# BEST CONSTANTS IN THE WEAK-TYPE ESTIMATES FOR UNCENTERED MAXIMAL OPERATORS 

ADAM OSȨKOWSKI

Abstract. Let $\mu$ be a Borel measure on $\mathbb{R}$. The paper contains the proofs of the estimates

$$
\begin{array}{ll}
\left\|\mathcal{M}_{\mu} f\right\|_{L^{q, \infty}(A, \mu)} \leq c_{p, q}\|f\|_{L^{p}(\mathbb{R}, \mu)} \mu(A)^{1 / q-1 / p}, & 1 \leq p<\infty, q \in(0, p] \\
\text { and } \\
\left\|\mathcal{M}_{\mu} f\right\|_{L^{q, \infty}(A, \mu)} \leq C_{p, q}\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)} \mu(A)^{1 / q-1 / p}, & 1<p<\infty, q \in(0, p]
\end{array}
$$

Here $A$ is a subset of $\mathbb{R}, f$ is a $\mu$-locally integrable function, $\mathcal{M}_{\mu}$ is the uncentered maximal operator with respect to $\mu$ and $c_{p, q}, C_{p, q}$ are finite constants depending only on the parameters indicated. In the case when $\mu$ is the Lebesgue measure, the optimal choices for $c_{p, q}$ and $C_{p, q}$ are determined. As an application, we present some related tight bounds for the strong maximal operator on $\mathbb{R}^{n}$ with respect to a general product measure.

## 1. Introduction

Suppose that $\mu$ is a nonnegative Borel measure on $\mathbb{R}^{n}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a $\mu$-locally integrable function. The uncentered maximal function of $f$ with respect to $\mu$ is given by the formula

$$
\left(\mathcal{M}_{\mu} f\right)(x)=\sup _{x \in B} \frac{1}{\mu(B)} \int_{B}|f| \mathrm{d} \mu
$$

where the supremum is taken over all closed balls $B$ which contain the point $x$. If $\mu$ is the Lebesgue measure, then $\mathcal{M}_{\mu}$ is the usual uncentered maximal operator of Hardy and Littlewood. It is well-known (see e.g. Stein [6]) that if $\mu$ satisfies the doubling condition

$$
\mu(B(x, 2 r)) \leq C \mu(B(x, r)) \quad \text { for some } C<\infty \text { and all } x \in \mathbb{R}^{n}, r>0
$$

(here $B(x, r)$ denotes the closed ball of center $x$ and radius $r$ ), then $\mathcal{M}_{\mu}$ maps $L^{p}\left(\mathbb{R}^{n}, \mu\right)$ into itself for $p>1$, and $L^{1}\left(\mathbb{R}^{n}, \mu\right)$ into $L^{1, \infty}\left(\mathbb{R}^{n}, \mu\right)$. This is still true, without the doubling property, if and only if $n=1$ (see [1], [2] and [5]).

The question about the precise evaluation of the strong and weak norms of $\mathcal{M}_{\mu}$ has gained some interest in the literature, and the objective of this paper is to establish two new results of this type. We will be particularly interested in the onedimensional case. We have the following $L^{p}$-estimates for $\mathcal{M}_{\mu}$ : for any $\mu$-locally integrable $f$ and $1<p<\infty$ we have

$$
\begin{equation*}
\left\|\mathcal{M}_{\mu} f\right\|_{L^{p}(\mathbb{R}, \mu)} \leq c_{p}\|f\|_{L^{p}(\mathbb{R}, \mu)} \tag{1.1}
\end{equation*}
$$

[^0]where $c_{p}$ is the unique positive solution of the equation
\[

$$
\begin{equation*}
(p-1) x^{p}-p x^{p-1}-1=0 \tag{1.2}
\end{equation*}
$$

\]

This statement, with $\mu$ being the Lebesgue measure, was proved by Grafakos and Montgomery-Smith in [3]; for the general case, consult Grafakos and Kinnunen [2]. In general, the constant $c_{p}$ in (1.1) cannot be replaced by a smaller number, see [3]. The $L^{1}$-inequality does not hold in general with any finite constant $c_{1}$, but we have the sharp weak-type estimate

$$
\left\|\mathcal{M}_{\mu} f\right\|_{L^{1, \infty}(\mathbb{R}, \mu)} \leq 2\|f\|_{L^{1}(\mathbb{R}, \mu)},
$$

as proved in [2]. Here, as usual, for any Borel subset $A$ of $\mathbb{R}$ and any $0<p<\infty$, we define the weak $p$-th norm of $f$ on $A$ by the formula

$$
\|f\|_{L^{p, \infty}(A, \mu)}=\sup _{\lambda>0} \lambda[\mu(\{x \in A:|f(x)|>\lambda\})]^{1 / p} .
$$

There is a natural question about the best constants in the corresponding weaktype $(p, p)$ estimates for $\mathcal{M}_{\mu}, 1<p<\infty$. In fact, we will study this question in a more general setting and compare the weak $q$-th norm of $\mathcal{M}_{\mu} f$ to the $p$-th norm of $f$, where $p \geq 1$ and $q \in(0, p]$. Introduce the constant

$$
C_{p}=\frac{(p-1)\left(2^{p /(p-1)}-1\right)}{p}\left((p-1)\left(2^{p /(p-1)}-2\right)\right)^{-1 / p}
$$

when $1<p<\infty$, and put $C_{1}=2$. We will establish the following result.
Theorem 1.1. For any $\mu$-locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$, any Borel subset $A$ of $\mathbb{R}$ and any $1 \leq p<\infty, q \in(0, p]$ we have

$$
\begin{equation*}
\left\|\mathcal{M}_{\mu} f\right\|_{L^{q, \infty}(A, \mu)} \leq C_{p}\|f\|_{L^{p}(\mathbb{R}, \mu)} \mu(A)^{1 / q-1 / p} \tag{1.3}
\end{equation*}
$$

If $\mu$ is the Lebesgue measure, then the constant $C_{p}$ is the best possible.
In particular, if $p=q$, then (1.3) yields the weak-type ( $p, p$ ) estimate

$$
\begin{equation*}
\left\|\mathcal{M}_{\mu} f\right\|_{L^{p, \infty}(\mathbb{R}, \mu)} \leq C_{p}\|f\|_{L^{p}(\mathbb{R}, \mu)} \tag{1.4}
\end{equation*}
$$

which, as we will see, is also sharp provided $\mu$ is the Lebesgue measure.
The next problem we will study concerns the sharp comparison of the weak norms of $f$ and $\mathcal{M}_{\mu} f$. Here the constants $c_{p}$ of Grafakos and Montgomery-Smith come into play; we will prove the following statement.
Theorem 1.2. For any $\mu$-locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$, any Borel subset $A$ of $\mathbb{R}$ and any $1<p<\infty, q \in(0, p]$ we have

$$
\begin{equation*}
\left\|\mathcal{M}_{\mu} f\right\|_{L^{q, \infty}(A, \mu)} \leq c_{p}\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)} \mu(A)^{1 / q-1 / p} . \tag{1.5}
\end{equation*}
$$

If $\mu$ is the Lebesgue measure, then the constant $c_{p}$ is the best possible.
As previously, let us distinguish the choice $p=q \in(1, \infty)$. It gives the bound

$$
\begin{equation*}
\left\|\mathcal{M}_{\mu} f\right\|_{L^{p, \infty}(\mathbb{R}, \mu)} \leq c_{p}\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)}, \tag{1.6}
\end{equation*}
$$

which will be proved to be sharp in the case when $\mu$ is the Lebesgue measure.
Theorems 1.1 and 1.2 will be established in the next section. In Section 3 we will apply these two theorems to obtain related results in the higher-dimensional setting: more precisely, we will show tight weak-type estimates for the so-called strong maximal operator on $\mathbb{R}^{n}, n \geq 2$.

## 2. Proofs of Theorems 1.1 and 1.2

We start with recalling the main lemma from [2] (see also [3] for the special case in which $\mu$ is the Lebesgue measure). This result can be regarded as the appropriate version of the weak-type estimate for $\mathcal{M}_{\mu}$. Here and below, we use the notation $\{f>\lambda\}$ for the set $\{x \in \mathbb{R}: f(x)>\lambda\}$.

Lemma 2.1. If $f$ is a nonnegative and $\mu$-locally integrable function on $\mathbb{R}$, then for any $\lambda>0$ we have

$$
\begin{equation*}
\lambda\left(\mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right)+\mu(\{f>\lambda\})\right) \leq \int_{\left\{\mathcal{M}_{\mu} f>\lambda\right\}} f d \mu+\int_{\{f>\lambda\}} f d \mu \tag{2.1}
\end{equation*}
$$

In other words, for any $f, \lambda$ as in the statement above, we have

$$
\begin{equation*}
\int_{\mathbb{R}} u\left(f(x) / \lambda, \mathcal{M}_{\mu} f(x) / \lambda\right) \mathrm{d} \mu(x) \leq 0 \tag{2.2}
\end{equation*}
$$

where $u:[0, \infty) \times[0, \infty] \rightarrow \mathbb{R}$ is the function given by the formula

$$
u(x, y)=\left(\chi_{\{x>1\}}+\chi_{\{y>1\}}\right)(1-x)
$$

Introduce the parameters

$$
r_{p}=\frac{p}{(p-1)\left(2^{p /(p-1)}-1\right)}, \quad s_{p}=\frac{p 2^{1 /(p-1)}}{(p-1)\left(2^{p /(p-1)}-1\right)}
$$

and

$$
\alpha_{p}=\frac{2^{p /(p-1)}-1}{2^{p /(p-1)}-2}
$$

Lemma 2.2. For any $0 \leq x \leq y$ and any $1<p<\infty$, we have

$$
\begin{equation*}
\alpha_{p} u(x, y) \geq \chi_{\{y>1\}}-C_{p}^{p} x^{p} . \tag{2.3}
\end{equation*}
$$

Proof. If $y \leq 1$, then the estimate becomes $0 \geq-C_{p}^{p} x^{p}$, which is obvious. Suppose that $y>1$ and $x \leq 1$. Then (2.3) is equivalent to

$$
F(x):=\alpha_{p}(1-x)-1+C_{p}^{p} x^{p} \geq 0
$$

which holds true for all $x \geq 0$. This is the consequence of the fact that $F$ is a convex function, combined with the equalities $F\left(r_{p}\right)=F^{\prime}\left(r_{p}\right)=0$. Finally, if both $x$ and $y$ are larger than 1 , the inequality (2.3) can be rewritten in the form

$$
G(x):=2 \alpha_{p}(1-x)-1+C_{p}^{p} x^{p} \geq 0
$$

which follows from the convexity of $G$ and the equalities $G\left(s_{p}\right)=G^{\prime}\left(s_{p}\right)=0$.
Proof of (1.3). We may assume that $f$ is a nonnegative function which satisfies $\|f\|_{L^{p}(\mathbb{R}, \mu)}<\infty$. Combining (2.2) and (2.3), we obtain that for $p>1$,

$$
\begin{equation*}
\lambda^{p} \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right) \leq C_{p}^{p}\|f\|_{L^{p}(\mathbb{R}, \mu)}^{p} \tag{2.4}
\end{equation*}
$$

This bound is also true for $p=1$, as we have already mentioned above. Thus, since $\mu\left(\left\{x \in A: \mathcal{M}_{\mu} f(x)>\lambda\right\}\right) \leq \min \left\{\mu(A), \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right)\right\}$, we have

$$
\begin{align*}
\lambda^{q} \mu\left(\left\{x \in A: \mathcal{M}_{\mu} f(x)>\lambda\right\}\right) & \leq \lambda^{q} \mu\left(\left\{\mathcal{M}_{\mu} f \geq \lambda\right\}\right)^{q / p} \mu(A)^{1-q / p} \\
& \leq C_{p}^{q}\|f\|_{L^{p}(\mathbb{R}, \mu)}^{q} \mu(A)^{1-q / p}, \tag{2.5}
\end{align*}
$$

where the latter passage is due to (2.4). It remains to take supremum over $\lambda$ in (2.5) to obtain (1.3).

Sharpness for the Lebesgue measure. Let $r_{p}, s_{p}$ be as above and introduce the parameter $\beta_{p}=2\left(s_{p}-1\right) /\left(1-r_{p}\right)$. Consider the function

$$
f=s_{p} \chi_{[-1,1]}+r_{p}\left(\chi_{\left[-\beta_{p}-1,-1\right)}+\chi_{\left(1, \beta_{p}+1\right]}\right)
$$

and let $A=\left[-\beta_{p}-1, \beta_{p}+1\right]$. The identity

$$
\frac{1}{\left|\left[-\beta_{p}-1,1\right]\right|} \int_{-\beta_{p}-1}^{1} f(x) \mathrm{d} x=\frac{1}{\left|\left[-1, \beta_{p}+1\right]\right|} \int_{-1}^{\beta_{p}+1} f(x) \mathrm{d} x=\frac{2 s_{p}+\beta_{p} r_{p}}{2+\beta_{p}}=1
$$

and the definition of the maximal operator imply that $\mathcal{M}_{|\cdot|} f(x) \geq 1$ for $x \in A$. Therefore,

$$
\frac{\left|\left\{x \in A: \mathcal{M}_{|\cdot|} f(x) \geq 1\right\}\right|}{\|f\|_{L^{p}(\mathbb{R},|\cdot|)}^{q}|A|^{1-q / p}}=\left(\frac{|A|}{\|f\|_{L^{p}(\mathbb{R},|\cdot|)}^{p}}\right)^{q / p}=\left(\frac{2\left(\beta_{p}+1\right)}{2 \beta_{p} r_{p}^{p}+2 s_{p}^{p}}\right)^{q / p}
$$

and the latter expression is easily checked to be equal to $C_{p}^{q}$. This proves the sharpness of (1.3). The same example yields the optimality of $C_{p}$ in (1.4): we have

$$
\left\|\mathcal{M}_{|\cdot|} f\right\|_{L^{p, \infty}(\mathbb{R},|\cdot|)}^{p} \geq\left|\left\{\mathcal{M}_{|\cdot|} f \geq 1\right\}\right| \geq|A|=C_{p}^{p}| | f \|_{L^{p}(\mathbb{R},|\cdot|)}^{p}
$$

Proof of (1.5). It suffices to consider functions $f$ which are nonnegative and satisfy $0<\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)}<\infty$. In addition, by homogeneity, we may and do assume that $\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)}=1$. Rewrite (2.1) in the form

$$
\lambda \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right) \leq \int_{\left\{\mathcal{M}_{\mu} f>\lambda\right\}} f \mathrm{~d} \mu+\int_{\{f>\lambda\}}(f-\lambda) \mathrm{d} \mu
$$

The well-known inequality of Hardy and Littlewood (see e.g. [4]) states that if $h$ is a nonnegative function and $A$ is a Borel subset of $\mathbb{R}$, then

$$
\begin{equation*}
\int_{A} h \mathrm{~d} \mu \leq \int_{0}^{\mu(A)} h^{*}(t) \mathrm{d} t \tag{2.6}
\end{equation*}
$$

where $h^{*}(t)=\inf \{s>0: \mu(\{f>s\}) \leq t\}$ is the nonincreasing rearrangement of $h$. Since $\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)}=1$, we have $\mu(\{f>\lambda\}) \leq \lambda^{-p}$ for all $\lambda>0$ and hence $f^{*}(t) \leq t^{-1 / p}$ for all positive $t$. Putting all these facts together, we obtain

$$
\begin{aligned}
\lambda \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right) & \leq \int_{0}^{\mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right)} t^{-1 / p} \mathrm{~d} t+\int_{0}^{\lambda^{-p}}\left(t^{-1 / p}-\lambda\right) \mathrm{d} t \\
& =\frac{p}{p-1} \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right)^{(p-1) / p}+\frac{\lambda^{1-p}}{p-1}
\end{aligned}
$$

Multiplying both sides by $(p-1) \lambda^{p-1}$ yields

$$
(p-1) \lambda^{p} \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right) \leq p\left(\lambda^{p} \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right)\right)^{(p-1) / p}+1
$$

In view of (1.2), this implies

$$
\begin{equation*}
\lambda^{p} \mu\left(\left\{\mathcal{M}_{\mu} f>\lambda\right\}\right) \leq c_{p}^{p}=c_{p}^{p}\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)} \tag{2.7}
\end{equation*}
$$

Indeed, we have $c_{p} \geq 1$ and the function $x \mapsto(p-1) x^{p}-p x^{p-1}$ is increasing on $[1, \infty)$ ). Thus we have established (1.6). Furthermore, (2.7) yields

$$
\lambda^{q} \mu\left(\left\{x \in A: \mathcal{M}_{\mu} f(x)>\lambda\right\}\right) \leq c_{p}^{q}\|f\|_{L^{p, \infty}(\mathbb{R}, \mu)}^{q} \mu(A)^{1-q / p}
$$

which can be seen by repeating the argument leading from (2.4) to (2.5). The proof of (1.5) is complete.

Sharpness for the Lebesgue measure. Fix $p>1$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(t)=|2 t|^{-1 / p}$. It is easy to check that $\|f\|_{L^{p, \infty}(\mathbb{R})}=1$. Furthermore, for any $x>0$ we have

$$
\begin{equation*}
\frac{1}{\left|\left[-c_{p}^{-p} x, x\right]\right|} \int_{-c_{p}^{p} x}^{x} f(t) \mathrm{d} t=(2 x)^{-1 / p} \frac{p\left(1+c_{p}^{1-p}\right)}{(p-1)\left(1+c_{p}^{-p}\right)}=c_{p}(2 x)^{-1 / p} \tag{2.8}
\end{equation*}
$$

where the latter equality follows from (1.2). Thus, by the definition of the maximal operator, we have $\mathcal{M}_{|\cdot|} f(x) \geq c_{p}(2 x)^{-1 / p}$ for $x>0$ and, similarly, $\mathcal{M}_{|\cdot|} f(x) \geq$ $c_{p}(-2 x)^{-1 / p}$ for negative $x$. Consequently, $\left\|\mathcal{M}_{|\cdot|} f\right\|_{L^{p, \infty}(\mathbb{R},|\cdot|)} \geq c_{p}$ and the equality in (1.6) is attained. Next, putting $A=\left\{\mathcal{M}_{|\cdot|} f \geq 1\right\}$, we see that $\left[-c_{p}^{p} / 2, c_{p}^{p} / 2\right] \subseteq A$ and hence

$$
\left\|\mathcal{M}_{|\cdot|} f\right\|_{L^{q, \infty}(A,|\cdot|)}^{q} \geq|A| \geq c_{p}^{q}|A|^{1-q / p}=c_{p}^{q}|A|^{1-q / p}\|f\|_{L^{p, \infty}(\mathbb{R},|\cdot|)}^{q} .
$$

This yields the desired optimality of $c_{p}$ in (1.5).

## 3. Estimates for the strong maximal function

This section contains applications of the previous results to the study of maximal operators in higher dimensions. Let $n \geq 1$ be a fixed integer and let $\mu$ be a product measure on $\mathbb{R}^{n}: \mu=\mu_{1} \otimes \mu_{2} \otimes \ldots \otimes \mu_{n}$ for some Borel measures $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ on $\mathbb{R}$. The strong maximal operator $M_{\mu}$ is an operator which acts on $\mu$-locally integrable functions $f$ by the formula

$$
M_{\mu} f(x)=\sup _{x \in D} \frac{1}{\mu(D)} \int_{D}|f| \mathrm{d} \mu
$$

where the supremum is taken over all closed rectangles $D$, with sides parallel to the axes, satisfying $x \in D$. Observe that for $n=1$ the operators $M_{\mu}$ and $\mathcal{M}_{\mu}$ coincide.

We will prove the following fact.
Theorem 3.1. Let $\mu$ and $M_{\mu}$ be as above.
(i) If $n \geq 2$, then in general $M_{\mu}$ does not map $L^{1}\left(\mathbb{R}^{n}, \mu\right)$ into $L^{1, \infty}\left(\mathbb{R}^{n}, \mu\right)$.
(ii) If $1<p<\infty$, then for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\left\|M_{\mu} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)} \leq C_{p} c_{p}^{n-1}\|f\|_{L^{p}\left(\mathbb{R}^{n} \mu\right)} \tag{3.1}
\end{equation*}
$$

If $\mu$ is the Lebesgue measure on $\mathbb{R}^{n}$, then the constant has the optimal order $O\left((p-1)^{1-n}\right)$ as $p \rightarrow 1$.
(iii) If $1<p<\infty$, then for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\left\|M_{\mu} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)} \leq c_{p}^{n}\|f\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)} \tag{3.2}
\end{equation*}
$$

If $\mu$ is the Lebesgue measure on $\mathbb{R}^{n}$, then the constant is the best possible.
Remark 3.2. By the argument from the previous section, (3.1) and (3.2) imply the estimates

$$
\left\|M_{\mu} f\right\|_{L^{q, \infty}(A, \mu)} \leq C_{p} c_{p}^{n-1}\|f\|_{L^{p}\left(\mathbb{R}^{n} \mu\right)} \mu(A)^{1 / q-1 / p}
$$

and

$$
\begin{equation*}
\left\|M_{\mu} f\right\|_{L^{q, \infty}(A, \mu)} \leq c_{p}^{n}\|f\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)} \mu(A)^{1 / q-1 / p} \tag{3.3}
\end{equation*}
$$

for all $\mu$-locally integrable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, all Borel subsets $A$ of $\mathbb{R}^{n}$ and all $1<p<\infty, 0<q \leq p$. We will prove below that (3.3) is sharp provided $\mu$ is the Lebesgue measure.

Proof of Theorem 3.1. (i) This will be shown in the proof of (ii) below.
(ii) The key observation is that

$$
\begin{equation*}
M_{\mu} \leq \mathcal{M}_{\mu_{1}}^{(1)} \circ \mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} \tag{3.4}
\end{equation*}
$$

where $\mathcal{M}_{\mu_{k}}^{(k)}$ denotes the maximal operator $\mathcal{M}_{\mu_{k}}$ applied to the $k$-th coordinate. Let $f$ be a nonnegative function on $\mathbb{R}^{n}$ satisfying $\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mu\right)}<\infty$. Using (1.4) with respect to $\mathcal{M}_{\mu_{1}}$ and then (1.1) with respect to $\mathcal{M}_{\mu_{2}}, \mathcal{M}_{\mu_{3}}, \ldots, \mathcal{M}_{\mu_{n}}$, we obtain

$$
\begin{aligned}
& \lambda^{p} \mu\left(\left\{\mathcal{M}_{\mu_{1}}^{(1)} \circ \mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f>\lambda\right\}\right) \\
& =\int_{\mathbb{R}^{n-1}} \lambda^{p} \mu_{1}\left(\left\{x_{1}: \mathcal{M}_{\mu_{1}}^{(1)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)>\lambda\right\}\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \ldots \mathrm{d} \mu_{n}\left(x_{n}\right) \\
& \leq C_{p}^{p} \int_{\mathbb{R}^{n-1}}\left[\int_{\mathbb{R}}\left[\mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]^{p} \mathrm{~d} \mu_{1}\left(x_{1}\right)\right] \mathrm{d} \mu_{2}\left(x_{2}\right) \ldots \mathrm{d} \mu_{n}\left(x_{n}\right) \\
& =C_{p}^{p} \int_{\mathbb{R}^{n}}\left[\mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]^{p} \mathrm{~d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \ldots \mathrm{d} \mu_{n}\left(x_{n}\right) \\
& =C_{p}^{p} \int_{\mathbb{R}^{n-1}}\left[\int_{\mathbb{R}}\left[\mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f(x)\right]^{p} \mathrm{~d} \mu_{2}\left(x_{2}\right)\right] \mathrm{d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{3}\left(x_{3}\right) \ldots \mathrm{d} \mu_{n}\left(x_{n}\right) \\
& \leq C_{p}^{p} c_{p}^{p} \int_{\mathbb{R}^{n}}\left[\mathcal{M}_{\mu_{3}}^{(3)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]^{p} \mathrm{~d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \ldots \mathrm{d} \mu_{n}\left(x_{n}\right) \\
& \leq \ldots \\
& \leq C_{p}^{p} c_{p}^{(n-1) p}\|f\|_{L^{p}\left(\mathbb{R}^{n}, \mu\right) .}^{p} .
\end{aligned}
$$

This yields (3.1). It is not difficult to check that $1 \leq C_{p} \leq 2$ and $\frac{p}{p-1} \leq c_{p} \leq \frac{2 p}{p-1}$ for $1<p<\infty$, so the constant $C_{p} c_{p}^{n-1}$ is of order $O\left((p-1)^{1-n}\right)$ when $p \rightarrow 1$. To see that this order is optimal when $\mu$ is the Lebesgue measure, take $p \in(1,2)$, $n \geq 2$ and put $f=\chi_{[-1,1]^{n}}$. Then, for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we have

$$
M_{\mu} f(x) \geq \prod_{k=1}^{n} \min \left(\frac{2}{\left|x_{k}\right|+1}, 1\right)
$$

which can be verified by considering the smallest rectangle which contains $x$ and the cube $[-1,1]^{n}$. Thus, for any $\lambda \in(0,1)$ we may write

$$
\begin{align*}
\left|\left\{M_{\mu} f>\lambda\right\}\right| & \geq 2^{n}\left|\left\{x \in[1, \infty)^{n}: \prod_{k=1}^{n} \frac{2}{x_{k}+1}>\lambda\right\}\right|  \tag{3.5}\\
& =2^{n} \int_{1}^{a_{1}} \int_{1}^{a_{2}} \ldots \int_{1}^{a_{n}} \mathrm{~d} x_{n} \mathrm{~d} x_{n-1} \ldots \mathrm{~d} x_{1}
\end{align*}
$$

where $a_{1}=2 / \lambda-1$ and

$$
a_{k}=\frac{2^{k}}{\lambda\left(x_{1}+1\right) \ldots\left(x_{k-1}+1\right)}-1, \quad k=2,3, \ldots, n
$$

Denote the right-hand side of (3.5) by $\gamma_{n}$. Deriving the inner integral with respect to $x_{n}$ gives the identity

$$
\gamma_{n}=2^{n} \int_{1}^{a_{1}} \int_{1}^{a_{2}} \ldots \int_{1}^{a_{n-1}} \frac{2^{n}}{\lambda\left(x_{1}+1\right) \ldots\left(x_{n-1}+1\right)} \mathrm{d} x_{n-1} \ldots \mathrm{~d} x_{1}-4 \gamma_{n-1}
$$

valid for $n \geq 2$. By induction, we easily verify that

$$
\int_{1}^{a_{k}} \ldots \int_{1}^{a_{n-1}} \frac{1}{\left(x_{k}+1\right) \ldots\left(x_{n-1}+1\right)} \mathrm{d} x_{n-1} \ldots \mathrm{~d} x_{k}=\frac{1}{(n-k)!}\left(\log \frac{a_{k}+1}{2}\right)^{n-k}
$$

and hence

$$
\begin{equation*}
\frac{\gamma_{n}}{4^{n}}=\frac{\left(\log \lambda^{-1}\right)^{n-1}}{\lambda(n-1)!}-\frac{\gamma_{n-1}}{4^{n-1}} . \tag{3.6}
\end{equation*}
$$

This, in turn, implies that for $n \geq 3$,
(3.7) $\frac{\gamma_{n}}{4^{n}}=\frac{\left(\log \lambda^{-1}\right)^{n-1}}{\lambda(n-1)!}-\frac{\left(\log \lambda^{-1}\right)^{n-2}}{\lambda(n-2)!}+\frac{\gamma_{n-2}}{4^{n-2}}>\frac{\left(\log \lambda^{-1}\right)^{n-1}}{\lambda(n-1)!}-\frac{\left(\log \lambda^{-1}\right)^{n-2}}{\lambda(n-2)!}$.

This is also true for $n=2$ : we have $\gamma_{1}=4\left(\lambda^{-1}-1\right)$ and hence, by (3.6),

$$
\frac{\gamma_{2}}{4}=\frac{\log \lambda^{-1}}{\lambda}-\frac{1}{\lambda}+1 .
$$

Consequently, we have $\lim _{\lambda \rightarrow 0} \lambda\left|\left\{M_{\mu} f>\lambda\right\}\right|=\infty$ and (i) is proved. Next, if we plug $\lambda=\exp (-(n-1) /(p-1))$ into (3.7), we obtain that

$$
\begin{aligned}
\frac{\left\|M_{\mu} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n},|\cdot|\right)}^{p}}{\|f\|_{L^{p}\left(\mathbb{R}^{n},|\cdot|\right)}^{p}} & \geq \frac{\lambda^{p}\left|\left\{M_{\mu} f>\lambda\right\}\right|}{2^{n}} \\
& >2^{n} e^{1-n} \frac{(n-1)^{n-1}}{(n-1)!} \frac{2-p}{(p-1)^{n-1}} \\
& \geq \frac{\kappa_{n}}{(p-1)^{(n-1) p}},
\end{aligned}
$$

for some constant $\kappa_{n}$ depending only on $n$. This gives the optimality of the order.
(iii) Introduce the operators $T_{k}=\mathcal{M}_{\mu_{k}}^{(k)} \circ \mathcal{M}_{\mu_{k+1}}^{(k+1)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)}, k=1,2, \ldots, n$, and let $T_{n+1}=\mathrm{Id}$. We will prove that

$$
\begin{equation*}
\left\|T_{k} f\right\|_{L^{p, \infty}(\mathbb{R}, \mu)} \leq c_{p}\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n} \mu\right)} \tag{3.8}
\end{equation*}
$$

for any $f$ and any $k \in\{1,2, \ldots, n\}$; this will immediately yield (3.2). To do this, fix $\lambda>0$ and let $A_{\lambda}=\left\{T_{k} f>\lambda\right\}, B_{\lambda}=\left\{T_{k+1} f>\lambda\right\}$. Let $\mu^{(k)}$ denote the product measure $\mu_{1} \otimes \mu_{2} \otimes \ldots \otimes \mu_{k-1} \otimes \mu_{k+1} \otimes \ldots \otimes \mu_{n}$ on $\mathbb{R}^{n-1}$. By (2.1), applied to $\mathcal{M}_{\mu_{k}}^{(k)}$, the measure $\mu_{k}$ and the function $t \mapsto T_{k+1} f\left(x_{1}, \ldots, x_{k-1}, t, x_{k+1}, \ldots, x_{n}\right), t \in \mathbb{R}$,
$\lambda \mu_{k}\left(\left\{x_{k} \in \mathbb{R}: T_{k} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)>\lambda\right\}\right)$
$\leq \int_{\left\{x_{k} \in \mathbb{R}: T_{k} f(x)>\lambda\right\}} T_{k+1} f(x) \mathrm{d} \mu_{k}\left(x_{k}\right)+\int_{\left\{x_{k} \in \mathbb{R}: T_{k+1} f(x)>\lambda\right\}}\left(T_{k+1} f(x)-\lambda\right) \mathrm{d} \mu_{k}\left(x_{k}\right)$.
Integrating this over $\mathbb{R}^{n-1}$ with respect to $\mathrm{d} \mu^{(k)}\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right)$ and multiplying both sides by $\lambda^{p-1}$, we obtain

$$
\lambda^{p} \mu\left(A_{\lambda}\right) \leq \lambda^{p-1}\left[\int_{A_{\lambda}} T_{k+1} f(x) \mathrm{d} \mu(x)+\int_{B_{\lambda}}\left(T_{k+1} f(x)-\lambda\right) \mathrm{d} \mu(x)\right] .
$$

Let $\left(T_{k+1} f\right)^{*}$ be the nonincreasing rearrangement of $T_{k+1} f$ (the definition is analogous to that of the one-dimensional setting). We have

$$
\begin{equation*}
\mu\left(B_{\lambda}\right)=\mu\left(\left\{T_{k+1} f>\lambda\right\}\right) \leq \lambda^{-p}\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)}^{p} \tag{3.9}
\end{equation*}
$$

so $\left(T_{k+1} f\right)^{*}(t) \leq t^{-1 / p}\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)}$ for any $t>0$. Therefore, using the version of the inequality (2.6) in $\mathbb{R}^{n}$, we obtain

$$
\begin{aligned}
\lambda^{p} \mu\left(A_{\lambda}\right) \leq \lambda^{p-1}\left[\int_{0}^{\mu\left(A_{\lambda}\right)} t^{-1 / p} \|\right. & T_{k+1} f \|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)} \mathrm{d} t \\
& \left.+\int_{0}^{\mu\left(B_{\lambda}\right)}\left(t^{-1 / p}\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)}-\lambda\right) \mathrm{d} t\right]
\end{aligned}
$$

If we apply (3.9) and compute the integrals above, we obtain an inequality which can be rewritten in the equivalent form

$$
(p-1) \frac{\lambda^{p} \mu\left(A_{\lambda}\right)}{\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)}^{p}} \leq p\left(\frac{\lambda^{p} \mu\left(A_{\lambda}\right)}{\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)}^{p}}\right)^{1-1 / p}+1
$$

By virtue of (1.2), this yields $\lambda^{p} \mu\left(A_{\lambda}\right) \leq c_{p}\left\|T_{k+1} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)}$ and (3.8) follows. We turn to the sharpness. Let $\mu=|\cdot|$ be the Lebesgue measure on $\mathbb{R}^{n}$, fix $p^{\prime}>p$ and consider the function

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n}\left|2 x_{k}\right|^{-1 / p^{\prime}} \chi_{[-1,1]^{n}}(x)
$$

It belongs to $L^{p}\left(\mathbb{R}^{n},|\cdot|\right)$, so in particular $\|f\|_{L^{p, \infty}\left(\mathbb{R}^{n},|\cdot|\right)}<\infty$. By (2.8), applied to each coordinate (here we use the product structure of $f$ ), we have $M_{|\cdot|} f \geq c_{p^{\prime}}^{n} f$ on $\mathbb{R}^{n}$. Therefore, $\left\|M_{|\cdot|} f\right\|_{L^{p, \infty}\left(\mathbb{R}^{n},|\cdot|\right)} \geq c_{p^{\prime}}^{n}\|f\|_{L^{p, \infty}\left(\mathbb{R}^{n},|\cdot|\right)}$ and it remains to let $p^{\prime} \rightarrow p$ to see that $c_{p}^{n}$ is optimal in (3.2). Finally, to prove the sharpness of (3.3), let $f$ be as above. Fix $\kappa>1$ and choose $\lambda>0$ such that $\lambda^{p}|\{f>\lambda\}| \cdot \kappa>\|\left. f\right|_{L^{p, \infty}\left(\mathbb{R}^{n}, \mu\right)} ^{p}$. If we put $A=\{f>\lambda\}$, then $M_{|\cdot|} f>c_{p^{\prime}}^{n} \lambda$ on $A$, so

$$
\frac{\left\|M_{|\cdot|} f\right\|_{L^{q, \infty}(A,|\cdot|)}}{\|f\|_{L^{p, \infty}\left(\mathbb{R}^{n},|\cdot|\right)}} \geq \frac{c_{p^{\prime}}^{n} \lambda|A|^{1 / q}}{\kappa^{1 / p} \lambda|A|^{1 / p}}=\frac{c_{p^{\prime}}^{n}}{\kappa}|A|^{1 / q-1 / p}
$$

Since $\kappa>1$ and $p^{\prime}>p$ were arbitrary, the constant $c_{p}^{n}$ is the best in (3.3).

## References

[1] A. Bernal, A note on the one-dimensional maximal function, Proc. Roy. Soc. Edinburgh 111A (1989), 325-328.
[2] L. Grafakos and J. Kinnunen, Sharp inequalities for maximal functions associated with general measures, Proc. Roy. Soc. Edinburgh 128A (1998), 717-723.
[3] L. Grafakos and S. Montgomery-Smith, Best constants for uncentered maximal functions, Bull. London Math. Soc. 29 (1997), 60-64.
[4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge University Press, Cambridge, UK, 1952.
[5] P. Sjögren, A remark on the maximal function for measures in $\mathbb{R}^{n}$, Amer. J. Math. 105 (1983), 1231-1233.
[6] E. M. Stein, Harmonic Analysis: Real Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha
2, 02-097 Warsaw, Poland
E-mail address: ados@mimuw.edu.pl
$U R L$ : www.mimuw.edu.pl/~ados


[^0]:    2000 Mathematics Subject Classification. Primary: 42B25. Secondary: 42B35, 46E30.
    Key words and phrases. Maximal operator, weak-type inequality, best constants.

