd

{
e1−λ

4
E|F x,s,f0 |+ λP(x+Xs,0 ∈ A)

}
dx

=
e1−λ

4
||f ||L1(Rd) + λ|A|.

Plugging this into the definition of S and taking the supremum over all g as above,
we obtain

(3.5)

∫
A

|Ss,φ,νf(x)|dx ≤ e1−λ

4
||f ||L1(Rd) + λ|A|.

Now if we let s→ −∞, then Ms,φ,ν converges pointwise to the multiplier Mφ,ν given
by (3.4). Thus, by Plancherel’s theorem, we have Ss,φ,νf → TMφ,ν

f in L2 and hence

there is a sequence (sn)∞n=1 converging to −∞ such that Ssn,φ,νf → TMφ,ν
f almost

everywhere. So, Fatou’s lemma combined with (3.5) yields the bound

(3.6)

∫
A

|TMφ,ν
f(x)|dx ≤ e1−λ

4
||f ||L1(Rd) + λ|A|.

Step 2. Now we deduce the result for the general multipliers as in (1.1) and drop
the assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in
polar coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ).

Here δε denotes Dirac measure on {ε}. Next, consider a multiplier Mε,φ,ψ,µ,ν as
in (3.4), in which the Lévy measure is 1{|x|>ε}ν + νε and the jump modulator is
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given by 1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). Note that this Lévy measure is finite and
nonzero, at least for sufficiently small ε. If we let ε→ 0, we see that∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =

∫
S
〈ξ, θ〉2φ(θ)

1− cos〈ξ, εθ〉
〈ξ, εθ〉2

µ(dθ)

→ 1

2

∫
S
〈ξ, θ〉2φ(θ)µ(dθ)

and, consequently, Mε,φ,ψ,µ,ν → mφ,ψ,µ,ν pointwise. Thus (3.6) yields (3.3). In-
deed, using Plancherel’s theorem as above, we see that there is a sequence (εn)n≥1

converging to 0 such that TMεn,φ,ψ,µ,ν
f → Tmφ,ψ,µ,νf almost everywhere. It suffices

to apply Fatou’s lemma. �

We turn our attention to the proof of our main estimate.

Proof of (1.4). Let g(x) = Tmf(x)/|Tmf(x)| (if Tmf(x) = 0, set g(x) = 0 as well).
We have∫

A

|Tmf(x)|dx =

∫
Rd
〈Tmf(x), g(x)χA(x)〉dx

=

∫
Rd
〈f(x), Tm̄(gχA)(x)〉dx ≤

∫ ∞
0

f∗(s)(Tm̄(gχA))∗(s)ds.

(3.7)

For any positive number u, we may write∫ u

0

(Tm̄(gχA))∗(s)ds = sup

{∫
E

|Tm̄(gχA)(x)|dx : |E| = u

}
.

Now, assume that 4u = 4|E| ≤ |A|. If m belongs to the class (1.1), then so does m̄
(one needs to replace φ, ψ by φ̄, ψ̄) and hence, by (3.3),∫

E

|Tm̄(gχA)(x)|dx ≤ e1−λ

4
||gχA||L1(Rd) + λ|E| ≤ e1−λ

4
|A|+ λ|E|.

Let us minimize the right-hand side over λ; one easily checks that the minimum is
attained for the choice λ = 1 + log(|A|/(4|E|)) (note that this value is at least 1, so
the application of (3.6) is permitted). We obtain the estimate∫

E

|Tm̄(gχA)(x)|dx ≤
(

2 + log
|A|
4|E|

)
|E|

≤
(

1 + log
|A|
u

)
u =

∫ u

0

log
|A|
s

ds.

(3.8)

On the other hand, if 4u = 4|E| > |A|, then we apply Schwarz inequality and the
L2 bound (1.2) for Tm̄ to obtain∫

E

|Tm̄(gχA)(x)|dx ≤ |E|1/2||Tm̄(gχA)||L2(Rd) ≤ u1/2||gχA||L2(Rd) ≤ u1/2|A|1/2.

But this is not larger than (1 + log |A|u )u; we have already shown this inequality in
the proof of the martingale bound. Consequently, the estimate∫

E

|Tm̄(gχA)(x)|dx ≤
(

1 + log
|A|
u

)
u =

∫ u

0

log
|A|
s

ds

holds for all u. Hence ∫ u

0

(Tm̄(gχA))∗(s)ds ≤
∫ u

0

log
|A|
s

ds
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is true for all u. By Hardy’s lemma, for any nonincreasing function ξ on [0,∞),∫ ∞
0

ξ(s)(Tm̄(gχA))∗(s)ds ≤
∫ ∞

0

ξ(s) log
|A|
s

ds.

We choose ξ(s) = f∗(s) and combine it with (3.7) to obtain∫
A

|Tmf(x)|dx ≤
∫ ∞

0

f∗(s) log
|A|
s

ds ≤
∫ ∞

0

f∗(s) log+ |A|
s

ds = ||f ||L logL(A).

This completes the proof of the desired bound. �

In the remainder of this section we discuss the possibility of extending (1.4) to the
case of vector-valued multipliers. For any bounded function m = (m1,m2, . . . ,mn) :
Rd → Cn, we may define the associated Fourier multiplier acting on complex valued
functions on Rd by the formula Tmf = (Tm1

f, Tm2
f, . . . , Tmnf). The reasoning

presented above can be easily modified to yield the following statement.

Theorem 3.4. Let ν, µ be two measures on Rd and S, respectively, as in the
definition of class (1.1). Assume further that φ, ψ are two Borel functions on Rd
taking values in the unit ball of Cn and let m : Rd → Cn be the associated symbol
given by (1.1). Then for any complex valued function f on Rd, any λ ≥ 1 and any
Borel set A ⊂ Rd with |A| > 0 we have

(3.9)

∫
A

|Tmf(x)|dx ≤ e1−λ

4
||f ||L1(Rd) + λ|A|

and

(3.10)

∫
A

|Tmf(x)|dx ≤ ||f ||L logL(A).

Proof. Essentially, the proof is the same as in the complex-valued setting. Given
a C∞ function f : Rd → C bounded by 1, we consider the associated complex-
valued martingale F and the Cn-valued martingale G = (G1, G2, . . . , Gn), defined
by the formula (3.1). It is easy to check that G is differentially subordinate to F ,
arguing as in [3] or [4]. Applying the representation (3.2) to each coordinate of G
separately, we obtain the associated multiplier T = (T 1, T 2, . . . , T n), where T j has
symbol Mφj ,ν defined in (3.4). Now we repeat the reasoning leading to (3.6), with

a vector valued function g : Rd → Cn (the expression Gx,s,f,φ0 g(x+Xs,0) appearing
in the considerations need to be replaced with the corresponding scalar product)
and obtain (3.9) with the special multiplier Mφ,ν . The passage to general m as in
(1.1) is carried over in the same manner as in the scalar case. The proof of (3.10)
follows by the same duality argument as in the complex-valued case. We omit the
straightforward details, leaving them to the reader. �

4. Lower bounds for the constants

In the final part of the paper we show that the constant 1 appearing on the
right-hand side of (1.4) is optimal. Our approach will be based on the properties
of certain special probability measures, the so-called laminates. For the sake of
convenience and clarity, we have decided to split this section into a few separate
parts.
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4.1. Necessary definitions. Let Rm×n denote the space of all real matrices of
dimension m× n and let Rn×nsym be the class of all real symmetric n× n matrices.

Definition 4.1. A function f : Rm×n → R is said to be rank-one convex, if
t 7→ f(A+ tB) is convex for all A,B ∈ Rm×n with rank B = 1.

Let P = P(Rm×n) stand for the class of all compactly supported probability
measures on Rm×n. For ν ∈ P, we denote by ν =

∫
Rm×n Xdν(X) the center of

mass or barycenter of ν.

Definition 4.2. We say that a measure ν ∈ P is a laminate (and denote it by
ν ∈ L), if

(4.1) f(ν) ≤
∫
Rm×n

fdν

for all rank-one convex functions f . The set of laminates of barycenter 0 is denoted
by L0(Rm×n).

Laminates arise naturally in several applications of convex integration, where
can be used to produce interesting counterexamples, see e.g. [2], [13], [20], [21] and
[30]. We will be particularly interested in the case of 2 × 2 symmetric matrices.
The important fact is that laminates can be regarded as probability measures that
record the distribution of the gradients of smooth maps, see Corollary 4.6 below.
Let us briefly explain this; detailed proofs of the statements below can be found for
example in [19], [21] and [30].

Definition 4.3. Let U ⊂ R2×2 be a given set. Then PL(U) denotes the class of
prelaminates generated in U , i.e., the smallest class of probability measures on U
which

(i) contains all measures of the form λδA+(1−λ)δB with λ ∈ [0, 1] and satisfying
rank(A−B) = 1;

(ii) is closed under splitting in the following sense: if λδA + (1− λ)ν̃ belongs to
PL(U) for some ν̃ ∈ P(R2×2) and µ also belongs to PL(U) with µ = A, then also
λµ+ (1− λ)ν̃ belongs to PL(U).

It follows immediately from the definition that the class PL(U) contains atomic
measures only. Also, by a successive application of Jensen’s inequality, we have the
inclusion PL ⊂ L. Let us state two well-known facts (see [2], [19], [21], [30]).

Lemma 4.4. Let ν =
∑N
i=1 λiδAi ∈ PL(R2×2

sym) with ν = 0. Moreover, let 0 <

r < 1
2 min |Ai − Aj | and δ > 0. For any bounded domain Ω ⊂ R2 there exists

u ∈W 2,∞
0 (Ω) such that ‖u‖C1 < δ and for all i = 1, 2, . . . N,∣∣{x ∈ Ω : |D2u(x)−Ai| < r}

∣∣ = λi|Ω|.

Lemma 4.5. Let K ⊂ R2×2
sym be a compact convex set and ν ∈ L(R2×2

sym) with

supp ν ⊂ K. For any relatively open set U ⊂ R2×2
sym with K ⊂⊂ U there exists a

sequence νj ∈ PL(U) of prelaminates with νj = ν and νj
∗
⇀ ν.

Combining these two lemmas and using a simple mollification, we obtain the
following statement, proved by Boros, Shékelyhidi Jr. and Volberg [11]. It links
laminates supported on symmetric matrices with second derivatives of functions,
and will play a crucial role in our argumentation below. Throughout, B will denote
the unit ball in R2.
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Corollary 4.6. Let ν ∈ L0(R2×2
sym). Then there exists a sequence uj ∈ C∞0 (B) with

uniformly bounded second derivatives, such that

1

|B|

∫
B
φ(D2uj(x)) dx →

∫
R2×2
sym

φ dν

for all continuous φ : R2×2
sym → R.

4.2. Biconvex functions and a special laminate. In the next step in our anal-
ysis, we introduce a certain special laminate. To do this, we need some additional
notation. A function ζ : R×R→ R is said to be biconvex if for any fixed z ∈ R, the
functions x 7→ ζ(x, z) and y 7→ ζ(z, y) are convex. Now, let f , g be martingales of
Section 2, which exhibit the sharpness of (2.2) (let n, corresponding to the length
of these martingales, be fixed). Consider the R2-valued martingale

(F,G) :=

(
f + g

2
,
f − g

2

)
.

This sequence has the following zigzag property: for any 0 ≤ k ≤ 2n + 1 we have
Fk = Fk+1 with probability 1 or Gk = Gk+1 almost surely; that is, in each step
(F,G) moves either vertically, or horizontally. Indeed, this follows directly from the
construction that for each k we have P(dfk = dgk) = 1 or P(dfk = −dgk) = 1. This
property combines nicely with biconvex functions: if ζ is such a function, then a
successive application of Jensen’s inequality gives

(4.2) Eζ(F2n+1, G2n+1) ≥ Eζ(F2n, G2n) ≥ . . . ≥ Eζ(F0, G0) = ζ(1, 0).

Now, the martingale (F,G), or rather the distribution of its terminal variable
(F2n+1, G2n+1), gives rise to a probability measure ν on R2×2

sym: put

ν (diag(x, y)) = P
(
(F2n+1, G2n+1) = (x, y)

)
, (x, y) ∈ R2.

Here and below, diag(x, y) denotes the diagonal matrix

(
x 0
0 y

)
. The key obser-

vation is that ν is a laminate of barycenter (1, 0) (actually, it can be shown that it
is even a prelaminate, but we will not need this). To prove this property, note that
if ψ : R2×2 → R is rank-one convex, then (x, y) 7→ ψ(diag(x, y)) is biconvex and
thus, by (4.2),∫

R2×2

ψdν = Eψ(diag(F2n+1, G2n+1)) ≥ ψ(diag(1, 0)) = ψ(ν̄).

To apply Corollary 4.6, we need to modify the laminate so that it has barycenter
0 ∈ R2×2. To obtain this, we use a simple symmetrization argument. Namely, it
is clear that the measure ν̃ on R2×2, given by ν̃(A) = ν(−A) is also a laminate,
this time with barycenter diag(−1, 0). Consequently, the average µ = (ν + ν̃)/2 is
a laminate of barycenter diag(0, 0). Of course, this measure can be interpreted in
the above martingale language. Namely, ν̃ can be obtained by repeating the above
construction to the martingales −f , −g; hence µ can be alternatively defined by
splitting the probability space into two halves, copying f , g into one half and −f ,
−g into the other, and then considering the distribution of the appropriate terminal
variable.

Now, fix ε ∈ (0, 1). Let uj ∈ C∞0 (B) be a sequence of functions with uniformly
bounded second derivatives (say, by a number M), approximating µ in the sense
of Corollary 4.6. Let φ : R2×2

sym → [0, 2n + 2] be a continuous function satisfying
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φ(A) = 2n+2 when |A11+A22| = 2n+2 and φ(A) = 0 when ||A11+A22|−2n−2| ≥ ε.

Here we have used the notation A =

(
A11 A12

A21 A22

)
. Then

∫
R2×2
sym

φdµ = Ef2n+1 = 1

and hence, if j is sufficiently large, then
∣∣∣ 1
|B|
∫
B φ(D2uj(x))dx− 1

∣∣∣ ≤ ε. But, by the

very definition, we have

φ(A) ≤

{
2n+ 2 if ||A1 +A2| − 2n− 2| ≤ ε,
0 otherwise,

so the previous estimate gives 1
|B| |{x ∈ B : ||∆uj(x)|−2n−2| ≤ ε}| ≥ (1−ε)/(2n+2).

A similar argument, exploiting the function φ : R2×2
sym → [0, 1] such that φ(A) = 1

when |A11 + A12| < ε/2 and φ(A) = 0 when |A11 + A12| > ε, shows that if j is
sufficiently large, then

1

|B|
|{x ∈ B : |∆uj(x)| ≤ ε}| ≥ (1− ε) · (1− (2n+ 2)−1).

Consequently, we see that (∆uj)
∗ satisfies

(∆uj)
∗(s) ≤


2M if s ≤ ε|B|,
2n+ 2 + ε if ε|B| < s ≤ ε|B|+ 1−ε

2n+2 |B|,
ε if ε|B|+ 1−ε

2n+2 |B| < s ≤ |B|,
0 if s > |B|

and hence

1

|B|
||∆uj ||L logL(B)

=

∫ 1

0

(∆uj)
∗(s|B|) log

1

s
ds

≤
∫ ε

0

2M log
1

s
ds+

∫ ε+(1−ε)/(2n+2)

ε

(2n+ 2 + ε) log
1

s
ds+

∫ 1

ε+(1−ε)/(2n+2)

ε log
1

s
ds

≤ 2M

∫ ε

0

log
1

s
ds+ (2n+ 2 + ε)

∫ ε+(2n+2)−1

0

log
1

s
ds+ ε

∫ 1

0

log
1

s
ds

= 2Mε(1− log ε) + (2n+ 2 + ε)(ε+ (2n+ 2)−1)
(
1− log(ε+ (2n+ 2)−1)

)
+ ε.

For brevity, denote the latter expression by C(n, ε). Consider the continuous func-
tion φ(A) = |A11 −A22| on R2×2

sym. We have
∫
R2×2
sym

φdµ = E|g2n+1| = ||g2n+1||1. If j

is sufficiently large, then by Corollary 4.6,∫
B φ(D2uj(x))dx

|B| · ||g2n+1||1
≥ 1− ε.
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Now we put h = ∆uj and combine all the above facts together to obtain∫
B |(R

2
1 −R2

2)h(x)|dx
||h||L logL(B)

=

∫
B φ(D2uj(x))dx

||∆uj ||L logL(B)

≥ (1− ε)|B|||g2n+1||1
|B|C(n, ε)

.

However, ε was an arbitrary positive number; letting it go to 0, we see that the
latter expression converges to

||g2n+1||1
1 + log(2n+ 2)

=
||g2n+1||1
||f2n+1||1

.

As we have seen in Section 2, this can be made arbitrarily close to 1 by choosing n
sufficiently large. This proves the desired sharpness.
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[23] A. Osȩkowski, On relaxing the assumption of differential subordination in some martingale

inequalities, Electr. Commun. in Probab. 15, 9–21.
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