
ON THE ACTION OF THE HILBERT TRANSFORM

ON `N1 -VALUED FUNCTIONS

ADAM OS�KOWSKI

Abstract. Let H be a separable Hilbert space. The periodic Hilbert transform H is bounded as an
operator on Lp(T; `N1 (H)), 1 < p <∞, since `N1 (H) is a UMD space. We prove that there is a �nite
constant cp depending only on p such that

c−1
p (lnN + 1) ≤ ||H||Lp(T;`N1 (H))→Lp(T;`N1 (H)) ≤ cp(lnN + 1).

The proof uses probabilistic methods and exploits bounds for di�erentially subordinate martingales.

1. Introduction

Let B be a real or complex Banach space and let (Ω,F ,P) be a probability space equipped with a
�ltration (Fn)n≥0, a nondecreasing family of sub-σ-algebras of F . The space B is called a UMD-space
(unconditional for martingale di�erences) if for some p ∈ (1,∞) (equivalently, for all 1 < p <∞) there
is a �nite constant βp such that the following holds. If (dn)n≥0 is a B-valued martingale di�erence
sequence and (εn)n≥0 is an arbitrary deterministic sequence of signs, then∥∥∥∥∥

n∑
k=0

εkdk

∥∥∥∥∥
Lp(Ω;B)

≤ βp

∥∥∥∥∥
n∑
k=0

dk

∥∥∥∥∥
Lp(Ω;B)

.

In this de�nition, the �ltration must vary and so must the probability space, unless it is assumed to
be nonatomic. Let UMDp(B) denote the smallest value of βp allowed in the above estimate.

UMD spaces form right environment into which many classical results from harmonic analysis on
Hilbert spaces can be carried over. One of the motivations for the study of these spaces came from
an attempt to extend the work of M. Riesz on the Lp-boundedness of the Hilbert transform, and that
of Calderón and Zygmund on more general singular integral operators, to the case of functions with
values in a Banach space. Let us be more speci�c. Suppose that T ' (−π, π] denotes the unit circle
on the complex plane. Then H, the periodic Hilbert transform, is an operator acting on functions
f ∈ L1(T;R) by the formula

(1.1) Hf(eiθ) =
1

2π
p.v.

∫ π

−π
f(eit)cot

θ − t
2

dt.

In the twenties, M. Riesz proved that for any 1 < p < ∞, the periodic Hilbert transform is bounded
as an operator on Lp(T;R); this automatically leads to the analogous statement for the non-periodic
version of the Hilbert transform. This fact was further generalized by Calderón and Zygmund to a
much wider setting of singular integral operators associated with odd kernels.

There is a natural question concerning the version of the above results for Banach-space valued
functions. It was soon realized that not all spaces are well-behaved, even for the Hilbert transform:
Bochner and Taylor [2] showed that ||H||Lp(T;`1)→Lp(T;`1) =∞. It turns out that the periodic Hilbert
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transform is bounded as an operator on Lp(T;B) if and only if B has the UMD property. This
equivalence is due to Burkholder and McConnell [4], who showed that UMD spaces are well-behaved
for the Hilbert transform, and Bourgain [3], who established the reverse implication. This, by the use
of Calderón-Zygmund method of rotations, showed that UMD spaces form a natural context for the
study of singular integrals with odd kernels. What about the speci�c dependence between the norm
||H||Lp(T;B)→Lp(T;B) and the UMD constants UMDp(B)? It follows from [3] and [4] that there is an
absolute constant C such that

(1.2) C−1(UMDp(B))1/2 ≤ ||H||Lp(T;B)→Lp(T;B) ≤ C(UMDp(B))2.

There is a very interesting question whether this quadratic equivalence can be improved to the linear
dependence. This problem has gained a lot of interest in the literature, and despite many attempts
and partial results, seems to be completely open at the moment. The principal goal of this paper is to
study this subject in the context of the spaces `N1 (H), where H is a separable Hilbert space. It is well
known that UMDp(`

N
1 (H)) ' lnN + 1 (cf. [9]): for each p there is a constant cp depending only on p

such that for each N ,

c−1
p (lnN + 1) ≤ UMDp(`

N
1 (H)) ≤ cp(lnN + 1)

and hence, by (1.2), we have the two-sided bound

C−1c−1
p (lnN + 1)1/2 ≤ ||H||Lp(T;`N1 (H))→Lp(T;`N1 (H)) ≤ Ccp(lnN + 1)2.

We will improve this result to the linear dependence on both sides.

Theorem 1.1. For any 1 < p <∞ and any N we have the estimates

(1.3) π−1(lnN + 1) ≤ ||H||L1(T;`N1 (H))→L1,∞(T;`N1 (H)) ≤ 4(lnN + 1)

and

(1.4) (2π)−1(lnN + 1) ≤ ||H||Lp(T;`N1 (H))→Lp(T;`N1 (H)) ≤
288p2

p− 1
(lnN + 1).

The proof will depend heavily on stochastic analysis and, in particular, on properties of continuous-
time martingales. Our argumentation will be split into two sections. Section 2 is devoted to the upper
bounds in (1.3) and (1.4). We will �rst establish certain probabilistic versions of these inequalities for
`N1 (H)-valued martingales. Our main tool is the so-called Burkholder's method: using a certain special
function, enjoying appropriate size requirements and concavity, we will prove the martingale weak-type
bound and then deduce the strong-type estimate with the use of standard extrapolation (good-lambda
inequalities). Section 3 is devoted to the lower bounds in (1.3) and (1.4). A natural idea is to construct
appropriate examples: we follow this path but we again need to incorporate certain probabilistic
arguments. Namely, we show that the validity of a strong-type estimate for Hilbert transform acting
on `N1 (C)-valued functions implies the same weak- and strong-type inequalities for analytic martingales
with values in `N1 (C). We conclude by presenting an inductive e�cient construction of a certain analytic
martingale, thus providing the desired lower bounds for the constants.

2. An upper bound in (1.3) and (1.4)

2.1. Background and notation. We start with recalling some basic facts from stochastic analysis
which will be needed in our argumentation. Suppose that (Ω,F ,P) is a complete probability space,
equipped with a right-continuous �ltration (Ft)t≥0 such that F0 contains all the events of probability 0.
Suppose that X, Y are adapted continuous-path martingales taking values in a certain �xed separable
Hilbert space H with the norm | · | and the scalar product 〈·, ·〉 (with no loss of generality, we may
assume that H = `2). The X∗ = supt≥0 |Xt|, Y ∗ = supt≥0 |Yt| denote the maximal functions of X and
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Y , respectively. Let [X], [Y ] denote the quadratic variation processes (square brackets) of X and Y ; see
Dellacherie and Meyer [7] for details when H = R, and extend the de�nition to the higher-dimensional
setting by [X] =

∑∞
n=1[Xn], where Xn denotes the n-th coordinate of X. Following Bañuelos and

Wang [1] and Wang [10], the process Y is di�erentially subordinate to X, if, with probability 1, the
di�erence [X] − [Y ] = ([X]t − [Y ]t)t≥0 is nonnegative and nondecreasing as a function of t. For
example, this notion arises in the context of stochastic integration. Suppose that X is a martingale,
H is a predictable process and let Y = H ·X be the stochastic integral of H with respect to X. If H
takes values in [−1, 1], then Y is di�erentially subordinate to X; this follows at once from

[X]t − [Y ]t =

∫ t

0

(1−H2
s )d[X]s, t ≥ 0.

In what follows, we will also exploit the properties of the so-called analytic martingales. Recall that
for continuous-path continuous-time martingales X, Y taking values in RN , the CN -valued martingale
Z = X + iY is called analytic, if for any j, k ∈ {1, 2, . . . , N} we have [Zj , Zk] = 0, or, equivalently,
[Xj , Xk] = [Y j , Y k] and [Xj , Y k] = −[Y j , Xk], where, as usual, Xk denotes the k-th coordinate of X.

Sometimes we will also need to work with martingales taking values in `N1 (H), and we have decided
to use the same letters X, Y in such a case. This should not lead to any confusion: the target space
will always be speci�cally given in the formulation of each statement.

2.2. An inequality for Hilbert-space-valued martingales. Let N ≥ 1 be a �xed integer. A
crucial object for our further considerations is the special function u : H×H→ R, which is given by

u(x, y) =


N(|y|2 − |x|2)/2 if |x|+ |y| ≤ N−1,

|y| − |x| ln
(
N(|x|+ |y|)

)
− (2N)−1 if N−1 < |x|+ |y| ≤ 1,

1− (2N)−1 − (lnN + 1)|x| if |x|+ |y| > 1.

We will need the following majorization property of u.

Lemma 2.1. For any x, y ∈ H such that |y| ≤ 1 we have

(2.1) (|y| − (2N)−1)+ − (lnN + 1)|x| ≤ u(x, y) ≤ 1− (2N)−1 − (lnN + 1)|x|.

Proof. Since the dependence of u on x and y is through the norms |x| and |y| only, we may assume
that H = R and x, y ≥ 0. One easily checks that for any �xed y ∈ [0, 1], the function x 7→ u(x, y) is
concave on [0,∞); hence, the function ϕy(x) := u(x, y) + (lnN + 1)x also has this property. Now, we
see that ϕy(x) = 1− (2N)−1 for su�ciently large x, and

ϕy(0) =

{
Ny2/2 if y < N−1,

y − (2N)−1 if y ≥ N−1

is not smaller than (y− (2N)−1)+: when y ∈ ((2N)−1, N−1), this is equivalent to (y−N−1)2 ≥ 0; for
other y's, this is trivial. So, we have proved that (y− (2N)−1)+ ≤ ϕy(x) ≤ 1− (2N)−1, the claim. �

The function u behaves nicely when composed with the di�erentially subordinate martingales.

Lemma 2.2. Suppose that X, Y are H-valued martingales such that Y takes values in the unit ball of

H and is di�erentially subordinate to X. Then for any t ≥ 0 we have

Eu(Xt, Yt) ≤ 0.

Proof. Fix t ≥ 0 and consider the stopping time τ = inf{s ≥ 0 : |Xs|+ |Ys| = 1}. First we show that

(2.2) Eu(Xt, Yt) ≤ Eu(Xτ∧t, Yτ∧t)
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or, equivalently, Eu(Xt, Yt)1{τ≤t} ≤ Eu(Xτ , Yτ )1{τ≤t}. This is easy: using the right inequality in (2.1)
and applying Doob's optional sampling theorem to the supermartingale −|X|, we get

Eu(Xt, Yt)1{τ≤t} ≤ E
[
1− (2N)−1 − (lnN + 1)|Xt|

]
1{τ≤t}

≤ E
[
1− (2N)−1 − (lnN + 1)|Xτ |

]
1{τ≤t} = Eu(Xτ , Yτ )1{τ≤t}.

This establishes (2.2) and hence it is enough to prove that Eu(Xτ∧t, Yτ∧t) ≤ 0. If τ = 0, then |Xτ | =
|X0| ≥ (|X0| + |Y0|)/2 ≥ 1/2 and u(Xτ∧t, Yτ∧t) = u(X0, Y0) = 1 − (2N)−1 − (lnN + 1)|X0| ≤ 0. So,
we will be done if we show that Eu(Xτ∧t, Yτ∧t)1{τ>0} ≤ 0. On the set {τ > 0} we have |X0|+ |Y0| < 1
and hence, by the continuity of paths of X and Y , we see that |Xτ∧t|+ |Yτ∧t| ≤ 1. Consequently,

Eu(Xτ∧t, Yτ∧t)1{τ>0} = Ev(Xτ∧t1{τ>0}, Yτ∧t1{τ>0}),

where

v(x, y) =

{
N(|y|2 − |x|2)/2 if |x|+ |y| ≤ N−1,

|y| − |x| ln
(
N(|x|+ |y|)

)
− (2N)−1 if |x|+ |y| ≥ N−1.

Now, recall the function w : H×H→ R, invented by Burkholder [5]:

w(x, y) =

{
|y|2 − |x|2 if |x|+ |y| ≤ 1,

1− 2|x| if |x|+ |y| > 1.

This function has the property that if F , G are any H-valued martingales such that G is di�erentially
subordinate to F , then Ew(Ft, Gt) ≤ 0 (cf. Wang [10]). It is easy to check the identity

v(x, y) =
1

2

∫ ∞
N−1

w(x/r, y/r)dr,

which, by Fubini's theorem, implies that for any bounded F , G as above, we have Ev(Ft, Gt) ≤ 0. It
su�ces to apply this property to the martingales F = (Xτ∧s1{τ>0})s≥0, G = (Yτ∧s1{τ>0})s≥0 (which
clearly inherit the di�erential subordination from the processes X and Y ). �

2.3. Inequalities for `N1 (H)-valued martingales and the Hilbert transform. Equipped with the
auxiliary estimate of Lemma 2.2, we turn our attention to the context of `N1 (H)-valued martingales.

Lemma 2.3. Suppose that X, Y are `N1 (H)-valued martingales such that Y takes values in the unit

ball of `N1 (H) and for each j = 1, 2, . . . , N , the martingale Y j is di�erentially subordinate to Xj.

Then for any t ≥ 0 we have

(2.3) P(||Yt||`N1 (H) ≥ 1) ≤ 4(lnN + 1)||X||L1(`N1 ).

Proof. For any j = 1, 2, . . . , N , the coordinate Y j takes values in the unit ball of H. Consequently,

Eu(Xj
t , Y

j
t ) ≤ 0, t ≥ 0,

in the light of the preceding lemma. By the left inequality in (2.1), this implies

E(|Y jt | − (2N)−1)+ ≤ 2(lnN + 1)E|Xj
t | ≤ 2(lnN + 1)||Xj ||L1 .

Now, pick an arbitrary event A ∈ F and consider its splitting into the sets

A− = A ∩ {|Y jt | < (2N)−1} and A+ = A ∩ {|Y jt | ≥ (2N)−1}.
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Obviously, we have

∫
A−

|Y jt |dP ≤ (2N)−1P(A−). Furthermore,∫
A+

|Y jt |dP =

∫
A+

(|Y jt | − (2N)−1)dP + (2N)−1P(A+)

≤ E(|Y jt | − (2N)−1)+ + (2N)−1P(A+) ≤ 2(lnN + 1)||Xj ||L1 + (2N)−1P(A+).

Summing the two latter estimates, we obtain∫
A

|Y jt |dP ≤ 2(lnN + 1)||Xj ||L1 + (2N)−1P(A).

Now write this bound for j = 1, 2, . . . , N and add all these estimates to get∫
A

||Yt||`N1 (H)dP ≤ 2(lnN + 1)||X||L1(`N1 ) +
1

2
P(A).

Now, set A = {||Yt||`N1 (H) ≥ 1}. Then P(A) ≤
∫
A
||Yt||`N1 dP and the above estimate implies P(A) ≤

4(lnN + 1)||X||L1(`N1 ). This is exactly what we have claimed in the statement of the lemma. �

We will need the following maximal version of the above bound.

Theorem 2.4. Suppose that X, Y are `N1 (H)-valued martingales such that for each j = 1, 2, . . . , N ,

the martingale Y j is di�erentially subordinate to Xj. Then

(2.4) P(Y ∗ ≥ 1) ≤ 4(lnN + 1)||X||L1(`N1 ).

Proof. If ||Y0||`N1 (H) ≥ 1, then ||X0||`N1 (H) ≥ 1, by the di�erential subordination, and hence

P(||Y0||`N1 (H) ≥ 1) ≤ E||X0||`N1 (H)1{||Y0||`N1 (H)
≥1}.

To control the size of the set {Y ∗ ≥ 1}∩{|Y0| < 1}, consider the martingales X̃ = (Xt1{||Y0||`N1 (H)
<1})t≥0

and Ỹ = (Yt1{||Y0||`N1 (H)
<1})t≥0. Fix ε > 0 and introduce the stopping time τ = inf{t : ||Ỹt||`N1 (H) ≥

1− ε}. Clearly, we have

{Ỹ ∗ ≥ 1} ⊆ {||Ỹτ∧t||`N1 (H) ≥ 1− ε for some t} =
⋃
t≥0

{||Ỹτ∧t||`N1 (H) ≥ 1− ε}.

But {||Ỹτ∧s||`N1 (H) ≥ 1−ε} ⊂ {||Ỹτ∧t||`N1 (H) ≥ 1−ε} when s ≤ t, so P(Ỹ ∗ ≥ 1) ≤ lim
t→∞

P(||Ỹτ∧t||`N1 (H) ≥

1−ε). Since (Ỹτ∧t)t≥0 takes values in the unit ball of `N1 (H) and is di�erentially subordinate to (X̃t)t≥0

(it is easy that this property is inherited from the pair (X, Y )), the previous lemma gives

P(Ỹ ∗ ≥ 1) ≤ 4(lnN + 1)

1− ε
||X̃||L1(`N1 (H)),

and letting ε→ 0 yields P(Ỹ ∗ ≥ 1) ≤ 4(lnN + 1)||X̃||L1(`N1 (H)). Coming back to the processes X and
Y , it remains to note that

P(Y ∗ ≥ 1) ≤ P(|Y0| ≥ 1) + P(Ỹ ∗ ≥ 1)

≤ E||X0||`N1 (H)1{||Y0||`N1 (H)
≥1} + 4(lnN + 1) sup

t
E||Xt||`N1 (H)1{||Y0||`N1 (H)

<1}

≤ 4(lnN + 1) sup
t

E||Xt||`N1 (H). �

Now we establish tight Lp estimates for di�erentially subordinate martingales.
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Theorem 2.5. Suppose that X, Y are martingales with values in `N1 (H), such that for each j =
1, 2, . . . , N , the martingale Y j is di�erentially subordinate to Xj. Then for any 1 < p <∞ we have

(2.5) ||Y ||Lp(`N1 (H)) ≤
288p2

p− 1
(lnN + 1)||X||Lp(`N1 (H)).

Proof. Fix numbers β > 1, λ > 0, δ > 0 and consider the stopping times

µ = inf{t ≥ 0 : ||Yt||`N1 (H) ≥ λ}, ν = inf{t ≥ 0 : ||Yt||`N1 (H) ≥ βλ}, σ = inf{t ≥ 0 : ||Xt||`N1 (H) > δλ}.

Furthermore, introduce the processes

Ft = Xν∧σ∧t −Xµ∧σ∧t, Gt = Yν∧σ∧t − Yµ∧σ∧t.
Clearly, for any j = 1, 2, . . . , N , the martingale Gj is di�erentially subordinate to F j : if s ∈ (µ ∧
σ ∧ t, ν ∧ σ ∧ t], then d[Gj , Gj ]s = d[Y j , Y j ]s ≤ d[Xj , Xj ]s = d[F j , F j ]s; for remaining s, we have
d[Gj , Gj ] = d[F j , F j ] = 0. We may write

P(Y ∗ > βλ, X∗ ≤ δλ) ≤ P(µ ≤ ν <∞, σ =∞)

≤ P(G∗ > (β − 1)λ) ≤ 4(lnN + 1)

(β − 1)λ
||F ||L1(`N1 (H)) ≤

8δ(lnN + 1)

β − 1
P(Y ∗ ≥ λ).

Here in the last line we have used the fact that F = 0 on {µ = ∞} and |Ft| ≤ 2δλ on {µ < ∞} ⊆
{Y ∗ ≥ λ}. Consequently, we see that

P(Y ∗ ≥ βλ) ≤ P(X∗ ≥ δλ) +
8δ(lnN + 1)

β − 1
P(Y ∗ ≥ λ).

Now, multiply both sides by pλp−1 and integrate over (0,∞) with respect to λ. We obtain

β−p||Y ∗||pLp
≤ δ−p||X∗||pLp

+
8δ(lnN + 1)

β − 1
||Y ∗||pLp

,

which is equivalent to

||Y ∗||Lp
≤ δ−1

(
β−p − 8δ(lnN + 1)

β − 1

)−1/p

||X∗||Lp
,

provided β−p > 8δ(lnN + 1)/(β − 1). Now we choose β = 1+p−1 and δ = (32p(lnN+1))−1, obtaining

||Y ∗||Lp
≤ 32p(lnN + 1)

[(
1 +

1

p

)−p
− 1

4

]−1/p

||X∗||Lp
≤ 288p(lnN + 1)||X∗||Lp

,

since

((
1 + 1

p

)−p
− 1

4

)−1/p

≤
(

1
e −

1
4

)−1
< 9. To get the assertion, it remains to apply Doob's

maximal inequality to the nonnegative submartingale (||Xt||`N1 (H))t≥0. �

The above estimates for di�erentially subordinate martingales lead to inequalities for periodic
Hilbert transform. We have the following.

Theorem 2.6. For any f ∈ L1(T; `N1 (H)) we have the weak-type estimate

|{s ∈ T : ||Hf(s)||`N1 (H) ≥ 1}| ≤ 4(lnN + 1)||f ||L1(`N1 (H)).

Furthermore, for any 1 < p <∞ and any f ∈ Lp(T; `N1 (H)) we have the strong-type bound

||Hf ||Lp(`N1 (H)) ≤
288p2

p− 1
(lnN + 1)||f ||Lp(`N1 (H)).
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Proof. Take any function f ∈ L1(T; `N1 (H)) and let uj , vj be the harmonic extensions of the j-th
coordinate f j of f and the Hilbert transform Hf j , respectively. Consider the planar Brownian motion,
starting at 0 and stopped at time τ = inf{t ≥ 0 : |Bt| = 1}. Then the processes X = (u(Bτ∧t))t≥0,
Y = (v(Bτ∧t))t≥0 are `N1 (H)-valued martingales and for each j, Y j is di�erentially subordinate to Xj :
this follows at once from the identities

[Xj ]t = |f j(0)|2 +

∫ τ∧t

0+

|∇uj(Bs)|2ds, [Y j ]t = |Hf j(0)|2 +

∫ τ∧t

0+

|∇vj(Bs)|2ds =

∫ t

0+

|∇vj(Bs)|2ds

and the fact that uj , vj satisfy Cauchy-Riemann equations. Since the random variable Bτ is distributed
uniformly on the unit circle, we have ||X||L1(`N1 (H)) = ||f ||L1(`N1 (H)) and the inequality (2.4) implies

|{θ ∈ T : ||Hf(eiθ)||`N1 (H) ≥ 1}| ≤ P(Y ∗ ≥ 1) ≤ 4(lnN + 1)||X||L1(`N1 (H)) = 4(lnN + 1)||f ||L1(`N1 (H)),

and similarly, by (2.5),

||Hf ||Lp(`N1 (H)) = ||Yτ ||Lp(`N1 (H)) ≤
288p2

p− 1
(lnN + 1)||X||Lp(`N1 (H)) =

288p2

p− 1
(lnN + 1)||f ||Lp(`N1 (H)).�

3. An lower bound in (1.3) and (1.4)

In this section we will show that the growth of UMD constants for the Hilbert transform is loga-
rithmic, even if H = R. It is convenient to split the material into a few parts.

3.1. A bound for Hilbert transform implies bounds for analytic martingales. Our starting
point is the following fact taken from Hollenbeck, Kalton and Verbitsky [8] (see Theorem 2.3 there).

Theorem 3.1. Let F : CN → R be an upper semicontinuous function and let E be a nonempty subset of

CN . In order that for every N -tuple (P1, P2, . . . , PN ) of polynomials with (P1(0), P2(0), . . . , PN (0)) ∈ E
we have

(3.1)

∫ π

−π
F (P1(eiθ), P2(eiθ), . . . , PN (eiθ))

dθ

2π
≥ 0,

it is necessary and su�cient that there is a plurisubharmonic function G : CN → R with G ≤ F and

G(z1, z2, . . . , zN ) ≥ 0 for (z1, z2, . . . , zN ) ∈ E.

We are ready to show the following fact.

Theorem 3.2. Let N be a �xed positive integer. Then for any analytic martingale Z = X + iY with

values in CN we have

(3.2) ||Y ||Lp(`N1 (R)) ≤ ||H||Lp(`N1 (R))→Lp(`N1 (R))||X||Lp(`N1 (R))

and

(3.3) P(Y ∗ ≥ 1) ≤ ||H||L1(`N1 (R))→L1,∞(`N1 (R))||X||L1(`N1 (R)).

Proof. We will focus on (3.2), the proof of the inequality (3.3) is similar. We may assume that
||X||Lp(`N1 (R)) <∞, since otherwise there is nothing to prove. For the sake of clarity, we have decided
to split the reasoning into a few intermediate steps.

Step 1. Application of Theorem 3.1. Denote the norm ||H||Lp(`N1 (R))→Lp(`N1 (R)) by c. Consider the

continuous function F : CN → CN given by

F (z1, z2, . . . , zN ) = cp

(
N∑
k=1

|<zk|

)p
−

(
N∑
k=1

|=zk|

)p
.
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Let P1, P2, . . ., PN be arbitrary polynomials on C such that =P1(0) = =P2(0) = . . . = =PN (0) = 0.
These functions are analytic in the unit disc, so if we de�ne f j : T → R by fj(e

iθ) = <Pj(eiθ), then
we have Hfj = =Pj |T. Consequently, (3.1) is equivalent to saying that

cp||(f1, f2, . . . , fN )||p
Lp(`N1 (R))

− ||(Hf1,Hf2, . . . ,HfN )||p
Lp(`N1 (R))

≥ 0,

which is obvious, by the very de�nition of the norm ||H||Lp(`N1 (R))→Lp(`N1 (R)). Therefore, Theorem 3.1

yields the existence of an appropriate plurisubharmonic function G on CN .
Step 2. A mollifying argument. Let g be a radial, C∞ nonnegative function on C, supported on the

ball of center 0 and radius 1, satisfying
∫
C g(z)dz = 1. For a �xed δ > 0, de�ne Ĝ = Ĝδ : CN → R by

Ĝ(z) =

∫
CN

G(z1 − u1δ, z2 − u2δ, . . . , zN − uNδ)g(u1)g(u2) . . . g(uN )du.

This new function inherits most of the properties of G. First, it is clear that Ĝ is plurisubharmonic.
It is also evident that Ĝ is of class C∞. Next, we have Ĝ ≥ G on CN , which follows from mean-value
property of subharmonic functions and the fact that g is radial. Let us be a little more precise. Fix
k ∈ {1, 2, . . . , N − 1}. Then, by the very de�nition of plurisubharmonicity, the function

C 3 w 7→ G(z1, z2, . . . , zk−1, w, zk+1 − uk+1δ, . . . , zN − uNδ)
is subharmonic. But g is a radial, nonnegative function of integral 1, so∫

C
G(z1, z2, . . . , zk−1, zk − ukδ, zk+1 − uk+1δ, . . . , zN − uNδ)g(uk)duk

≥ G(z1, z2, . . . , zk−1, zk, zk+1 − uk+1δ, . . . , zN − uNδ)
and hence∫

CN−k+1

G(z1, z2, . . . , zk−1, zk − ukδ, zk+1 − uk+1δ, . . . , zN − uNδ)×

× g(uk)g(uk+1) . . . g(uN )dukduk+1 . . . duN

≥
∫
CN−k

G(z1, z2, . . . , zk−1, zk, zk+1 − uk+1δ, . . . , zN − uNδ)g(uk+1) . . . g(uN )duk+1 . . . duN .

This shows the majorization Ĝ ≥ G; in particular, we see that if =z1 = =z2 = . . . = =zN = 0, then
Ĝ(z1, z2, . . . , zN ) ≥ G(z1, z2, . . . , zN ) ≥ 0. We turn our attention to the last property of Ĝ. Note that
the inequality G ≤ F implies

Ĝ(z) ≤
∫
CN

F (z1 − u1δ, z2 − u2δ, . . . , zN − uNδ)g(u1)g(u2) . . . g(uN )du

≤ cp
(

N∑
k=1

|<zk|+Nδ

)p
−

(
N∑
k=1

∣∣|=zk| − δ∣∣)p .(3.4)

Step 3. Application of Itô's formula. Now, �x an analytic martingale Z = (Zt)t≥0 with values in
CN , starting from the set E = {z ∈ CN : =z1 = =z2 = . . . = =zN = 0}. For a given positive number

M , consider the stopping time τM = inf{t ≥ 0 : |Zt| ≥M}. Since Ĝ is of class C∞, we have

(3.5) Ĝ(ZτM∧t) = I0 + I1 + I2/2,

where

I0 = Ĝ(Z0), I1 =

∫ τM∧t

0+

Ĝz(Zs)dZs +

∫ τM∧t

0+

Ĝz(Zs)dZs, I2 =
N∑

j,k=1

∫ τM∧t

0+

Ĝzjzk(Zs)d[Zj , Zk]s.
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Note that EI1 = 0 by the properties of stochastic integrals: indeed, the processes (Ĝz(Zs))s≤τM ,

(Ĝz(Zs))s≤τM are bounded on the set {τM > 0}, so the integrals in I1 de�ne L2-bounded martingales.

To deal with the term I2, observe that for any h ∈ CN we have, by plurisubharmonicity of Ĝ,

N∑
j,k=1

Ĝzjzk(z)hjhk ≥ 0.(3.6)

Fix s < s1 ≤ t and for each n, let (Tnr )1≤r≤rn be a nondecreasing sequence of �nite stopping times
with Tn1 = s and Tnrn = s1, satisfying limn→∞max1≤r≤rn |Tnr+1 − Tnr | = 0. Apply (3.6) to z = ZτM∧s
and h = ZτM∧Tn

r+1
− ZτM∧Tn

r
for each r = 1, 2, . . . , rn. Summing over r and letting n→∞ gives

N∑
j,k=1

Ĝzjzk(ZτM∧s)[Z
j , Zk]τM∧s1τM∧s ≥ 0.

This yields I2 ≥ 0: simply approximate the integrals by discrete sums. Thus, combining the above
facts with (3.5) gives EĜ(ZτM∧t) ≥ EĜ(Z0). However, the right-hand side is nonnegative: this follows

from the assumption =Z1
0 = =Z2

0 = . . . = =ZN0 = 0 and the properties of Ĝ, see Step 2 above.

Step 4. Limiting arguments. We have shown that EĜ(ZτM∧t) ≥ 0. By (3.4), we get

E

(
N∑
k=1

∣∣|YτM∧t| − δ∣∣
)p
≤ cpE

(
N∑
k=1

|Xk
τM∧t|+Nδ

)p
,

which implies, after taking p-th root of both sides,[
E

(
N∑
k=1

∣∣|YτM∧t| − δ∣∣
)p]1/p

≤ c
(
||X||Lp(`N1 ) +Nδ

)
.

It su�ces to let δ → 0 and then M →∞ to get the claim, by virtue of Fatou's lemma. �

The next step is to show that the validity of (3.2) implies an appropriate weak-type (1,1) version.

Theorem 3.3. Let N be a �xed positive integer. Then for any analytic martingale Z = X + iY with

values in CN we have

(3.7) P (Y ∗ ≥ 1) ≤ 2||H||Lp(`N1 (R))→Lp(`N1 (R))||X||L1(`N1 (R)).

Proof. The assertion will follow from (3.2) via an appropriate stopping-time argument. Fix a small
ε > 0 and consider the stopping times

τ = inf{t ≥ 0 : ||Yt||`N1 (R) ≥ 1− ε}, σ = inf
{
t ≥ 0 : ||Xt||`N1 (R) ≥ ||H||−1

Lp(`N1 (R))→Lp(`N1 (R))

}
.

We have

P (Y ∗ ≥ 1) ≤ P
(
X∗ > ||H||−1

Lp(`N1 (R))→Lp(`N1 (R))

)
+ P

(
Y ∗ ≥ 1, X∗ ≤ ||H||−1

Lp(`N1 (R))→Lp(`N1 (R))

)
.(3.8)

By Doob's weak-type inequality for submartingales, we have

P
(
X∗ > ||H||−1

Lp(`N1 (R))→Lp(`N1 (R))

)
≤ ||H||Lp(`N1 (R))→Lp(`N1 (R))||X||L1(`N1 (R)).

To deal with the second probability, introduce the martingales X̃t = Xτ∧σ∧t1{τ>0}, Ỹt = Yτ∧σ∧t1{τ>0},

for t ≥ 0. Clearly, the martingale Z̃ = X̃ + iỸ is analytic. Furthermore, we have

P
(
Y ∗ ≥ 1, X∗ ≤ ||H||−1

Lp(`N1 (R))→Lp(`N1 (R))

)
≤ P(Ỹt ≥ 1− ε for some t).
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But {Ỹt ≥ 1− ε} ⊆ {Ỹs ≥ 1− ε} when t ≤ s, so P(Ỹt ≥ 1− ε for some t) = lim
t→∞

P(Ỹt ≥ 1− ε). Now,
Chebyshev's inequality and (3.2) imply

P(Ỹt ≥ 1− ε) ≤ (1− ε)−p||Ỹt||pLp(`N1 (R))
≤ (1− ε)−p||H||p

Lp(`N1 (R))→Lp(`N1 (R))
||X̃||p

Lp(`N1 (R))
.

But by the de�nition of the stopping time σ, the `N1 (R)-norm of the martingale X̃ is bounded by

||H||−1
Lp(`N1 (R))→Lp(`N1 (R))

, so we have the estimate ||X̃||p
Lp(`N1 (R))

≤ ||H||1−p
Lp(`N1 (R))→Lp(`N1 (R))

||X̃||L1(`N1 (R)).

Combining all the above facts, we obtain

P
(
Y ∗ ≥ 1, X∗ ≤ ||H||−1

Lp(`N1 (R))→Lp(`N1 (R))

)
≤ (1− ε)−p||H||Lp(`N1 (R))→Lp(`N1 (R))||X̃||L1(`N1 (R)).

Plugging all the above observations into (3.8) and letting ε→ 0, we obtain the desired estimate. �

In the light of (3.3) and (3.7), we see that the desired lower bounds in (1.3) and (1.4) are immediate
consequences of the following statement.

Theorem 3.4. Let N be a positive integer. Then there is an analytic martingale Z = X + iY with

values in CN such that P(Y ∗ ≥ 1) = 1 and ||X||L1(`N1 (R)) ≤ π/(lnN + 1).

This theorem will be handled in two subsections below.

3.2. A planar example. We �rst provide the proper construction for N = 1. Let Z = X+ iY be the
planar Brownian motion starting from (0, 0) and stopped upon hitting the set {0}×

(
(−∞,−1]∪[1,∞)

)
.

We will provide two facts concerning the random variables X∞ and Y∞.

Lemma 3.5. For any λ ≥ 1 we have P(|Y∞| ≥ λ) =
4

π
arctan

(
λ−

√
λ2 − 1

)
.

Proof. Consider the conformal map f(z) = i(z + z−1)/2, which sends the upper halfplane R× [0,∞)
onto the set (C \ iR)∪ i(−1, 1). By Lévy's theorem, the composition W = (f−1(Zt))t≥0 is an analytic
martingale; this new process starts from i and terminates upon hitting the real axis. It is well-known
that the law of W∞ is the Cauchy distribution; consequently,

P(|Y∞| ≥ λ) = P(|Z∞| ≥ λ) = P(|W∞| ≥ λ+
√
λ2 − 1) + P(|W∞| < λ−

√
λ2 − 1)

= 1− 2

π
arctan(λ+

√
λ2 − 1) +

2

π
arctan(λ−

√
λ2 − 1)

=
4

π
arctan

(
λ−

√
λ2 − 1

)
. �

Lemma 3.6. We have ||X||L1 = 1.

Proof. Let f , W be the conformal map and the analytic martingale studied in the previous lemma.
Consider the stopping time τR = inf{t : |Wt| ∈ {R−1, R}}, where R > 1 is a �xed parameter (with the
standard convention inf ∅ = +∞). Let η(R) be an �error term� given by

E|XτR | = E
∣∣∣∣=WτR +W−1

τR

2

∣∣∣∣ = E
∣∣∣∣=WτR

2

∣∣∣∣+ E
∣∣∣∣=W−1

τR

2

∣∣∣∣+ η(R).

Clearly, η(R) → 0 as R → ∞. Indeed, if τR = ∞, then WτR lies on the real line, so the imaginary
parts of (WτR +W−1

τR )/2, WτR , W
−1
τR vanish, making no contribution to η(R). If |WτR | = R, then∣∣∣∣∣∣∣∣=WτR +W−1
τR

2

∣∣∣∣− ∣∣∣∣=WτR

2

∣∣∣∣− ∣∣∣∣=W−1
τR

2

∣∣∣∣∣∣∣∣ ≤ |WτR |−1 = R−1
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and similarly, if |WτR | = R−1, then

∣∣∣∣∣∣∣∣=WτR +W−1
τR

2

∣∣∣∣− ∣∣∣∣=WτR

2

∣∣∣∣− ∣∣∣∣=W−1
τR

2

∣∣∣∣∣∣∣∣ ≤ |WτR | = R−1. Further-

more, the martingales (WτR∧t)t≥0, (W−1
τR∧t)t≥0 are bounded, so

E
∣∣∣∣=WτR

2

∣∣∣∣ = E=WτR

2
=

1

2
, E

∣∣∣∣=W−1
τR

2

∣∣∣∣ = −E=
W−1
τR

2
=

1

2
.

This proves that E|XτR | = 1 + η(R). It remains to perform appropriate limiting arguments. First,
note that by Fatou's lemma we have, for any R > 1,

||X||L1 = lim
t→∞

||Xt||1 ≥ lim inf
t→∞

||XτR∧t||L1 = ||XτR ||L1 = 1 + η(R),

and hence ||X||L1 ≥ 1. In addition, again by Fatou's lemma, ||Xt||L1 ≤ lim infR→∞ ||XτR∧t||L1 ≤
lim infR→∞ ||XτR ||L1 = 1 for any t ≥ 0. This proves the claim. �

3.3. An analytic martingale with values in CN . The previous example, combined with an ap-
propriate inductive argument, leads to the e�cient `N1 (C)-valued analytic martingale.

Theorem 3.7. Let ζ = (ζn)n≥1 be the sequence de�ned by ζ1 = 1 and the recursion

ζn =
1

n
+ ζn−1

(
1− 2

πn
arctan

√
n2 − 1− 2 arccoshn

πn

)
.

Then for any N ≥ 1 there is an analytic martingale W = U + iV with values in `N1 (C) satisfying

P(V ∗ ≥ 1) = 1 and ||U ||L1(`N1 (C)) = ζN .

Proof. If N = 1, we set W to be the example from the previous section; the required properties
of this process follow from Lemmas 3.5 and 3.6. Suppose that N ≥ 2 and �x η > 0. Let W̃ be
the process corresponding to N − 1 and the number η/2, guaranteed by the inductive assumption.

Consider the analytic martingale Z = X + iY of �3.2, independent of W̃ and let σ be the lifetime
of Z, i.e., σ = inf{t : Zt ∈ {0} × ((−∞,−1] ∪ [1,∞))}. We de�ne W by the following formula: if

t ≤ σ, setWt = (Zt/N, 0, 0, . . . , 0︸ ︷︷ ︸
N−1 times

). On the other hand, if t > σ, setWt = (Zσ/N, (1−|Yσ/N |)+W̃t−σ).

This process is analytic, since Z and W̃ were independent. Note that V ∗ ≥ 1 almost surely. Indeed,
if |Yσ| ≥ N , then the �rst coordinate of V already guarantees this estimate; on the other hand, if

|Yσ| < N , then, by the inductive assumption, V ∗ ≥ |Yσ|/N + (1− |Yσ/N |)Ṽ ∗ ≥ 1 with probability 1.
To compute the �rst norm of U , observe that Lemma 3.5 implies that the density of the distribution

of |Yσ/N | is equal to g(λ) =
2

πλ
√
λ2N2 − 1

1[N−1,∞)(λ). Consequently,

||U ||L1(`N1 (R)) = ||U1||1 + ||(1− |Yσ/N |)+Ũ ||L1(`N−1
1 (R))

=
1

N
+

∫ 1

1/N

2(1− λ)

πλ
√
λ2N2 − 1

· ζN−1dλ

=
1

N
+ ζN−1

(
1− 4

π
arctan(N −

√
N2 − 1)− 2 arccoshN

πN

)
= ζN . �

Observe that the statement above will imply the desired Theorem 3.4 once we show the following
bound for the constant ζN .

Lemma 3.8. For any N ≥ 1 we have ζN ≤ π/(lnN + 1).
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Proof. We will use induction. We have ζ1 = 1 ≤ π and

ζ2 =
2

π
arctan

√
3− arccosh 2

π
+

1

2
≤ 2

π
arctan

√
3 +

1

2
=

7

6
≤ π

ln 2 + 1
,

so the claim holds true for N = 1 and N = 2. Fix N ≥ 3 and assume that it holds for N − 1. We have

ζN ≤
π

ln(N − 1) + 1

(
2

π
arctan

√
N2 − 1− 2 lnN

πN

)
+

1

N
,

since arccoshN ≥ lnN . However, because
−2 lnN

N(ln(N − 1) + 1)
+

1

N
≤ − ln(N − 1)− 1

N(ln(N − 1) + 1)
+

1

N
= 0, it

su�ces to show that
2 arctan

√
N2 − 1

ln(N − 1) + 1
≤ π

lnN + 1
, or, equivalently,

(3.9) (lnN + 1) · 2

π
arctan

√
N2 − 1 ≤ ln(N − 1) + 1.

Since N ≥ 3, we have
√
N2 − 1 ≥

√
8 and hence arctan

√
N2 − 1 ≤ π

2
− 8

9
√
N2 − 1

(indeed: an easy

analysis of a derivative shows that the function x 7→ arctanx − π
2 + 8

9x is increasing on [
√

8,∞) and
vanishes at in�nity). Plugging this into (3.9), we see that it is enough to prove that√

N2 − 1 ln
N

N − 1
≤ 16

9π
(lnN + 1).

However, this inequality holds for N = 3 (the left-hand side is equal to 1.146829 . . ., the right-hand
side is equal to 1.187572 . . .). Furthermore, the right-hand side is an increasing function of N , while
the left-hand side decreases with N (a standard analysis shows that the left-hand side, considered as a
function of N ∈ [3,∞), is convex and its derivative vanishes at in�nity). This completes the proof. �
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