# SHARP $L^{2} \log L$ INEQUALITIES FOR THE HAAR SYSTEM AND MARTINGALE TRANSFORMS 

ADAM OSȨKOWSKI

$$
\begin{aligned}
& \text { Abstract. Let }\left(h_{n}\right)_{n \geq 0} \text { be the Haar system of functions on }[0,1] \text {. The paper } \\
& \text { contains the proof of the estimate } \\
& \qquad \int_{0}^{1}\left|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right|^{2} \log \left|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right| \mathrm{d} s \leq \int_{0}^{1}\left|\sum_{k=0}^{n} a_{k} h_{k}\right|^{2} \log \left|e^{2} \sum_{k=0}^{n} a_{k} h_{k}\right| \mathrm{d} s
\end{aligned}
$$

for $n=0,1,2, \ldots$ Here $\left(a_{n}\right)_{n \geq 0}$ is an arbitrary sequence with values in a given Hilbert space $\mathcal{H}$ and $\left(\varepsilon_{n} \bar{\sigma}_{n>0}\right.$ is a sequence of signs. The constant $e^{2}$ appearing on the right is shown to be the best possible. This result is generalized to the sharp inequality

$$
\mathbb{E}\left|g_{n}\right|^{2} \log \left|g_{n}\right| \leq \mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right), \quad n=0,1,2, \ldots,
$$

where $\left(f_{n}\right)_{n \geq 0}$ is an arbitrary martingale with values in $\mathcal{H}$ and $\left(g_{n}\right)_{n \geq 0}$ is its transform by a predictable sequence with values in $\{-1,1\}$. As an application, we obtain the two-sided bound for the martingale square function $S(f)$ :
$\mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{-2}\left|f_{n}\right|\right) \leq \mathbb{E} S_{n}^{2}(f) \log S_{n}(f) \leq \mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right), \quad n=0,1,2, \ldots$

## 1. Introduction

Let $h=\left(h_{n}\right)_{n \geq 0}$ be the Haar system, i.e., the collection of functions given by

$$
\begin{aligned}
h_{0} & =[0,1), \quad h_{1}=[0,1 / 2)-[1 / 2,1), \\
h_{2} & =[0,1 / 4)-[1 / 4,1 / 2), \quad h_{3}=[1 / 2,3 / 4)-[3 / 4,1), \\
h_{4} & =[0,1 / 8)-[1 / 8,1 / 4), \quad h_{5}=[1 / 4,3 / 8)-[3 / 8,1 / 2), \\
h_{6} & =[1 / 2,5 / 8)-[5 / 8,3 / 4), \quad h_{7}=[3 / 4,7 / 8)-[7 / 8,1)
\end{aligned}
$$

and so on. Here we have identified a set with its indicator function. A classical result of Schauder [12] states that the Haar system forms a basis of $L^{p}=L^{p}(0,1)$, $1 \leq p<\infty$ (throughout, the underlying measure will be the Lebesgue measure). Using an inequality of Paley [11], Marcinkiewicz [7] proved that the Haar system is an unconditional basis provided $1<p<\infty$. That is, there is a universal finite constant $c_{p}$ such that

$$
\begin{equation*}
c_{p}^{-1}\left\|\sum_{k=0}^{n} a_{k} h_{k}\right\|_{L^{p}(0,1)} \leq\left\|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right\|_{L^{p}(0,1)} \leq c_{p}\left\|\sum_{k=0}^{n} a_{k} h_{k}\right\|_{L^{p}(0,1)} \tag{1.1}
\end{equation*}
$$

for any $n$ and any $a_{k} \in \mathbb{R}, \varepsilon_{k} \in\{-1,1\}, k=0,1,2, \ldots, n$. This result is a starting point for numerous extensions and applications: in particular, it has led to the development of the theory of singular integrals, stochastic integrals, stimulated the studies on the geometry of Banach spaces and has been extended to other areas of

[^0]mathematics. In particular, the inequality (1.1) has a natural counterpart in the martingale theory. Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, equipeed with a nondecreasing sequence $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ of sub- $\sigma$-algebras of $\mathcal{F}$. Let $f=\left(f_{n}\right)_{n \geq 0}$ be an adapted real-valued martingale and let $d f=\left(d f_{n}\right)_{n \geq 0}$ stand for its difference sequence, given by $d f_{0}=f_{0}$ and $d f_{n}=f_{n}-f_{n-1}$ for $n \geq 1$. So, the differences $d f_{n}$ are $\mathcal{F}_{n}$-measurable and integrable, and the martingale property amounts to saying that for each $n \geq 1, \mathbb{E}\left(d f_{n} \mid \mathcal{F}_{n-1}\right)=0$. Given a deterministic sequence $\varepsilon=\left(\varepsilon_{n}\right)_{n \geq 0}$ of signs, we define $g=\left(g_{n}\right)_{n \geq 0}$, the associated transform of $f$, by
$$
g_{n}=\sum_{k=0}^{n} \varepsilon_{k} d f_{k}, \quad n=0,1,2, \ldots
$$

Clearly, this is equivalent to saying that the difference sequence of $g$ is given by $d g_{n}=\varepsilon_{n} d f_{n}$. Note that the sequence $g=\left(g_{n}\right)_{n \geq 0}$ is again an adapted martingale. Actually, this is still true if we allow the following more general class of the transforming sequences. Namely, suppose that $\varepsilon=\left(\varepsilon_{n}\right)_{n \geq 0}$ is a sequence of random signs. We say that $\varepsilon$ is predictable, if for each $n$, the random variable $\varepsilon_{n}$ is measurable with respect to $\mathcal{F}_{(n-1) \vee 0}$.

A celebrated result of Burkholder [1] states that for any $1<p<\infty$ there is a finite constant $c_{p}^{\prime}$ such that for $f, g$ as above, we have

$$
\begin{equation*}
\left\|g_{n}\right\|_{p} \leq c_{p}^{\prime}\left\|f_{n}\right\|_{p}, \quad n=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

Let $c_{p}(1.1), c_{p}^{\prime}(1.2)$ denote the optimal constants in (1.1) and (1.2), respectively. The Haar system is a martingale difference sequence with respect to its natural filtration (on the probability space being the Lebesgue's unit interval) and hence so is $\left(a_{k} h_{k}\right)_{k \geq 0}$, for given fixed real numbers $a_{0}, a_{1}, a_{2}, \ldots$. Therefore, $c_{p}(1.1) \leq$ $c_{p}^{\prime}(1.2)$ for all $1<p<\infty$. It follows from the results of Burkholder [2] and Maurey [8] that in fact the constants coincide: $c_{p}(1.1)=c_{p}^{\prime}(1.2)$ for all $1<p<\infty$. The question about the precise value of $c_{p}(1.1)$ was answered by Burkholder in [3]: $c_{p}(1.1)=p^{*}-1\left(\right.$ where $\left.p^{*}=\max \{p, p /(p-1)\}\right)$ for $1<p<\infty$. Furthermore, the constant does not change if we allow the martingales and the terms $a_{k}$ to take values in a separable Hilbert space $\mathcal{H}$.

One can study various sharp extensions and modifications of the estimates (1.1) and (1.2). These include the weak-type ( $p, p$ ) inequalities (cf. $[3,13]$ ), exponential bounds ([6]), logarithmic estimates ([9]) and many others: see the monograph [10] for the detailed exposition on the subject. The purpose of this paper is to continue this line of research. Our main result is the following sharp $L^{2} \log L$ bound for the Haar system and martingale transforms.

Theorem 1.1. Let $f$ be a martingale taking values in a Hilbert space $\mathcal{H}$ and let $g$ be its transform by a predictable sequence of signs. Then we have the estimate

$$
\begin{equation*}
\mathbb{E}\left|g_{n}\right|^{2} \log \left|g_{n}\right| \leq \mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right), \quad n=0,1,2, \ldots \tag{1.3}
\end{equation*}
$$

This inequality is already sharp for the Haar system: for any $\kappa<e^{2}$ there exists a positive integer $n$, real numbers $a_{0}, a_{1}, \ldots, a_{n}$ and signs $\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n}$ such that

$$
\int_{0}^{1}\left|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right|^{2} \log \left|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right| d x>\int_{0}^{1}\left|\sum_{k=0}^{n} a_{k} h_{k}\right|^{2} \log \left|\kappa \sum_{k=0}^{n} a_{k} h_{k}\right| d x
$$

Actually, it will be clear from the proof that the estimate (1.3) holds true for any martingales $f, g$ satisfying the condition $\left|d f_{n}\right|=\left|d g_{n}\right|$ almost surely for all
$n=0,1,2, \ldots$. Of course, this condition is satisfied if $g$ is a transform of $f$ by a predictable sequence of signs; however, generally, this new requirement is much less restrictive and, in particular, it will allow us to obtain an interesting two-sided bound for the martingale square function $S(f)=\left(S_{n}(f)\right)_{n \geq 0}$, defined by

$$
S_{n}(f)=\left(\sum_{k=0}^{n}\left|d f_{k}\right|^{2}\right)^{1 / 2}, \quad n=0,1,2, \ldots
$$

The result can be stated as follows.
Theorem 1.2. Let $f$ be a martingale taking values in a Hilbert space $\mathcal{H}$. Then for any $n=0,1,2, \ldots$ we have

$$
\begin{equation*}
\mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{-2}\left|f_{n}\right|\right) \leq \mathbb{E} S_{n}^{2}(f) \log S_{n}(f) \leq \mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right) \tag{1.4}
\end{equation*}
$$

The left inequality is sharp: the constant $e^{-2}$ cannot be replaced by a larger number.
Unfortunately, we have been unable to identify the optimal constant in the right inequality (1.4), but some calculations show that it should not be far from $e^{2}$. We will not pursue farther in this direction.

A few words about the proof and the organization of the paper are in order. Our reasoning will rest on Burkholder's method (cf. [3], [4], [6]): the estimate (1.3) will be deduced from the existence of a certain special function, enjoying appropriate majorization and concavity requirements. The proof of the estimates (1.3) and (1.4) can be found in the next section. Section 3 is devoted to the optimality of the constants in these inequalities.

## 2. Proofs of (1.3) AND (1.4)

As we have announced in the preceding section, the proofs of the inequalities (1.3) and (1.4) will exploit the properties of a certain special function. Let $D=$ $\mathcal{H} \times \mathcal{H} \backslash\{(x, y):|x||y|=0\}$ and consider $U: D \rightarrow \mathbb{R}$, given by

$$
U(x, y)=|y|^{2}-|x||y|-2|x|^{2}+\left(|y|^{2}-|x|^{2}\right) \log \frac{|x|+|y|}{2}
$$

Though the definition makes perfect sense also in the case $|x||y|=0$, we have decided to exclude these pairs $(x, y)$ from the domain of $U$; this will guarantee that the function $U$ is smooth, which in turn will allow us to avoid unpleasant technicalities. We will also need the auxiliary functions $\varphi, \psi: D \rightarrow \mathcal{H}$, defined by

$$
\varphi(x, y)=-5 x-2 x \log \frac{|x|+|y|}{2}, \quad \psi(x, y)=y-2|x| y^{\prime}+2 y \log \frac{|x|+|y|}{2}
$$

where $y^{\prime}=y /|y|$. Then we have $\varphi(x, y)=U_{x}(x, y)$ and $\psi(x, y)=U_{y}(x, y)$ on $D$. Indeed, if $x \neq 0$, then for any $h \in \mathcal{H}$ we have

$$
\lim _{t \rightarrow 0} \frac{|x+t h|-|x|}{t}=x^{\prime} \cdot h,
$$

where $\cdot$ denotes the scalar product in $\mathcal{H}$. Consequently,

$$
\lim _{t \rightarrow 0} \frac{U(x+t h, y)-U(x, y)}{t}=\left(-5|x|-2|x| \log \frac{|x|+|y|}{2}\right) x^{\prime} \cdot h=\varphi(x, y) \cdot h
$$

that is, $\varphi(x, y)=U_{x}(x, y)$. The identity $\psi(x, y)=U_{y}(x, y)$ is verified similarly.
The crucial properties of the above objects are studied in a lemma below.

Lemma 2.1. (i) For any $x \in \mathcal{H} \backslash\{0\}$ we have

$$
\begin{equation*}
U(x, \pm x) \leq 0 \tag{2.1}
\end{equation*}
$$

(ii) For any $(x, y) \in D$ we have the majorization

$$
\begin{equation*}
U(x, y) \geq|y|^{2} \log |y|-|x|^{2} \log \left(e^{2}|x|\right) \tag{2.2}
\end{equation*}
$$

(iii) For any $x, y, h, k \in \mathcal{H}$ such that $|k|=|h|,(x, y) \in D$ and $(x+h, y+k) \in D$, we have

$$
\begin{equation*}
U(x+h, y+k) \leq U(x, y)+\varphi(x, y) \cdot h+\psi(x, y) \cdot k \tag{2.3}
\end{equation*}
$$

Proof. (i) This is evident: $U(x, \pm x)=-2|x|^{2} \leq 0$.
(ii) Of course, it is enough to show the majorization for $\mathcal{H}=\mathbb{R}$ and for positive $x, y$ only (simply introduce the new variables $x:=|x|$ and $y:=|y|)$. Fix $x>0$ and define $F:(0, \infty) \rightarrow \mathbb{R}$ by the formula

$$
F(y)=y^{2}-x y-2 x^{2}+\left(y^{2}-x^{2}\right) \log \frac{x+y}{2}-y^{2} \log y+x^{2} \log \left(e^{2} x\right)
$$

A straightforward differentiation yields

$$
F^{\prime}(y)=2 y-x+2 y \log \frac{x+y}{2 y}-x \quad \text { and } \quad F^{\prime \prime}(y)=2 \log \frac{x+y}{2 y}+\frac{2 y}{x+y}
$$

Since $a-2 \log a>0$ for any $a>0$, we see that $F$ is a convex function. Furthermore, we have $F^{\prime}(x)=F(x)=0$; this shows that $F$ is nonnegative, which is precisely the desired bound (2.2).
(iii) By continuity, it is enough to prove the assertion under the addition assumption that for each $t$, both vectors $x+t h$ and $y+t k$ are nonzero. To see this, simply pick a vector $v \neq 0$ orthogonal to the subspace generated by $x, y, h$ and $k$. Then the vectors $\bar{h}=h+v, \bar{k}=k+v$ satisfy $|\bar{h}|=|\bar{k}|$ and $|x+t \bar{h}||y+t \bar{k}| \neq 0$ for all $t$; having proved (2.3) for $x, y, \bar{h}$ and $\bar{k}$, we let $v \rightarrow 0$ to obtain the claim in the general case.

Now we apply a well-known procedure of proving the inequality (2.3) (see e.g. [6]). Namely, for a fixed $x, y, k, h$ as above, introduce the function

$$
G(t)=G_{x, y, h, k}(t)=U(x+t h, y+t k), \quad t \in \mathbb{R}
$$

Then (2.3) is equivalent to $G(1) \leq G(0)+G^{\prime}(0)$, and hence we will be done if we show that $G$ is concave. The assumption $|x+t h||y+t k| \neq 0$ guarantees that the function $G$ is twice differentiable and hence we must prove that $G^{\prime \prime}(t) \leq 0$ for all $t \in \mathbb{R}$. Actually, it is enough to consider the case $t=0$ only, because of the translation property $G_{x, y, h, k}(s+t)=G_{x+s h, y+s k, h, k}(t)$. A little tedious calculation gives

$$
G^{\prime \prime}(0)=\frac{2|x|}{|y|}\left[-|k|^{2}+\left(y^{\prime} \cdot k\right)^{2}\right]+2\left[-|h|^{2}-\left(x^{\prime} h\right)\left(y^{\prime} k\right)\right] \leq 0
$$

since both expressions in the square brackets are nonpositive. This completes the proof of the lemma.

Proof of (1.3). Pick two adapted martingales $f, g$ satisfying the condition $\left|d f_{k}\right|=$ $\left|d g_{k}\right|$ for any $k \geq 0$ and fix a nonnegative integer $n$. By adding a small vector $v$, orthogonal to the ranges of $f$ and $g$ (as in the proof of Lemma 2.1 (iii) above), we may assume that $\left|f_{k}\right|\left|g_{k}\right| \neq 0$ with probability 1 for all $k \geq 0$. For the sake of clarity, it is convenient to split the reasoning into two parts.

Step 1. Integrability conditions. If $\mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right)=\infty$, then there is nothing to prove. Suppose then that $\mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right)<\infty$; then also $\mathbb{E}\left|f_{n}\right|^{2} \log _{+}\left(e^{2}\left|f_{n}\right|\right)<$ $\infty$, and since the function $\Phi(t)=|t|^{2} \log _{+}|t|$ is convex on $\mathbb{R}$, we conclude that $\mathbb{E}\left|f_{k}\right|^{2} \log _{+}\left(e^{2}\left|f_{k}\right|\right)<\infty$ for all $k \leq n$. This in turn implies that for each $k \leq n$ we have $\mathbb{E}\left|d g_{k}\right|^{2} \log _{+}\left|d g_{k}\right|=\mathbb{E}\left|d f_{k}\right|^{2} \log _{+}\left|d f_{k}\right|<\infty$, due to the simple pointwise bound

$$
\left|f_{k}-f_{k-1}\right|^{2} \log _{+}\left|f_{k}-f_{k-1}\right| \leq 4\left|f_{k}\right|^{2} \log _{+}\left(2\left|f_{k}\right|\right)+4\left|f_{k-1}\right|^{2} \log _{+}\left(2\left|f_{k-1}\right|\right)
$$

This, finally, gives that $\mathbb{E}\left|g_{k}\right|^{2} \log \left|g_{k}\right|<\infty$ for all $k \leq n$ : apply the estimate

$$
\begin{aligned}
\mathbb{E}\left|\sum_{\ell=0}^{k} d g_{\ell}\right|^{2} \log \left|\sum_{\ell=0}^{k} d g_{\ell}\right| & \leq \mathbb{E}\left(k \max _{0 \leq \ell \leq k}\left|d g_{\ell}\right|\right)^{2} \log _{+}\left(k \max _{0 \leq \ell \leq k}\left|d g_{\ell}\right|\right) \\
& \leq k^{2} \sum_{\ell=0}^{k} \mathbb{E}\left|d g_{\ell}\right|^{2} \log _{+}\left(k\left|d g_{\ell}\right|\right) .
\end{aligned}
$$

Step 2. Proof of the $L^{2} \log L$ inequality. The key observation is that the sequence $\left(U\left(f_{k}, g_{k}\right)\right)_{k=0}^{n}$ is a supermartingale. Indeed, its integrability follows easily from the facts proved in the preceding step, and the supermartingale property follows from the part (iii) of Lemma 2.1. To see this, fix $0 \leq k<n$ and note that

$$
\begin{aligned}
U\left(f_{k+1}, g_{k+1}\right) & =U\left(f_{k}+d f_{k+1}, g_{k}+d g_{k+1}\right) \\
& \leq U\left(f_{k}, g_{k}\right)+\varphi\left(f_{k}, g_{k}\right) \cdot d f_{k+1}+\psi\left(f_{k}, g_{k}\right) \cdot d g_{k+1}
\end{aligned}
$$

Applying to both sides the conditional expectation with respect to $\mathcal{F}_{k}$ yields the desired bound $\mathbb{E}\left[U\left(f_{k+1}, g_{k+1}\right) \mid \mathcal{F}_{k}\right] \leq U\left(f_{k}, g_{k}\right)$. Thus, by (2.1) and (2.2), we get

$$
0 \geq \mathbb{E} U\left(f_{0}, g_{0}\right) \geq \mathbb{E} U\left(f_{n}, g_{n}\right) \geq \mathbb{E}\left|g_{n}\right|^{2} \log \left|g_{n}\right|-\mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right),
$$

which is (1.3).
Proof of (1.4). Consider the Hilbert space $\mathbb{H}=\ell^{2}(\mathcal{H})$. We can treat an $\mathcal{H}$-valued martingale $f$ as an $\mathbb{H}$-valued sequence, embedding it onto the first coordinate: $f_{n} \sim\left(f_{n}, 0,0, \ldots\right) \in \mathbb{H}$. To handle the square function, consider the martingale $g_{n}=\left(d f_{0}, d f_{1}, d f_{2}, \ldots, d f_{n}, 0,0, \ldots\right), n=0,1,2, \ldots$ Then $\left|d f_{n}\right|_{\mathbb{H}}=\left|d g_{n}\right|_{\mathbb{H}}$ with probability 1 and hence, by the estimate (1.3) just established above,

$$
\mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{-2}\left|f_{n}\right|\right) \leq \mathbb{E}\left|g_{n}\right|_{\mathbb{H}}^{2} \log \left|g_{n}\right|_{\mathbb{H}} \leq \mathbb{E}\left|f_{n}\right|^{2} \log \left(e^{2}\left|f_{n}\right|\right), \quad n=0,1,2, \ldots
$$

It remains to observe that $\left|g_{n}\right|_{\mathbb{H}}=S_{n}(f)$ for all $n$. This proves the inequality.

## 3. Sharpness

We turn our attention to the optimality of the constant $e^{2}$ in the $L^{2} \log L$ inequality for the Haar system and the martingale square function. One could study this problem by constructing appropriate examples, but we have chosen a different path, which is of its own interest and connections with boundary value problems.

We start with the inequality for the Haar system. Suppose that for some constant $\kappa>0$ we have

$$
\begin{equation*}
\int_{0}^{1}\left|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right|^{2} \log \left|\sum_{k=0}^{n} \varepsilon_{k} a_{k} h_{k}\right| \mathrm{d} s \leq \int_{0}^{1}\left|\sum_{k=0}^{n} a_{k} h_{k}\right|^{2} \log \left|\kappa \sum_{k=0}^{n} a_{k} h_{k}\right| \mathrm{d} s \tag{3.1}
\end{equation*}
$$

for $n=0,1,2, \ldots$. Consider the functions $V_{\kappa}, W_{\kappa}$ on $\mathbb{R}^{2}$, given by $V_{\kappa}(x, y)=$ $|y|^{2} \log |y|-|x|^{2} \log (\kappa|x|)$ and

$$
\begin{equation*}
W_{\kappa}(x, y)=\sup \left\{\int_{0}^{1} V\left(x+\sum_{k=1}^{n} a_{k} h_{k}(s), y+\sum_{k=1}^{n} \varepsilon_{k} a_{k} h_{k}(s)\right) \mathrm{d} s\right\} \tag{3.2}
\end{equation*}
$$

where the supremum is taken over all positive integers $n$ and all sequences $a_{1}, a_{2}$, $\ldots, a_{n} \in \mathbb{R}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in\{-1,1\}$.

Lemma 3.1. The function $W_{\kappa}$ has the following properties.
$1^{\circ}$ We have $W_{\kappa} \geq V_{\kappa}$ on $\mathbb{R}^{2}$.
$2^{\circ}$ The function $W_{\kappa}$ is concave along the lines of slope $\pm 1$.
$3^{\circ}$ We have $W_{\kappa}(x, y)<\infty$ for all $x, y$.
$4^{\circ}$ For any $x, y \in \mathbb{R}$ and any $\lambda>0$ we have the homogeneity-type property

$$
\begin{equation*}
W_{\kappa}(\lambda x, \lambda y)=\lambda^{2} W_{\kappa}(x, y)+\lambda^{2} \log \lambda\left(|y|^{2}-|x|^{2}\right) \tag{3.3}
\end{equation*}
$$

Proof. The property $1^{\circ}$ is evident: it suffices to consider the sequence $a_{1}=a_{2}=$ $\ldots=a_{n}=0$ in the definition of $W_{\kappa}$. To show $2^{\circ}$, we use the so-called "splicing" argument (see e.g. page 77 in Burkholder [5]). To be more precise, fix a line $L$ of slope 1 , a point $(x, y)$ lying on it and a positive number $d$. Pick two positive integers $n, m$, and some arbitrary sequences $a_{1}^{+}, a_{2}^{+}, \ldots, a_{n}^{+}, a_{1}^{-}, a_{2}^{-}, \ldots, a_{m}^{-} \in \mathbb{R}$ and $\varepsilon_{1}^{+}, \varepsilon_{2}^{+}, \ldots, \varepsilon_{n}^{+}, \varepsilon_{1}^{-}, \varepsilon_{2}^{-}, \ldots, \varepsilon_{m}^{-} \in\{-1,1\}$. Let us splice the pairs of functions

$$
\varphi^{+}=x+d+\sum_{k=1}^{n} a_{k}^{+} h_{k}, \quad \varphi^{-}=x-d+\sum_{k=1}^{n} a_{k}^{-} h_{k}
$$

and

$$
\psi^{+}=y+d+\sum_{k=1}^{n} \varepsilon_{k}^{+} a_{k}^{+} h_{k}, \quad \psi^{-}=y-d+\sum_{k=1}^{n} \varepsilon_{k}^{-} a_{k}^{-} h_{k}
$$

into one pair of functions, setting

$$
(\varphi(r), \psi(r))= \begin{cases}\left(\varphi^{-}(2 r), \psi^{-}(2 r)\right) & \text { if } r<1 / 2  \tag{3.4}\\ \left(\varphi^{+}(2 r), \psi^{+}(2 r)\right) & \text { if } r \geq 1 / 2\end{cases}
$$

It is evident from the structure of the Haar system that the splice $(\varphi, \psi)$ is given by the finite sums of the form $\left(x-d h_{1}+\sum_{k=2}^{N} a_{k} h_{k}, y-d h_{1}+\sum_{k=2}^{N} \varepsilon_{k} a_{k} h_{k}\right)$, where each number $a_{k}$ coincides with an appropriate coefficient of $\varphi^{-}$or $\varphi^{+}$, depending on whether the support of $h_{k}$ is contained in the left or the right half of the interval $[0,1]$ and, similarly, $\varepsilon_{k}$ is an appropriate sign coming from $\varphi^{-}$or $\varphi^{+}$. Consequently, we may write

$$
\begin{aligned}
W_{\kappa}(x, y) & \geq \int_{0}^{1} V(\varphi(s), \psi(s)) \mathrm{d} s \\
& =\frac{1}{2}\left[\int_{0}^{1} V\left(\varphi^{-}(s), \psi^{-}(s)\right) \mathrm{d} s+\int_{0}^{1} V\left(\varphi^{+}(s), \psi^{+}(s)\right) \mathrm{d} s\right]
\end{aligned}
$$

and taking the supremum over all $\varphi^{-}, \varphi^{+}$yields

$$
W_{\kappa}(x, y) \geq\left(W_{\kappa}(x-d, y-d)+W_{\kappa}(x+d, y+d)\right) / 2
$$

Since $x, y$, and $d$ were arbitrary, $W_{\kappa}$ is midpoint concave along $L$; however, since $W_{\kappa}$ is locally bounded from below (see $2^{\circ}$ ), it is merely concave along $L$. Analogous arguments lead to concavity of $W_{\kappa}$ along the lines of slope -1 .

To show $3^{\circ}$, we first apply (3.1) to obtain that $U(x, \pm x) \leq 0$ for all $x \in \mathbb{R}$. Now the finiteness of $U$ follows from the concavity along the lines of slope $\pm 1$ we have just established.

Finally, let us handle $4^{\circ}$. Pick an arbitrary positive number $n$ and some sequences $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in\{-1,1\}$. We have

$$
\begin{aligned}
W_{\kappa}(\lambda x, \lambda y) \geq & \int_{0}^{1} V\left(\lambda x+\sum_{k=1}^{n} \lambda a_{k} h_{k}(s), \lambda y+\sum_{k=1}^{n} \varepsilon_{k} \lambda a_{k} h_{k}(s)\right) \mathrm{d} s \\
= & \lambda^{2} \int_{0}^{1} V\left(\lambda x+\sum_{k=1}^{n} a_{k} h_{k}(s), y+\sum_{k=1}^{n} \varepsilon_{k} a_{k} h_{k}(s)\right) \mathrm{d} s \\
& +\lambda^{2} \log \lambda \int_{0}^{1}\left[\left|y+\sum_{k=1}^{n} \varepsilon_{k} a_{k} h_{k}(s)\right|^{2}-\left|x+\sum_{k=1}^{n} a_{k} h_{k}(s)\right|^{2}\right] \mathrm{d} s
\end{aligned}
$$

However, the latter integral is equal to $|y|^{2}-|x|^{2}$, by orthogonality of the Haar system. Taking the supremum over all $n$ and sequences $a_{1}, a_{2}, \ldots, a_{n}, \varepsilon_{1}, \varepsilon_{2}, \ldots$, $\varepsilon_{n}$ yields the estimate

$$
W_{\kappa}(\lambda x, \lambda y) \geq \lambda^{2} W_{\kappa}(x, y)+\lambda^{2} \log \lambda\left(|y|^{2}-|x|^{2}\right)
$$

To prove the reverse bound, rewrite it in the equivalent form

$$
W_{\kappa}\left(\frac{1}{\lambda} \lambda x, \frac{1}{\lambda} \lambda y\right) \geq \frac{1}{\lambda^{2}} W_{\kappa}(\lambda x, \lambda)+\frac{1}{\lambda^{2}} \log \frac{1}{\lambda}\left(|\lambda y|^{2}-|\lambda x|^{2}\right)
$$

which follows at once from the estimate we have just established.
Equipped with the above function $W_{\kappa}$, the optimality of the constant $e^{2}$ follows easily. Namely, we know that the number $W_{\kappa}(0,1)$ is finite. Furthermore, applying the property $2^{\circ}$ twice gives

$$
\begin{aligned}
W_{\kappa}(0,1) \geq & \frac{1}{1+2 \delta} W_{\kappa}(\delta, 1+\delta)+\frac{2 \delta}{1+2 \delta} W_{\kappa}(-1 / 2,-1 / 2) \\
\geq & \frac{1}{(1+2 \delta)^{2}} W_{\kappa}(0,1+2 \delta)+\frac{2 \delta}{(1+2 \delta)^{2}} W_{\kappa}(1 / 2+\delta, 1 / 2+\delta) \\
& +\frac{2 \delta}{1+2 \delta} W_{\kappa}(-1 / 2,-1 / 2)
\end{aligned}
$$

However, by $4^{\circ}$, we have

$$
W_{\kappa}(0,1+2 \delta)=(1+2 \delta)^{2} W_{\kappa}(0,1)+(1+2 \delta)^{2} \log (1+2 \delta)
$$

and, by the majorization $1^{\circ}$,

$$
W(-1 / 2,-1 / 2) \geq-\log \kappa / 4, \quad W_{\kappa}(1 / 2+\delta, 1 / 2+\delta) \geq-(1 / 2+\delta)^{2} \log \kappa
$$

Combining these facts with the preceding estimate yields an inequality which is equivalent to

$$
\frac{2+\delta}{2+2 \delta} \log \kappa \geq \frac{\log (1+2 \delta)}{\delta}
$$

Letting $\delta \rightarrow 0$ we obtain $\kappa \geq e^{2}$. This shows that the constant $e^{2}$ is indeed the best possible.

The $L^{2} \log L$ estimate for the square function can be handled similarly. Suppose that $\kappa>0$ is a constant such that

$$
\mathbb{E}\left|f_{n}\right|^{2} \log \left|f_{n}\right| \leq \mathbb{E} S_{n}^{2}(f) \log \left(\kappa S_{n}(f)\right), \quad n=0,1,2, \ldots
$$

Introduce the function $W_{\kappa}$ on $[0, \infty) \times \mathbb{R}$ by the formula

$$
W_{\kappa}(x, y)=\mathbb{E} V_{\kappa}\left(\sqrt{x^{2}-y^{2}+S_{n}^{2}(f)}, f_{n}\right)
$$

where the supremum is taken over all $n$ and all simple martingales satisfying $f_{0} \equiv y$ (a martingale is called simple if for any $n$ the variable $f_{n}$ takes only a finite number of values). Here, as previously, $V_{\kappa}(x, y)=|y|^{2} \log |y|-|x|^{2} \log (\kappa|x|)$. The somewhat odd expression $\sqrt{x^{2}-y^{2}+S_{n}^{2}(f)}$ guarantees that the sequence $\left(\sqrt{x^{2}-y^{2}+S_{n}^{2}(f)}\right)_{n \geq 0}$ starts from $x$. An analogous reasoning to that presented above (see also Chapter 11 of [6]) yields the following statement. We omit the proof, leaving it to the interested reader.

Lemma 3.2. The function $W_{\kappa}$ has the following properties.
$1^{\circ}$ We have $W_{\kappa} \geq V_{\kappa}$ on $[0, \infty) \times \mathbb{R}$.
$2^{\circ}$ For any $(x, y) \in[0, \infty) \times \mathbb{R}$, any $\alpha \in(0,1)$ and any $t_{1}, t_{2} \in \mathbb{R}$ satisfying $\alpha t_{1}+(1-\alpha) t_{2}=0$, we have

$$
W_{\kappa}(x, y) \geq \alpha W_{\kappa}\left(\sqrt{x^{2}+t_{1}^{2}}, y+t_{1}\right)+(1-\alpha) W_{\kappa}\left(\sqrt{x^{2}+t_{2}^{2}}, y+t_{2}\right)
$$

$3^{\circ}$ We have $W_{\kappa}(x, y)<\infty$ for all $x>0$ and $y \in \mathbb{R}$.
$4^{\circ}$ For any $x, y \in \mathbb{R}$ and any $\lambda>0$ we have the homogeneity-type property (3.3).
Equipped with this lemma, we are ready to show that the constant $\kappa$ must be at least $e^{2}$. Fix a parameter $\gamma>1$ and apply the property $2^{\circ}$ to obtain

$$
\begin{aligned}
W_{\kappa}\left(\gamma^{-1}, 1\right) \geq & \left(\frac{\gamma^{2}-1}{\gamma^{2}+1}\right)^{2} W_{\kappa}\left(\gamma^{-1} \frac{\gamma^{2}+1}{\gamma^{2}-1}, \frac{\gamma^{2}+1}{\gamma^{2}-1}\right) \\
& +\frac{4 \gamma^{2}}{\left(\gamma^{2}+1\right)^{2}} W_{\kappa}\left(\frac{1+\gamma^{-1}}{2}, \frac{1+\gamma^{-1}}{2}\right)
\end{aligned}
$$

Next, using the homogeneity (3.3) and the majorization $1^{\circ}$, we get

$$
\begin{aligned}
W_{\kappa}\left(\gamma^{-1} \frac{\gamma^{2}+1}{\gamma^{2}-1}, \frac{\gamma^{2}+1}{\gamma^{2}-1}\right)= & \left(\frac{\gamma^{2}+1}{\gamma^{2}-1}\right)^{2} W_{\kappa}\left(\gamma^{-1}, 1\right) \\
& +\left(\frac{\gamma^{2}+1}{\gamma^{2}-1}\right)^{2} \log \left(\frac{\gamma^{2}+1}{\gamma^{2}-1}\right)\left(1-\gamma^{-2}\right)
\end{aligned}
$$

and

$$
W_{\kappa}\left(\frac{1+\gamma^{-1}}{2}, \frac{1+\gamma^{-1}}{2}\right) \geq-\frac{1}{4}\left(1+\gamma^{-2}\right)^{2} \log \kappa .
$$

Plugging these two facts into the preceding estimate and working a little bit, we arrive at the inequality equivalent to

$$
\log \kappa \geq\left(\gamma^{2}-1\right) \log \left(\frac{\gamma^{2}+1}{\gamma^{2}-1}\right)
$$

It remains to let $\gamma \rightarrow \infty$ to obtain $\log \kappa \geq 2$ or $\kappa \geq e^{2}$, as desired.

## Acknowledgements

The author would like to thank an anonymous referee for the careful reading of the paper and several helpful suggestions. The research was partially supported by NCN grant DEC-2012/05/B/ST1/00412.

## References

[1] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
[2] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011.
[3] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702.
[4] D. L. Burkholder, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474-478.
[5] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varrenna, 1985), Lecture Notes in Math. 1206, Springer, Berlin (1986), 61-108.
[6] D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Eté de Probabilités de Saint Flour XIX-1989, Lecture Notes in Mathematics 1464 (1991), 1-66.
[7] J. Marcinkiewicz, Quelques théoremes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
[8] B. Maurey, Systéme de Haar, Seminaire Maurey-Schwartz (1974-1975), École Polytechnique, Paris.
[9] A. Osȩkowski, Sharp LlogL inequality for Differentially Subordinated Martingales, Illinois J. Math. 52, Vol. 3 (2008), 745-756.
[10] A. Osȩkowski, Sharp martingale and semimartingale inequalities, Monografie Matematyczne 72, Birkhäuser, 2012.
[11] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-264.
[12] J. Schauder, Eine Eigenschaft des Haarschen Orthogonalsystems, Math. Z. 28 (1928), 317320.
[13] Y. Suh, A sharp weak type ( $p, p$ ) inequality $(p>2)$ for martingale transforms and other subordinate martingales, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1545-1564 (electronic).

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl


[^0]:    2000 Mathematics Subject Classification. Primary: 60G42. Secondary: 26D15.
    Key words and phrases. Haar system, martingale, square function, best constants.

