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Abstract. Let (hn)n≥0 be the Haar system of functions on [0, 1]. The paper

contains the proof of the estimate∫ 1
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for n = 0, 1, 2, . . . . Here (an)n≥0 is an arbitrary sequence with values in
a given Hilbert space H and (εn)n≥0 is a sequence of signs. The constant

e2 appearing on the right is shown to be the best possible. This result is

generalized to the sharp inequality

E|gn|2 log |gn| ≤ E|fn|2 log(e2|fn|), n = 0, 1, 2, . . . ,

where (fn)n≥0 is an arbitrary martingale with values in H and (gn)n≥0 is its
transform by a predictable sequence with values in {−1, 1}. As an application,

we obtain the two-sided bound for the martingale square function S(f):

E|fn|2 log(e−2|fn|) ≤ ES2
n(f) logSn(f) ≤ E|fn|2 log(e2|fn|), n = 0, 1, 2, . . . .

1. Introduction

Let h = (hn)n≥0 be the Haar system, i.e., the collection of functions given by

h0 = [0, 1), h1 = [0, 1/2)− [1/2, 1),

h2 = [0, 1/4)− [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8)− [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1)

and so on. Here we have identified a set with its indicator function. A classical
result of Schauder [12] states that the Haar system forms a basis of Lp = Lp(0, 1),
1 ≤ p < ∞ (throughout, the underlying measure will be the Lebesgue measure).
Using an inequality of Paley [11], Marcinkiewicz [7] proved that the Haar system
is an unconditional basis provided 1 < p < ∞. That is, there is a universal finite
constant cp such that
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for any n and any ak ∈ R, εk ∈ {−1, 1}, k = 0, 1, 2, . . ., n. This result is a starting
point for numerous extensions and applications: in particular, it has led to the
development of the theory of singular integrals, stochastic integrals, stimulated the
studies on the geometry of Banach spaces and has been extended to other areas of
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mathematics. In particular, the inequality (1.1) has a natural counterpart in the
martingale theory. Suppose that (Ω,F ,P) is a probability space, equipeed with
a nondecreasing sequence (Fn)n≥0 of sub-σ-algebras of F . Let f = (fn)n≥0 be
an adapted real-valued martingale and let df = (dfn)n≥0 stand for its difference
sequence, given by df0 = f0 and dfn = fn − fn−1 for n ≥ 1. So, the differences dfn
are Fn-measurable and integrable, and the martingale property amounts to saying
that for each n ≥ 1, E(dfn|Fn−1) = 0. Given a deterministic sequence ε = (εn)n≥0

of signs, we define g = (gn)n≥0, the associated transform of f , by

gn =

n∑
k=0

εkdfk, n = 0, 1, 2, . . . .

Clearly, this is equivalent to saying that the difference sequence of g is given by
dgn = εndfn. Note that the sequence g = (gn)n≥0 is again an adapted martin-
gale. Actually, this is still true if we allow the following more general class of the
transforming sequences. Namely, suppose that ε = (εn)n≥0 is a sequence of ran-
dom signs. We say that ε is predictable, if for each n, the random variable εn is
measurable with respect to F(n−1)∨0.

A celebrated result of Burkholder [1] states that for any 1 < p < ∞ there is a
finite constant c′p such that for f , g as above, we have

(1.2) ||gn||p ≤ c′p||fn||p, n = 0, 1, 2, . . . .

Let cp(1.1), c′p(1.2) denote the optimal constants in (1.1) and (1.2), respectively.
The Haar system is a martingale difference sequence with respect to its natural
filtration (on the probability space being the Lebesgue’s unit interval) and hence
so is (akhk)k≥0, for given fixed real numbers a0, a1, a2, . . .. Therefore, cp(1.1) ≤
c′p(1.2) for all 1 < p <∞. It follows from the results of Burkholder [2] and Maurey
[8] that in fact the constants coincide: cp(1.1) = c′p(1.2) for all 1 < p < ∞. The
question about the precise value of cp(1.1) was answered by Burkholder in [3]:
cp(1.1) = p∗ − 1 (where p∗ = max{p, p/(p − 1)}) for 1 < p < ∞. Furthermore,
the constant does not change if we allow the martingales and the terms ak to take
values in a separable Hilbert space H.

One can study various sharp extensions and modifications of the estimates (1.1)
and (1.2). These include the weak-type (p, p) inequalities (cf. [3, 13]), exponential
bounds ([6]), logarithmic estimates ([9]) and many others: see the monograph [10]
for the detailed exposition on the subject. The purpose of this paper is to continue
this line of research. Our main result is the following sharp L2 logL bound for the
Haar system and martingale transforms.

Theorem 1.1. Let f be a martingale taking values in a Hilbert space H and let g
be its transform by a predictable sequence of signs. Then we have the estimate

(1.3) E|gn|2 log |gn| ≤ E|fn|2 log(e2|fn|), n = 0, 1, 2, . . . .

This inequality is already sharp for the Haar system: for any κ < e2 there exists a
positive integer n, real numbers a0, a1, . . ., an and signs ε0, ε1, . . ., εn such that∫ 1
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Actually, it will be clear from the proof that the estimate (1.3) holds true for

any martingales f , g satisfying the condition |dfn| = |dgn| almost surely for all
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n = 0, 1, 2, . . .. Of course, this condition is satisfied if g is a transform of f by
a predictable sequence of signs; however, generally, this new requirement is much
less restrictive and, in particular, it will allow us to obtain an interesting two-sided
bound for the martingale square function S(f) = (Sn(f))n≥0, defined by

Sn(f) =

(
n∑
k=0

|dfk|2
)1/2

, n = 0, 1, 2, . . . .

The result can be stated as follows.

Theorem 1.2. Let f be a martingale taking values in a Hilbert space H. Then for
any n = 0, 1, 2, . . . we have

(1.4) E|fn|2 log(e−2|fn|) ≤ ES2
n(f) logSn(f) ≤ E|fn|2 log(e2|fn|).

The left inequality is sharp: the constant e−2 cannot be replaced by a larger number.

Unfortunately, we have been unable to identify the optimal constant in the right
inequality (1.4), but some calculations show that it should not be far from e2. We
will not pursue farther in this direction.

A few words about the proof and the organization of the paper are in order. Our
reasoning will rest on Burkholder’s method (cf. [3], [4], [6]): the estimate (1.3) will
be deduced from the existence of a certain special function, enjoying appropriate
majorization and concavity requirements. The proof of the estimates (1.3) and
(1.4) can be found in the next section. Section 3 is devoted to the optimality of the
constants in these inequalities.

2. Proofs of (1.3) and (1.4)

As we have announced in the preceding section, the proofs of the inequalities
(1.3) and (1.4) will exploit the properties of a certain special function. Let D =
H×H \ {(x, y) : |x||y| = 0} and consider U : D → R, given by

U(x, y) = |y|2 − |x||y| − 2|x|2 + (|y|2 − |x|2) log
|x|+ |y|

2
.

Though the definition makes perfect sense also in the case |x||y| = 0, we have
decided to exclude these pairs (x, y) from the domain of U ; this will guarantee
that the function U is smooth, which in turn will allow us to avoid unpleasant
technicalities. We will also need the auxiliary functions ϕ, ψ : D → H, defined by

ϕ(x, y) = −5x− 2x log
|x|+ |y|

2
, ψ(x, y) = y − 2|x|y′ + 2y log

|x|+ |y|
2

,

where y′ = y/|y|. Then we have ϕ(x, y) = Ux(x, y) and ψ(x, y) = Uy(x, y) on D.
Indeed, if x 6= 0, then for any h ∈ H we have

lim
t→0

|x+ th| − |x|
t

= x′ · h,

where · denotes the scalar product in H. Consequently,

lim
t→0

U(x+ th, y)− U(x, y)

t
=

(
−5|x| − 2|x| log

|x|+ |y|
2

)
x′ · h = ϕ(x, y) · h,

that is, ϕ(x, y) = Ux(x, y). The identity ψ(x, y) = Uy(x, y) is verified similarly.
The crucial properties of the above objects are studied in a lemma below.
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Lemma 2.1. (i) For any x ∈ H \ {0} we have

(2.1) U(x,±x) ≤ 0.

(ii) For any (x, y) ∈ D we have the majorization

(2.2) U(x, y) ≥ |y|2 log |y| − |x|2 log(e2|x|).

(iii) For any x, y, h, k ∈ H such that |k| = |h|, (x, y) ∈ D and (x+h, y+k) ∈ D,
we have

(2.3) U(x+ h, y + k) ≤ U(x, y) + ϕ(x, y) · h+ ψ(x, y) · k.

Proof. (i) This is evident: U(x,±x) = −2|x|2 ≤ 0.
(ii) Of course, it is enough to show the majorization for H = R and for positive

x, y only (simply introduce the new variables x := |x| and y := |y|). Fix x > 0 and
define F : (0,∞)→ R by the formula

F (y) = y2 − xy − 2x2 + (y2 − x2) log
x+ y

2
− y2 log y + x2 log(e2x).

A straightforward differentiation yields

F ′(y) = 2y − x+ 2y log
x+ y

2y
− x and F ′′(y) = 2 log

x+ y

2y
+

2y

x+ y
.

Since a−2 log a > 0 for any a > 0, we see that F is a convex function. Furthermore,
we have F ′(x) = F (x) = 0; this shows that F is nonnegative, which is precisely the
desired bound (2.2).

(iii) By continuity, it is enough to prove the assertion under the addition as-
sumption that for each t, both vectors x+ th and y + tk are nonzero. To see this,
simply pick a vector v 6= 0 orthogonal to the subspace generated by x, y, h and k.
Then the vectors h̄ = h+ v, k̄ = k + v satisfy |h̄| = |k̄| and |x+ th̄||y + tk̄| 6= 0 for
all t; having proved (2.3) for x, y, h̄ and k̄, we let v → 0 to obtain the claim in the
general case.

Now we apply a well-known procedure of proving the inequality (2.3) (see e.g.
[6]). Namely, for a fixed x, y, k, h as above, introduce the function

G(t) = Gx,y,h,k(t) = U(x+ th, y + tk), t ∈ R.

Then (2.3) is equivalent to G(1) ≤ G(0) + G′(0), and hence we will be done if
we show that G is concave. The assumption |x + th||y + tk| 6= 0 guarantees that
the function G is twice differentiable and hence we must prove that G′′(t) ≤ 0 for
all t ∈ R. Actually, it is enough to consider the case t = 0 only, because of the
translation property Gx,y,h,k(s+ t) = Gx+sh,y+sk,h,k(t). A little tedious calculation
gives

G′′(0) =
2|x|
|y|
[
− |k|2 + (y′ · k)2

]
+ 2
[
− |h|2 − (x′h)(y′k)

]
≤ 0,

since both expressions in the square brackets are nonpositive. This completes the
proof of the lemma. �

Proof of (1.3). Pick two adapted martingales f , g satisfying the condition |dfk| =
|dgk| for any k ≥ 0 and fix a nonnegative integer n. By adding a small vector v,
orthogonal to the ranges of f and g (as in the proof of Lemma 2.1 (iii) above),
we may assume that |fk||gk| 6= 0 with probability 1 for all k ≥ 0. For the sake of
clarity, it is convenient to split the reasoning into two parts.
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Step 1. Integrability conditions. If E|fn|2 log(e2|fn|) =∞, then there is nothing
to prove. Suppose then that E|fn|2 log(e2|fn|) <∞; then also E|fn|2 log+(e2|fn|) <
∞, and since the function Φ(t) = |t|2 log+ |t| is convex on R, we conclude that
E|fk|2 log+(e2|fk|) <∞ for all k ≤ n. This in turn implies that for each k ≤ n we
have E|dgk|2 log+ |dgk| = E|dfk|2 log+ |dfk| <∞, due to the simple pointwise bound

|fk − fk−1|2 log+ |fk − fk−1| ≤ 4|fk|2 log+(2|fk|) + 4|fk−1|2 log+(2|fk−1|).

This, finally, gives that E|gk|2 log |gk| <∞ for all k ≤ n: apply the estimate

E

∣∣∣∣∣
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2

log
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|dg`|

)

≤ k2
k∑
`=0

E|dg`|2 log+(k|dg`|).

Step 2. Proof of the L2 logL inequality. The key observation is that the sequence
(U(fk, gk))nk=0 is a supermartingale. Indeed, its integrability follows easily from the
facts proved in the preceding step, and the supermartingale property follows from
the part (iii) of Lemma 2.1. To see this, fix 0 ≤ k < n and note that

U(fk+1, gk+1) = U(fk + dfk+1, gk + dgk+1)

≤ U(fk, gk) + ϕ(fk, gk) · dfk+1 + ψ(fk, gk) · dgk+1.

Applying to both sides the conditional expectation with respect to Fk yields the
desired bound E[U(fk+1, gk+1)|Fk] ≤ U(fk, gk). Thus, by (2.1) and (2.2), we get

0 ≥ EU(f0, g0) ≥ EU(fn, gn) ≥ E|gn|2 log |gn| − E|fn|2 log(e2|fn|),

which is (1.3). �

Proof of (1.4). Consider the Hilbert space H = `2(H). We can treat an H-valued
martingale f as an H-valued sequence, embedding it onto the first coordinate:
fn ∼ (fn, 0, 0, . . .) ∈ H. To handle the square function, consider the martingale
gn = (df0, df1, df2, . . . , dfn, 0, 0, . . .), n = 0, 1, 2, . . .. Then |dfn|H = |dgn|H with
probability 1 and hence, by the estimate (1.3) just established above,

E|fn|2 log(e−2|fn|) ≤ E|gn|2H log |gn|H ≤ E|fn|2 log(e2|fn|), n = 0, 1, 2, . . . .

It remains to observe that |gn|H = Sn(f) for all n. This proves the inequality. �

3. Sharpness

We turn our attention to the optimality of the constant e2 in the L2 logL in-
equality for the Haar system and the martingale square function. One could study
this problem by constructing appropriate examples, but we have chosen a different
path, which is of its own interest and connections with boundary value problems.

We start with the inequality for the Haar system. Suppose that for some constant
κ > 0 we have

(3.1)
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for n = 0, 1, 2, . . .. Consider the functions Vκ, Wκ on R2, given by Vκ(x, y) =
|y|2 log |y| − |x|2 log(κ|x|) and

(3.2) Wκ(x, y) = sup

{∫ 1

0

V

(
x+

n∑
k=1

akhk(s), y +

n∑
k=1

εkakhk(s)

)
ds

}
,

where the supremum is taken over all positive integers n and all sequences a1, a2,
. . ., an ∈ R, ε1, ε2, . . ., εn ∈ {−1, 1}.

Lemma 3.1. The function Wκ has the following properties.
1◦ We have Wκ ≥ Vκ on R2.
2◦ The function Wκ is concave along the lines of slope ±1.
3◦ We have Wκ(x, y) <∞ for all x, y.
4◦ For any x, y ∈ R and any λ > 0 we have the homogeneity-type property

(3.3) Wκ(λx, λy) = λ2Wκ(x, y) + λ2 log λ(|y|2 − |x|2).

Proof. The property 1◦ is evident: it suffices to consider the sequence a1 = a2 =
. . . = an = 0 in the definition of Wκ. To show 2◦, we use the so-called “splicing”
argument (see e.g. page 77 in Burkholder [5]). To be more precise, fix a line L
of slope 1, a point (x, y) lying on it and a positive number d. Pick two positive
integers n, m, and some arbitrary sequences a+

1 , a+
2 , . . ., a+

n , a−1 , a−2 , . . ., a−m ∈ R
and ε+

1 , ε+
2 , . . ., ε+

n , ε−1 , ε−2 , . . ., ε−m ∈ {−1, 1}. Let us splice the pairs of functions

ϕ+ = x+ d+

n∑
k=1

a+
k hk, ϕ− = x− d+

n∑
k=1

a−k hk

and

ψ+ = y + d+

n∑
k=1

ε+
k a

+
k hk, ψ− = y − d+

n∑
k=1

ε−k a
−
k hk

into one pair of functions, setting

(3.4) (ϕ(r), ψ(r)) =

{
(ϕ−(2r), ψ−(2r)) if r < 1/2,

(ϕ+(2r), ψ+(2r)) if r ≥ 1/2.

It is evident from the structure of the Haar system that the splice (ϕ,ψ) is given by

the finite sums of the form (x− dh1 +
∑N
k=2 akhk, y − dh1 +

∑N
k=2 εkakhk), where

each number ak coincides with an appropriate coefficient of ϕ− or ϕ+, depending
on whether the support of hk is contained in the left or the right half of the interval
[0, 1] and, similarly, εk is an appropriate sign coming from ϕ− or ϕ+. Consequently,
we may write

Wκ(x, y) ≥
∫ 1

0

V (ϕ(s), ψ(s)) ds

=
1

2

[∫ 1

0

V (ϕ−(s), ψ−(s))ds+

∫ 1

0

V (ϕ+(s), ψ+(s))ds

]
,

and taking the supremum over all ϕ−, ϕ+ yields

Wκ(x, y) ≥ (Wκ(x− d, y − d) +Wκ(x+ d, y + d))/2.

Since x, y, and d were arbitrary, Wκ is midpoint concave along L; however, since
Wκ is locally bounded from below (see 2◦), it is merely concave along L. Analogous
arguments lead to concavity of Wκ along the lines of slope −1.
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To show 3◦, we first apply (3.1) to obtain that U(x,±x) ≤ 0 for all x ∈ R. Now
the finiteness of U follows from the concavity along the lines of slope ±1 we have
just established.

Finally, let us handle 4◦. Pick an arbitrary positive number n and some sequences
a1, a2, . . ., an ∈ R, ε1, ε2, . . ., εn ∈ {−1, 1}. We have

Wκ(λx, λy) ≥
∫ 1

0

V

(
λx+

n∑
k=1

λakhk(s), λy +

n∑
k=1

εkλakhk(s)

)
ds

= λ2

∫ 1

0

V

(
λx+

n∑
k=1

akhk(s), y +

n∑
k=1

εkakhk(s)

)
ds

+ λ2 log λ

∫ 1

0

∣∣∣∣∣y +

n∑
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εkakhk(s)

∣∣∣∣∣
2

−

∣∣∣∣∣x+

n∑
k=1

akhk(s)

∣∣∣∣∣
2
 ds.

However, the latter integral is equal to |y|2 − |x|2, by orthogonality of the Haar
system. Taking the supremum over all n and sequences a1, a2, . . ., an, ε1, ε2, . . .,
εn yields the estimate

Wκ(λx, λy) ≥ λ2Wκ(x, y) + λ2 log λ(|y|2 − |x|2).

To prove the reverse bound, rewrite it in the equivalent form

Wκ

(
1

λ
λx,

1

λ
λy

)
≥ 1

λ2
Wκ(λx, λ) +

1

λ2
log

1

λ
(|λy|2 − |λx|2),

which follows at once from the estimate we have just established. �

Equipped with the above function Wκ, the optimality of the constant e2 follows
easily. Namely, we know that the number Wκ(0, 1) is finite. Furthermore, applying
the property 2◦ twice gives

Wκ(0, 1) ≥ 1

1 + 2δ
Wκ(δ, 1 + δ) +

2δ

1 + 2δ
Wκ(−1/2,−1/2)

≥ 1

(1 + 2δ)2
Wκ(0, 1 + 2δ) +

2δ

(1 + 2δ)2
Wκ(1/2 + δ, 1/2 + δ)

+
2δ

1 + 2δ
Wκ(−1/2,−1/2).

However, by 4◦, we have

Wκ(0, 1 + 2δ) = (1 + 2δ)2Wκ(0, 1) + (1 + 2δ)2 log(1 + 2δ)

and, by the majorization 1◦,

W (−1/2,−1/2) ≥ − log κ/4, Wκ(1/2 + δ, 1/2 + δ) ≥ − (1/2 + δ)
2

log κ.

Combining these facts with the preceding estimate yields an inequality which is
equivalent to

2 + δ

2 + 2δ
log κ ≥ log(1 + 2δ)

δ
.

Letting δ → 0 we obtain κ ≥ e2. This shows that the constant e2 is indeed the best
possible.
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The L2 logL estimate for the square function can be handled similarly. Suppose
that κ > 0 is a constant such that

E|fn|2 log |fn| ≤ ES2
n(f) log(κSn(f)), n = 0, 1, 2, . . . .

Introduce the function Wκ on [0,∞)× R by the formula

Wκ(x, y) = EVκ
(√

x2 − y2 + S2
n(f), fn

)
,

where the supremum is taken over all n and all simple martingales satisfying
f0 ≡ y (a martingale is called simple if for any n the variable fn takes only a
finite number of values). Here, as previously, Vκ(x, y) = |y|2 log |y| − |x|2 log(κ|x|).
The somewhat odd expression

√
x2 − y2 + S2

n(f) guarantees that the sequence

(
√
x2 − y2 + S2

n(f))n≥0 starts from x. An analogous reasoning to that presented
above (see also Chapter 11 of [6]) yields the following statement. We omit the
proof, leaving it to the interested reader.

Lemma 3.2. The function Wκ has the following properties.
1◦ We have Wκ ≥ Vκ on [0,∞)× R.
2◦ For any (x, y) ∈ [0,∞) × R, any α ∈ (0, 1) and any t1, t2 ∈ R satisfying

αt1 + (1− α)t2 = 0, we have

Wκ(x, y) ≥ αWκ

(√
x2 + t21, y + t1

)
+ (1− α)Wκ

(√
x2 + t22, y + t2

)
.

3◦ We have Wκ(x, y) <∞ for all x > 0 and y ∈ R.
4◦ For any x, y ∈ R and any λ > 0 we have the homogeneity-type property (3.3).

Equipped with this lemma, we are ready to show that the constant κ must be
at least e2. Fix a parameter γ > 1 and apply the property 2◦ to obtain

Wκ(γ−1, 1) ≥
(
γ2 − 1

γ2 + 1

)2

Wκ

(
γ−1 γ

2 + 1

γ2 − 1
,
γ2 + 1

γ2 − 1

)
+

4γ2

(γ2 + 1)2
Wκ

(
1 + γ−1

2
,

1 + γ−1

2

)
.

Next, using the homogeneity (3.3) and the majorization 1◦, we get

Wκ

(
γ−1 γ

2 + 1

γ2 − 1
,
γ2 + 1

γ2 − 1

)
=

(
γ2 + 1

γ2 − 1

)2

Wκ(γ−1, 1)

+

(
γ2 + 1

γ2 − 1

)2

log

(
γ2 + 1

γ2 − 1

)(
1− γ−2

)
,

and

Wκ

(
1 + γ−1

2
,

1 + γ−1

2

)
≥ −1

4

(
1 + γ−2

)2
log κ.

Plugging these two facts into the preceding estimate and working a little bit, we
arrive at the inequality equivalent to

log κ ≥ (γ2 − 1) log

(
γ2 + 1

γ2 − 1

)
.

It remains to let γ →∞ to obtain log κ ≥ 2 or κ ≥ e2, as desired.
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