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Abstract. Let X, Y be local martingales such that Y is differentially subor-

dinate to X. The paper contains the proof of the sharp estimates

|| sup
t≥0

Yt||p ≤
p

p− 1
||X||p, 1 < p < 2,

|| sup
t≥0

Yt||p ≤ p||X||p, 2 ≤ p <∞.

As an application, we establish sharp inequalities for stochastic integrals with

respect to Brownian motion in Rd, derive some maximal bounds for harmonic
functions and Riesz system, and present tight estimates for a stopped three-

dimensional Bessel process.

1. Introduction

Let (Ω,F ,P) be a complete probability space, equipped with a filtration (Ft)t≥0,
a nondecreasing right-continuous family of sub-σ-fields of F . As usual, we assume
that F0 contains all the events of probability 0. Let X = (Xt)t≥0 be an adapted
real-valued local martingale with right-continuous trajectories that have limits from
the left. Let Y = H ·X be the Itô integral of H with respect to X,

Yt = H0X0 +
∫

(0,t]

HsdXs, t ≥ 0,

where H is a predictable process with values in [−1, 1]. Denote by X∗and |X|∗ the
one- and two-sided maximal functions of X, given by supt≥0Xt and supt≥0 |Xt|∗,
respectively. Furthermore, we shall write ||X||p = supt≥0 ||Xt||p for the p-th mo-
ment of X, 1 ≤ p ≤ ∞.

The purpose of this paper is to determine optimal constants in some basic max-
imal inequalities involving X and Y . The literature on this subject is very ex-
tensive and it is impossible to review it here, so we shall only focus on recalling
results and methods which are closely related to those appearing in this paper. In
[8], Burkholder invented a powerful technique of proving estimates for martingale
transforms and stochastic integrals, and used it to show the following.

Theorem 1.1. If X and Y are as above, then we have

(1.1) ||Y ||1 ≤ γ|| |X|∗||1,
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where γ = 2.536 . . . is the unique solution of the equation

γ − 3 = − exp
(1− γ

2
)
.

The constant is the best possible.

Then it was proved by author in [11], that if X is nonnegative, then the constant
decreases to 2 + (3e)−1 = 2.1226 . . .. The paper [12] contains the proof of the
related estimate in which the first moment of Y is replaced by the first moment of
its one-sided maximal function. Precisely, it is shown there that

(1.2) ||Y ∗||1 ≤ η|| |X|∗||1,

where η = 2.0856 . . . is the unique positive solution to the equation 2 log
(

8
3 − η

)
=

1 − η. In addition, if X is assumed to be nonnegative, the best constant in (1.2)
equals 14/9 = 1.555 . . .. This result has been considerably strengthened in [13],
where it was proved that

|| |Y |∗||1 ≤ 3.4351 . . . || |X|∗||1,

with the constant arising from an intrinsic complicated system of differential equa-
tions. For X ≥ 0, the optimal constant reduces to 3 ([14]).

In the present paper we shall study related estimates which compare the p-th
moments of X and Y ∗. In fact, our approach works for a wider class of processes:
we show the maximal estimates under the assumption of differential subordination.
Suppose that X, Y are adapted Rd-valued local martingales with the usual assump-
tions on the paths and let [X,X], [Y, Y ] denote the quadratic covariance processes
of X and Y (when d = 1, see e.g. Dellacherie and Meyer [9] for details; in the vector
case, we let [X,X] =

∑d
k=1[Xk, Xk], where Xk stands for the k-th coordinate of

X). Following Bañuelos and Wang [1] and Wang [20], we say that Y is differen-
tially subordinate to X if the process ([X,X]t − [Y, Y ]t)t≥0 is nondecreasing and
nonnegative as a function of t. For example, as in the beginning of this section, if
X is real and Y = H ·X, for some predictable H taking values in [−1, 1], then Y
is differentially subordinate to X. This is a consequence of the identity

[X,X]t − [Y, Y ]t =
∫ t

0

(1− |Hs|2)d[X,X]s, t ≥ 0.

Some further examples will be presented in Section 5 below.
Our main result can be stated as follows.

Theorem 1.2. Let X, Y be real local martingales such that Y is differentially
subordinate to X. Then for any 1 < p <∞ we have

(1.3) ||Y ∗||p ≤ Cp||X||p,

where Cp = p/(p− 1) for 1 < p < 2 and Cp = p for p ≥ 2. The inequality is sharp,
even if X is assumed to be a stopped Brownian motion and Y is the Itô integral
with respect to X of some predictable process taking values in {−1, 1}.

This is a very surprising result, both for 1 < p < 2 and p ≥ 2. In the first case,
the constant is the same as in the one-sided version of Doob’s maximal inequality

(1.4) ||X∗||p ≤
p

p− 1
||X||p, 1 < p <∞,
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which is known to be sharp (see e.g. Peskir [15]). Thus, (1.3) can be regarded as a
considerably stronger version of this classical estimate. For p ≥ 2, our bound is an
immediate consequence of (1.4) and a celebrated inequality of Burkholder

||Y ||p ≤ (p∗ − 1)||X||p, 1 < p <∞,
where p∗ = max{p, p/(p− 1)} (see [4] and [7]). What is quite unexpected, Cp = p
is the best possible in (1.3).

A few words about the proof and the organization of the paper. As already
observed above, we need to establish (1.3) only for 1 < p < 2. We shall exploit
Burkholder’s method from [8], which translates the problem of showing (1.3) into
that of finding a certain special function which has some convex-type properties.
However, in comparison with the reasoning appearing in [8] and [11]–[14], our ap-
proach will require some additional effort. Namely, the special function we manage
to construct in the next section does not allow to handle local martingales with
jumps. Nonetheless, it has all the necessary properties to establish (1.3) in the case
when X is a stopped Brownian motion and Y = H ·X for some predictable H tak-
ing values in {−1, 1}. Using embedding, this enables us to show the discrete-time
version of (1.3). Having this done, the results from [8] provide us with another,
abstract special function. This object has all the properties we need and hence we
are able to establish (1.3) in full generality. This three-step proof of (1.3) is carried
out in Section 3. Section 4 contains the construction of examples showing the op-
timality of Cp. The final part of the paper is devoted to some higher-dimensional
generalizations and applications of Theorem 1.2. These include maximal estimates
for harmonic functions on Euclidean domains, a tight inequality for a Riesz system
in Rn+1 and some sharp bounds for infimum of three-dimensional Bessel process.

2. The special function and its properties

Throughout this section, p is a fixed number from the interval (1, 2). Let

αp =
pp

p− 1
, βp =

pp

(p− 1)(2p− 1)p−1

and consider the subsets D1, D2 of [0,∞)× (−∞, 1], given by

D1 = {(x, y) : py ≤ (p− 1)x+ 1},
D2 = {(x, y) : py > (p− 1)x+ 1}.

Introduce the function up : [0,∞) × (−∞, 1] → R by the following formula. If
(x, y) ∈ D1, set

up(x, y) = 1− αp
(
x− y +

1
p

)p−1(
(−p2 + 3p− 1)x+ (p− 1)2

(
y − 1

p

))
,

while for (x, y) ∈ D2, define

up(x, y) = 1− βp
(
x+ y − 1

p

)p−1(
(p2 − p+ 1)x− (p2 − 1)

(
y − 1

p

))
.

In the two lemmas below, we study the properties of up which will be needed in
our further considerations. For any set A, let Ao stand for its interior.

Lemma 2.1. (i) The function up is of class C1 on (0,∞)× (−∞, 1).
(ii) We have limx↓0 upx(x, y) ≤ 0 for any y < 1.
(iii) For any x ≥ 0, the function up(x, ·) is convex on (−∞, 1).
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(iv) For any x > 0 we have

lim
y↑1

[
pup(x, y)− xupx(x, y)− upy(x, y)

]
≤ 0.

(v) For any (x, y) ∈ [0,∞)× (−∞, 1] we have

(2.1) up(x, y) ≥ 1−
(

p

p− 1

)p
xp.

(vi) For any y < 1, the function upx(·, y) is convex on (0,∞).

Proof. (i) We easily check that up is continuous: the limit of up at a point (x, y) ∈
∂D1∩∂D2 equals 1− 2p−1

p−1 x
p. Of course, up is of class C1 on Do

1 ∪Do
2. In addition,

a little calculation shows that

upx(x, y) =

{
−pαp(x− y + 1

p )p−2
[
(−p2 + 3p− 1)x+ (p− 2)(py − 1)

]
on Do

1,

−pβp(x+ y − 1
p )p−2

[
(p2 − p+ 1)x+ (2− p)(py − 1)

]
on Do

2

and

upy(x, y) =

{
(p− 1)αp(x− y + 1

p )p−2
[
p(2− p)x+ (p− 1)(py − 1)

]
on Do

1,

(p− 1)βp(x+ y − 1
p )p−2

[
p(2− p)x+ (p+ 1)(py − 1)

]
on Do

2.

Since the partial derivatives match at ∂D1∩∂D2, the function up has the postulated
smoothness.

(ii) We have

lim
x↓0

upx(0, y) =

{
−p2(2− p)αp(−y + 1

p )p−1 if y ≤ 1
p ,

−p2(2− p)αp(y − 1
p )p−1 if y > 1

p ,

which is nonpositive.
(iii) We compute that if (x, y) belongs to Do

1, then

upyy(x, y) = (p− 1)αp

(
x− y +

1
p

)p−3 [
(p3 − 3p2 + 3p)x+ (p− 1)2(1− py)

]
.

Now, if y < 1/p, then both summands in the square bracket are nonnegative. If
y ≥ 1/p, then x > (py− 1)/(p− 1) by the definition of D1, so the expression in the
square brackets exceeds

py − 1
p− 1

(
p3 − 3p2 + 3p− (p− 1)3

)
=
py − 1
p− 1

≥ 0.

Thus, upyy ≥ 0 on Do
1. Similarly, if (x, y) ∈ Do

2, then

upyy(x, y) = (p− 1)βp

(
x+ y − 1

p

)p−3 [
p(−p2 + 5p− 3)x+ (p− 1)(p+ 1)(py − 1)

]
and the expression in the square brackets is nonnegative. It suffices to use (i) to
get the convexity of up(x, ·).

(iv) We consider separately two cases: x ≥ 1 and x ≤ 1. If the first possibility
occurs, we rewrite the estimate using the formulas for upx and upy on Do

1. After
some lengthy but straightforward computations we get the equivalent bound

1 ≤ (px− p+ 1)p−2[p(2− p)x+ (p− 1)2].
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Both sides are equal for x = 1 and the right-hand side is a nondecreasing function
of x ∈ [1,∞): its derivative equals

p2(p− 1)(2− p)(px− p+ 1)p−3(x− 1) ≥ 0,

so the desired inequality holds true. If x ≤ 1, we use the formulas for the partial
derivatives of up on Do

2 and transform the estimate into

1 ≤ (2p− 1)1−p (px+ p− 1)p−2 [
p(2− p)x+ p2 − 1

]
.

We have equality for x = 1 and the derivative of the right-hand side is given by

(2p− 1)1−pp2(p− 1)(2− p)(px− p+ 1)p−3(x− 1) ≤ 0,

so the bound holds for x ∈ [0, 1) as well.
(v) Fix x ≥ 0. Directly from the above formula for upy, we infer that the

left-hand side of (2.1), as a function of y, is decreasing on (−∞, p−2
p−1x + 1

p ] and
increasing on [p−2

p−1x + 1
p , 1]. It remains to note that both sides of (2.1) are equal

when y = p−2
p−1x+ 1

p .
(vi) If (x, y) ∈ Do

1, then

upxxx(x, y)

= (p− 1)(2− p)αp
(
x− y +

1
p

)p−4 [
p(−p2 + 3p− 1)x+ (p2 − 2p− 2) (py − 1)

]
≥ (p− 1)(2− p)αp

(
x− y +

1
p

)p−4 [
p(−p2 + 3p− 1)x+ (p2 − 2p− 2)(p− 1)x

]
= p(p− 1)(2− p)2αpx

(
x− y +

1
p

)p−4

≥ 0,

where in the second passage we have used the definition of D1. Similarly, when
(x, y) ∈ Do

2, then

upxxx(x, y)

= (p− 1)(2− p)βp
(
x+ y − 1

p

)p−4 [
p(p2 − p+ 1)x+ (−p2 + 6p− 2) (py − 1)

]
is nonnegative, since so are both summands appearing in the square bracket. It
remains to check that upxx is continuous on (0,∞)× (−∞, 1); this can be done as
in (i) above. �

Lemma 2.2. The function up is concave along the lines of slope ±1 contained in
[0,∞)× (−∞, 1].

Proof. In virtue of the part (i) from the previous lemma, it suffices to check that
upxx±2upxy+upyy ≤ 0 on Do

1∪Do
2. Suppose first that (x, y) belongs to the interior

of D1. Then up is locally linear along the line segment of slope 1 passing through
(x, y), so upxx(x, y) + 2upxy(x, y) + upyy(x, y) = 0. Moreover, a little calculation
shows that

upxx(x, y)− 2upxy(x, y) + upyy(x, y)

= − 4upxy(x, y)

= 4p(p− 1)(2− p)αp
(
x− y +

1
p

)p−3 [
− (p− 1)x+ py − 1

]
,



6 ADAM OSȨKOWSKI

which is nonpositive, by the definition of D1. Similarly, if (x, y) lies in the interior
of D2, then it is evident that upxx(x, y)− 2upxy(x, y) + upyy(x, y) = 0; in addition,

upxx(x, y) + 2upxy(x, y) + upyy(x, y)

= 4upxy(x, y)

= 4p(p− 1)(2− p)βp
(
x+ y − 1

p

)p−3 [
(p− 1)x− py + 1

]
≤ 0,

which completes the proof. �

Let Up, Vp : R× R× (0,∞)→ R be given by

Up(x, y, z) = (y ∨ z)pup
(
|x|
y ∨ z

,
y

y ∨ z

)
,

Vp(x, y, z) = (y ∨ z)p −
(

p

p− 1

)p
|x|p.

In the next section we will study the properties of the process (Up(Xt, Yt, Y
∗
t ))t≥0

(for X, Y as in Theorem 1.2), using Itô’s formula. Since Up is not of class C2,
we need to modify it slightly to ensure the necessary smoothness. Suppose that
ψ : R3 → [0,∞) is a radial C∞ function, supported on the unit ball of R3, sat-
isfying

∫
R3 ψ = 1 and such that ψ(x, y, z) decreases as |(x, y, z)| increases. Let

D = {(x, y, z) : x ∈ R, z ≥ max{y, 0}}. For a given δ > 0 and (x, y, z) ∈ D, define

U δp (x, y, z) =
∫

[−1,1]3
Up(x+ δr, y − δ + δs, z + δ + δt)ψ(r, s, t)drdsdt

and

V δp (x, y, z) =
∫

[−1,1]3
Vp(x+ δr, y − δ + δs, z + δ + δt)ψ(r, s, t)drdsdt.

Note that the use of the asymmetric expressions y − δ + δs, z + δ − δt under the
integrals guarantees the following: if (x, y, z) ∈ D, then y − δ + δs ≤ z + δ − δt (at
least when (r, s, t) belongs to the support of ψ) and hence

(2.2) U δp (x, y, z) =
∫

[−1,1]3
(z+δ+δt)pup

(
|x+ δr|
z + δ + δt

,
y − δ + δs

z + δ + δt

)
ψ(r, s, t)drdsdt.

This equation will enable us to transfer the key properties of up to Uδp .

Lemma 2.3. (i) The function Uδp is of class C∞.
(ii) We have the majorization Uδp ≥ V δp .
(iii) Uδpxx ± 2Uδpxy + Uδpyy ≤ 0.
(iv) Fix ε > 0 and N > 1. If δ is sufficiently small, then U δpz(x, y, y) ≤ ε for

|x| ≤ N and y ∈ [N−1, N ].
(v) For any (x, y, z) ∈ D such that x ≥ 0 and y < z we have

Uδpyy(x, y, z) ≥ 0

and

(2.3) xU δpxx(x, y, z)− Uδpx(x, y, z) ≥ 0.
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Proof. The property (i) is evident and (ii) follows from Up ≥ Vp, which, in turn,
is a consequence of (2.1). The condition (iii) is due to Lemma 2.2. To check the
fourth statement, note that for x ∈ R and 0 < y < z,

Upz(x, y, z) = zp−1
[
pup(x/z, y/z)− (x/z)upx(x/z, y/z)− (y/z)upy(x/z, y/z)

]
,

so

Uδpz(x, y, y) =
∫

[−1,1]3
(y + δ − δt)p−1A(x, y, r, s, t, δ)ψ(r, s, t)drdsdt,

where

A(x, y, r, s, t, δ) = pup

(
x+ δr

y + δ − δt
,
y − δ + δs

y + δ − δt

)
− x+ δr

y + δ − δt
upx

(
x+ δr

y + δ − δt
,
y − δ + δs

y + δ − δt

)
− y − δ + δs

y + δ − δt
upy

(
x+ δr

y + δ − δt
,
y − δ + δs

y + δ − δt

)
.

Now we apply Lemma 2.1 (iv) and use the fact that the partial derivatives of up
are locally Lipschitz. Consequently, if δ is sufficiently small, then for x, y as in the
statement, the expression (y + δ − δt)p−1A(x, y, r, s, t, δ) does not exceed ε.

(v) By part (iii) of Lemma 2.1, the function Up(x, ·, z) is convex for any x ≥ 0 and
z > 0. This immediately yields the first estimate. To get the second one, observe
that both sides are equal for x = 0; hence it suffices to prove that Uδpxxx(x, y, z) ≥ 0
for (x, y, z) as in the statement. Consider the function s 7→ upx(|s|, y) sgn s, s ∈ R
(for s = 0, set the value to be 0). Using Lemma 2.1, we easily see that this function
is odd and, when restricted to (0,∞), it is convex and negative. Now we easily
check the midpoint convexity of U δpx(·, y, z) on (0,∞), using (2.2) and the radial
monotonicity of ψ. �

3. Proof of (1.3) for 1 < p < 2

3.1. Proof for stochastic integrals with respect to Brownian motion. First
we shall establish the inequality (1.3) in the special case when X = Bη is a stopped
standard one-dimensional Brownian motion, starting from some x0 ∈ R, and Y is
an Itô integral, with respect to X, of some predictable process H taking values in
{−1, 1}. Let us start with some reductions. Of course, we may assume that x0 6= 0.
Next, it suffices to consider only those X, which are bounded in Lp (otherwise the
claim is trivial). Then so is Y ∗, in virtue of Doob’s and Burkholder’s inequalities.
Finally, we may assume that Y satisfies Y0 = |x0| almost surely. Indeed, if it is not
the case, we replace it with Y = (Yt + |X0| −Y0)t≥0 (or, in other words, change H0

to sgnB0). Then Y starts from |X0| = |x0| > 0, is a stochastic integral as required
and, for any t ≥ 0,

Y
∗
t ≥ Y ∗t ≥ Y0 ≥ −Y 0 ≥ −Y

∗
t ,

so ||Y ∗||p ≤ ||Y
∗||p.

Now, suppose that ε > 0 and N > 1/|x0| are given and fixed. Let Uδp be
the function constructed in the previous section, corresponding to the δ for which
Lemma 2.3 (iv) is satisfied. Introduce the stopping time

τ = inf{t ≥ 0 : |Xt| ≥ N or |Yt| ≥ N}
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and consider the process (Zt)t≥0 = ((Xτ∧t, Yτ∧t, Y
∗
τ∧t))t≥0. By Itô’s formula, for

any t ≥ 0,

(3.1) Uδp (Zt) = Uδp (Z0) + I1 + I2 + I3/2,

where

I1 =
∫ τ∧t

0+

Uδpx(Zs)dXs +
∫ τ∧t

0+

Uδpy(Zs)dYs,

I2 =
∫ τ∧t

0+

Uδpz(Zs)dY
∗
s ,

I3 =
∫ τ∧t

0+

Uδpxx(Zs)d[X,X]s + 2
∫ τ∧t

0+

Uδpxy(Zs)d[X,Y ]s +
∫ τ∧t

0+

U δpyy(Zs)d[Y, Y ]s.

Let us now analyze each of the terms I1, I2, I3 separately. The stochastic integrals
in I1 are martingales, so EI1 = 0. To deal with I2, note that the support of dY ∗s
is contained in the set {(x, y, z) : N−1 ≤ |x0| ≤ y = z ≤ N}, on which U δpz is
bounded from above by ε: here we use the part (iv) of Lemma 2.3. Consequently,
I2 ≤ ε(Y ∗τ∧t−Y0) ≤ εY ∗τ∧t. Finally, since X is a Brownian motion and H ∈ {−1, 1},

I3 =
∫ τ∧t

0+

[
Uδpxx(Zs) + 2Uδpxy(Zs)Hs + Uδpyy(Zs)

]
ds ≤ 0,

in virtue of Lemma 2.3 (iii). Therefore, integrating both sides of (3.1) and applying
Lemma 2.3 (ii), we get

EV δp (Zt) ≤ EUδp (Z0) + εEY ∗τ∧t.

Letting δ → 0 yields, by Lebesgue’s dominated convergence theorem (X and Y are
bounded in Lp),

EVp(Zt) ≤ EUp(Z0) + εEY ∗τ∧t ≤ εEY ∗τ∧t,
where the latter passage follows from the estimate up(1, 1) ≤ 0. Now let ε→ 0 and
N →∞ to obtain EVp(Xt, Yt, Y

∗
t ) ≤ 0, or

E(Y ∗t )p ≤
(

p

p− 1

)p
E|Xt|p ≤

(
p

p− 1

)p
||X||pp.

It remains to let t→∞ and the proof is complete.

3.2. Proof for martingale transforms. Now we shall prove the estimate (1.3)
in the discrete-time setting. Let us provide the necessary definitions. Assume that
(Fn)n≥0 is a discrete filtration and let f = (fn)n≥0 be a martingale, with the
difference sequence df = (dfn)n≥0 given by df0 = f0 and dfn = fn− fn−1 for n ≥ 1.
Let g be the transform of f by a predictable real sequence v = (vn)n≥0 bounded in
absolute value by 1. That is, assume that we have dgn = vndfn for n = 0, 1, 2, . . ..
We shall establish the bound

(3.2) ||g∗||p ≤
p

p− 1
||f ||p,

where ||f ||p and g∗ are defined in analogy to the continuous-time case. As in the
previous subsection, we may restrict ourselves to f ∈ Lp and to g satisfying g0 ≥ 0
with probability 1. We shall exploit the following version of the decomposition
lemma of Burkholder (see Lemma A.1 from [7]). The proof is identical as in the
original setting and we do not present it here.
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Lemma 3.1. For any f , g as above, there exist martingales F j = (F jn)n≥0 and
Borel measurable functions φj : [−1, 1]→ {−1, 1} such that, for j ≥ 1 and n ≥ 0,

fn = F j2n+1, gn =
∞∑
j=1

2−jφj(v0)Gj2n+1.

Here Gj is the transform of F j by V = ((−1)k)k≥0 and satisfies Gj0 ≥ 0 almost
surely.

Now, for any fixed j, there is a Brownian motion X and a stochastic integral Y as
in the previous subsection such that the martingale pair (F j , Gj) can be embedded
into (X,Y ). That is, there is a nondecreasing sequence (τn)n≥0 of stopping times
(depending on j) such that ((F jn, G

j
n))n≥0 has the same law as ((Xτn , Yτn))n≥0.

Consequently, for any n,

||(Gjn)∗||p ≤ ||Y ∗τn ||p ≤
p

p− 1
||Xτn ||p =

p

p− 1
||F jn||p.

Since Gj0 ≥ 0 almost surely, we have (Gjn)∗ ≥ 0 for each n and thus

||g∗n||p ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
j=1

2−jφj(v0)(Gj2n+1)∗

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤
∞∑
j=1

2−j
∣∣∣∣∣∣(Gj2n+1)∗

∣∣∣∣∣∣
p
≤ p

p− 1

∞∑
j=1

2−j
∣∣∣∣∣∣F j2n+1

∣∣∣∣∣∣
p

=
p

p− 1
||fn||p.

It suffices to let n→∞ to obtain (3.2).

3.3. Proof in the general case. The inequality for martingale transforms gives
rise to another special function, which can be regarded as an enhancement of Up.
For any x, y ∈ R, let M(x, y) denote the class of all pairs (f, g) of simple discrete-
time martingales, given on the Lebesgue’s interval ([0, 1],B([0, 1]), | · |), such that
(f0, g0) ≡ (x, y) and dgn = vndfn, n = 1, 2, . . ., for some deterministic sequence
(vn)n≥1 taking values in [−1, 1]. Let γ be an arbitrary constant larger than p/(p−1).
For x, y ∈ R and z ≥ 0, define

Wp(x, y, z) = sup
{
||g∗ ∨ z||pp − γp||f ||pp

}
,

where the supremum is taken over all (f, g) from the class M(x, y).

Lemma 3.2. The function Wp has the following properties.
(i) Wp(x, y, z) is finite for any (x, y, z) ∈ R2 × R+.
(ii) Wp(x, y, z) ≥ V γp (x, y, z) = |y ∨ z|p − γp|x|p for (x, y, z) ∈ R2 × R+.
(iii) Wp(x, y, z1) ≤Wp(x, y, z2) for x, y ∈ R and 0 ≤ z1 ≤ z2.
(iv) For any x ∈ R and z ≥ 0, the function Wp(x, ·, z) is convex on (−∞, z].
(v) For any z > 0, the function Wp(·, ·, z) is concave along any line segment of

slope in [−1, 1] (contained in R× (−∞, z]).

Proof. (i) For any (f, g) ∈M(x, y), we have ||g∗ ∨ z||pp ≤ ||g∗||pp + zp. Furthermore,
by Jensen’s inequality, there is an absolute constant c, depending only on γ and p,
such that

||f ||pp ≥
(

p

(p− 1)γ

)p
||y − x+ f ||pp − c|x− y|p.
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Therefore, we obtain

||g∗ ∨ z||pp − γp||f ||pp ≤ zp + cγp|x− y|p +
[
||g∗||pp −

(
p

p− 1

)p
||y − x+ f ||pp

]
and the expression in the square brackets is nonpositive, due to (3.2) (since g is a
transform of y−x+f). It remains to take supremum over (f, g) to get the finiteness
of Wp.

(ii) This follows immediately from the fact that the constant pair (x, y) belongs
to M(x, y).

(iii) This is evident from the very definition, since for any g we have g∗ ∨ z1 ≤
g∗ ∨ z2 almost surely.

(iv) Take any y1, y2 ≤ z, λ ∈ (0, 1) and put y = λy1 +(1−λ)y2. For any (f, g) ∈
M(x, y), we have that (f, y1 − y + g) ∈ M(x, y1) and (f, y2 − y + g) ∈ M(x, y2).
Furthermore, for any n,

E(g∗n ∨ z)p ≤ E
[(

(λ(y1 − y + g)∗n + (1− λ)(y2 − y + g)∗n
)
∨ z
]p

≤ E
[
λ
(
(y1 − y + g)∗n ∨ z

)
+ (1− λ)

(
(y2 − y + g)∗n ∨ z

)]p
≤ λE

(
(y1 − y + g)∗n ∨ z

)p + (1− λ)E
(
(y2 − y + g)∗n ∨ z

)p
,

which implies

E(g∗n ∨ z)p − γpE|fn|p ≤ λWp(x, y1, z) + (1− λ)Wp(x, y2, z).

It suffices to take supremum over f, g and n to get the convexity.
(v) This can be done by modifying appropriately the so called “ splicing argu-

ment ”due to Burkholder. See e.g. page 11 in [7] for details. �

Now we shall follow the pattern from Subsection §3.1 and approximate Wp by a
smooth function. For ψ as above and δ > 0, introduce W δ

p , (V γp )δ on D = {(x, y, z) :
x ∈ R, z ≥ max{y, 0}} by the convolutions

W δ
p (x, y, z) =

∫
[−1,1]3

Wp(x+ δr, y − δ + δs, z + δ + δt)ψ(r, s, t)drdsdt

and

(V γp )δ(x, y, z) =
∫

[−1,1]3
V γp (x+ δr, y − δ + δs, z + δ + δt)ψ(r, s, t)drdsdt

(recall that V γp (x, y, z) = |y∨z|p−γp|x|p for (x, y, z) ∈ R2×R+). It is evident that
W δ
p satisfies appropriate versions of the properties (i), (ii) and (iii) of Lemma 2.3.

Even more, the partial derivatives of W δ
p can be extended to continuous functions

on the whole D and

(3.3) W δ
pxx + 2sW δ

pxy + s2W δ
pyy ≤ 0 for |s| ≤ 1,

since in the part (v) of the above lemma we allow the slope to be an arbitrary
number from [−1, 1]. The main advantage of W δ

p over U δp is that the new function
satisfies the following stronger version of Lemma 2.3 (iv):

(3.4) W δ
pz(x, y, z) ≤ 0 for x ∈ R, y ≤ z.

The validity of this bound is an immediate consequence of Lemma 3.2 (iii). This
stronger property will enable us to handle the jump part of the pair (X,Y ). Namely,
we shall prove the following statement.



MAXIMAL INEQUALITIES 11

Lemma 3.3. For any (x, y, z) ∈ D and any h, k ∈ R such that |k| ≤ |h| we have

(3.5) W δ
p (x+ h, y + k, z) ≥W δ

p (x, y, z) +W δ
px(x, y, z)h+W δ

py(x, y, z)k.

Proof. We may assume that h 6= 0. When y + k ≤ z, then the assertion follows
immediately from (3.3); thus, it suffices to deal with y+k > z and, again by (3.3), we
may assume that y = z. Fix κ > 0. Let X be a standard Brownian motion, starting
from 0, let Y = kX/h and consider the stopping time τ = inf{t : Xt ∈ {−κh, h}}.
Observe that the process

([x+X,x+X]t − [y + Y, y + Y ]t)t≥0 = (x2 − y2 + [X,X]t − [Y, Y ]t)t≥0

is nondecreasing as a function of t. In consequence, the argumentation presented
in §3.1 leads to the inequality

EW δ
p (x+Xτ∧t, y + Yτ∧t, Y

∗
τ∧t ∨ z) ≤W δ

p (x, y, z), t ≥ 0.

Therefore, letting t → ∞ and using Lebesgue’s dominated convergence theorem
yields

W δ
p (x, y, z)

≥ EW δ
p (x+Xτ , y + Yτ , Y

∗
τ ∨ z)

= EW δ
p (x+Xτ , y + Yτ , Y

∗
τ ∨ z)1{Xτ=h}

+ EW δ
p (x+Xτ , y + Yτ , Y

∗
τ ∨ z)1{Xτ=−κh}

≥ κ

1 + κ
W δ
p (x+ h, y + k, (y + k) ∨ z) +

1
1 + κ

W δ
p (x− κh, y − κk, (y − κk) ∨ z),

where in the latter passage we have used (3.4). It suffices to subtract W δ
p (x−κh, y−

κk, (y − κk) ∨ z) from both sides, divide throughout by κ and let κ→ 0 to obtain
the claim. �

Lemma 3.4. For any (x, y, z) ∈ D there is c = c(x, y, z) ≤ 0 such that if h, k ∈ R,
then

(3.6) W δ
pxx(x, y, z)h2 + 2W δ

pxy(x, y, z)hk +W δ
pyy(x, y, z)k2 ≤ c(x, y, z)(h2 − k2).

Proof. By Lemma 3.2 (iv) and (v), we have W δ
pyy ≥ 0, W δ

pxx ≤ 0 and

(3.7) W δ
pxx(x, y, z)± 2W δ

pxy(x, y, z) +W δ
pyy(x, y, z) ≤ 0.

We shall prove that the claim holds with c = (W δ
pxx−W δ

pyy)/2. Indeed, this function
has the required sign and the bound (3.6) can be rewritten in the form

(W δ
pxx(x, y, z) +W δ

pyy(x, y, z))(h2 + k2) + 4W δ
pxy(x, y, z)hk ≤ 0,

which follows immediately from (3.7) and the trivial estimate 2|hk| ≤ h2 + k2. �

We shall also need the following decomposition lemma of Wang [20]. Recall that
for any semimartingale X there exists a unique continuous local martingale part
Xc of X satisfying

[X,X]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t

|4Xs|2

for all t ≥ 0. Here4Xs = Xs−Xs− denotes the jump of X at time s. Furthermore,
we have that [Xc, Xc] = [X,X]c, the pathwise continuous part of [X,X].
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Lemma 3.5. If X and Y are semimartingales, then Y is differentially subordinate
to X if and only if Y c is differentially subordinate to Xc, |Y0| ≤ |X0| and |∆Ys| ≤
|∆Xs| for all s.

Now we are ready to establish (1.3) in the general case. As above, we may
assume that X is bounded in Lp and Y satisfies Y0 ≥ 0 almost surely. For any
N > 1, let τ = inf{t ≥ 0 : |Xt| + |Yt| ≥ N} and consider the process Z =
((Xτ∧t, Yτ∧t, Y

∗
τ∧t))t≥0. An application of Itô’s formula gives

(3.8) W δ
p (Zt) = W δ

p (Z0) + I1 + I2 + I3/2 + I4,

where

I1 =
∫ τ∧t

0+

W δ
px(Zs−)dXs +

∫ τ∧t

0+

W δ
py(Zs−)dYs,

I2 =
∫ τ∧t

0+

W δ
pz(Zs−)dY ∗s ,

I3 =
∫ τ∧t

0+

W δ
pxx(Zs−)d[X,X]cs

+ 2
∫ τ∧t

0+

W δ
pxy(Zs−)d[X,Y ]cs +

∫ τ∧t

0+

W δ
pyy(Zs−)d[Y, Y ]cs

and

I4 =
∑

0<s≤t

[
W δ
p (Zs)−W δ

p (Zs−)−W δ
px(Zs−)∆Xs −W δ

py(Zs−)∆Ys
]
.

We have that I1 is a local martingale and hence we may assume that EI1 = 0 (if
this is not the case, we take the localizing sequence (τn)n≥0, repeat the reasoning
with Z replaced by Zτn and take n → ∞ at the end). Using (3.4) and arguing
as previously, we see that I2 ≤ 0. To deal with I3, fix 0 ≤ s0 < s1 ≤ t. For
any j ≥ 0, let (ηji )1≤i≤ij be a sequence of nondecreasing finite stopping times with
ηj0 = s0, η

j
ij

= s1 such that limj→∞max1≤i≤ij−1 |ηji+1 − η
j
i | = 0. Keeping j fixed,

we apply, for each i = 0, 1, 2, . . . , ij , the estimate (3.6) to x = Xs0−, y = Ys0−,
z = Y ∗s0− and h = hji = Xc

ηji+1
−Xc

ηji
, k = kji = Y c

ηji+1
− Y c

ηji
. Summing the obtained

ij + 1 inequalities and letting j →∞ yields

W δ
pxx(Zs0−)[Xc, Xc]s1s0 + 2W δ

pxy(Zs0−)[Xc, Y c]s1s0 +W δ
pyy(Zs0−)[Y c, Y c]s1s0

≤ c(Zs0−)
(
[Xc, Xc]s1s0 − [Y c, Y c]s1s0

)
≤ 0,

where we have used the notation [S, T ]s1s0 = [S, T ]s1− [S, T ]s0 and the last inequality
is due to the differential subordination of Y c to Xc (see Lemma 3.5). This implies
I3 ≤ 0, by approximation of I3 by discrete sums. Finally, I4 ≤ 0 follows from (3.5)
and Lemma 3.5. Thus, taking expectation in (3.8), we get

E(V γp )δ(Zt) ≤ EW δ
p (Zt) ≤ EW δ

p (Z0).

Letting δ → 0 and using Lebesgue’s dominated convergence theorem gives

EV γp (Zt) ≤ EWp(Z0) ≤ 0,

where the latter estimate is due to the pointwise bound Wp(x, y, y) ≤ 0 for x ≥ y,
a direct consequence of the definition of Wp. It suffices to let N, t→∞ to get

||Y ∗||p ≤ γ||X||p.
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Since γ > p/(p− 1) was arbitrary, the result follows.

4. Sharpness

4.1. The case 1 < p < 2. Let B be a standard, one-dimensional Brownian motion
starting from 1. It is well known that the inequality

||B∗τ ||p ≤
p

p− 1
||Bτ ||p, τ ∈ Lp/2,

is sharp; for the sake of completeness, let us outline this fact. Fix γ < p/(p − 1)
and introduce the stopping time τ = inf{t ≥ 0 : B∗t = γBt}. Obviously, τ is
finite almost surely and ||B∗τ ||p = γ||Bτ ||p, so we will be done if we show that
both sides are finite (or equivalently, τ ∈ Lp/2, due to Burkholder-Davis-Gundy
inequality). To do this, consider the function K : R×[0,∞)→ R given by K(x, y) =
pyp−1

(
y − p

p−1 |x|
)

. This function is of class C∞ on (0,∞) × (0,∞) and satisfies
Kxx(x, y) = 0, Ky(y, y) = 0 for x, y > 0. Consequently, applying Itô’s formula
yields

− p

p− 1
= K(1, 1) = EK(Bτ∧t, B∗τ∧t).(4.1)

On the other hand, by the definition of τ ,

K(Bτ∧t, B∗τ∧t) ≤ p(B∗τ∧t)p−1

(
B∗τ∧t −

p

(p− 1)γ
B∗τ∧t

)
=
p

γ

(
γ − p

p− 1

)
(B∗τ∧t)

p,

so B∗τ ∈ Lp and we are done. Let us mention here that letting t→∞ in (4.1) yields

||B∗τ ||pp =
(
p

γ
− p+ 1

)−1

so in particular ||τ ||p/2 →∞ as γ → p/(p−1), in virtue of Burkholder-Davis-Gundy
inequality.

4.2. The case p ≥ 2. Here the example is a bit more complicated. As previously,
let B be a standard Brownian motion starting from 1 and consider the process
D =

(
1−

∫ t
0+

sgnBsdBs
)
t≥0

, which, by Itô-Tanaka formula, is another Brownian

motion starting from 1. In order to define the martingales X and Y , we need to
stop B and D appropriately. Introduce η = inf{t ≥ 0 : Bt ∈ {0, 2}}. Next, for
a fixed γ > p − 1, set τ = η on {Bη = 2} and τ = inf{t ≥ η : Dt = γ|Bt|} on
{Bτ = 0}. Finally, define X = Bτ and Y = Dτ . By Itô-Tanaka formula, we have
that |B| + D = 2 + L, where L stands for the local time of B at 0. In particular,
this implies

(4.2) |B|+D = D∗ on the set {Bη = 0},

since the measure dLτ is concentrated on {B = 0}. Therefore, on the set {Bη = 0}
we have

τ = inf{t ≥ η : Dt = γ|Bt|} = inf
{
τ ≥ η : D∗t =

γ + 1
γ

Dt

}
.

We have γ+1
γ < p

p−1 and limγ→p−1
γ+1
γ = p

p−1 . In consequence, using the strong
Markov property and arguing as in the case 1 < p < 2, we show that τ ∈ Lp/2 and
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||τ ||p/2 →∞ as γ → p− 1. In addition, on {Bη = 0} we may write

Y ∗ = D∗τ =
γ + 1
γ

Dτ = (γ + 1)|Bτ | = (γ + 1)|Xτ |

(see (4.2)), so for any ε > 0,

||Y ∗||p ≥ ||Y ∗1{Bη=0}||p = (γ + 1)||Xτ1{Bη=0}||p
≥ (γ + 1)||Xτ ||p − (γ + 1)||Xτ1{Bη=2}||p
≥ (γ + 1)||X||p − 2(γ + 1)

≥ (γ + 1− ε)||X||p
provided γ is sufficiently close to p − 1. This shows that the constant p is indeed
the best possible in (1.3).

5. Further extensions and applications

5.1. Vector-valued case. We will prove the following generalization of Theorem
1.2 to the higher dimensional setting, under the additional assumption of the con-
tinuity of paths.

Theorem 5.1. Suppose that X is an Rd-valued continuous-path martingale and
that Y is a real, continuous-path martingale which is differentially subordinate to
X. Then for 1 < p <∞ we have

(5.1) ||Y ∗||p ≤ Cp||X||p
and the inequality is sharp.

Essentially, the proof goes along the same lines as in §3.1 and §3.3, so we shall
only present the necessary modifications and leave the details to the reader. We
need to establish (5.1) only for 1 < p < 2; for the remaining values of p the inequality
follows from the bounds of Doob and Burkholder. The proof for p ∈ (1, 2) rests
on the following vector version of the function Uδp . For 1 < p < 2, introduce
Uδp : Rd × R× [0,∞)→ R by

Uδp (x, y, z) = Uδp (|x|, y, z).
We have the following counterpart of Lemma 3.4.

Lemma 5.1. For any x ∈ Rd \ {0}, z ≥ max{y, 0} and h ∈ Rd, k ∈ R we have
d∑

i,j=1

Uδpxixj (x, y, z)hihj +
d∑
i=1

Uδpxiy(x, y, z)hik + Uδpyy(x, y, z)k2

≤ w(|x|, y, z)(|h|2 − k2),

(5.2)

where w = (Uδpxx − U δpyy)/2 ≤ 0.

Proof. Let 〈x1, x2〉 denote the scalar product of x1, x2 ∈ Rd. We have

2Uδpxy(|x|, y, z)
〈
x

|x|
, h

〉
k ≤ 2

∣∣U δpxy(|x|, y, z)hk
∣∣

and, by Lemma 2.3 (v),(
Uδpxx(|x|, y, z)−

Uδpx(|x|, y, z)
|x|

)(〈
x

|x|
, h

〉2

− |h|2
)
≤ 0.
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If we add these two inequalities, we get the estimate which is equivalent to

d∑
i,j=1

Uδpxixj (x, y, z)hihj + 2
d∑
i=1

Uδpxiy(x, y, z)hik + Uδpyy(x, y, z)k2

≤ Uδpxx(|x|, y, z)|h|2 + 2
∣∣U δpxy(|x|, y, z)

∣∣|h||k|+ Uδpyy(x, y, z)k2.

The right-hand side does not exceed w(|x|, y, z)(|h|2 − k2). This is done exactly
in the same manner as in Lemma 3.4, with the aid of part (iii) of Lemma 2.3. To
check the sign of w, write 2w = (U δpxx + Uδpyy)− 2Uδpyy and note that ∆Uδp ≤ 0 by
Lemma 2.3 (iii) and U δpyy ≥ 0 by Lemma 2.3 (v). �

Proof of Theorem 5.1. Fix ε > 0, N > 1 and pick δ > 0 such that Uδp satisfies the
property (iv) from Lemma 2.3. The function Uδp has a singularity at each point of
the form (0, y, z), so we need an additional argument to ensure that the process |X|
stays away from 0. Increasing the dimension d if necessary, we may and do assume
that X1, the first coordinate of X, vanishes for all t with probability 1. Introduce
the stopping time

τ = τN = inf{t : |Xt|+ |Yt| ≥ N}
and the process

Z =
(
(ε,X2

τ∧t, X
3
τ∧t, . . . , X

d
τ∧t), Yτ∧t, Y

∗
τ∧t)

)
t≥0

.

Now we are allowed to apply Itô’s formula to get

(5.3) Uδp (Zt) = Uδp (Z0) + I1 + I2 + I3/2,

where I1, I2 are as in §3.1 and

I3 =
d∑

i,j=1

∫ τ∧t

0

Uδpxixj (Zs)d[Xi, Xj ]s

+ 2
d∑
i=1

∫ τ∧t

0

Uδpxiy(Zs)d[Xi, Y ]s +
∫ τ∧t

0

Uδpyy(Zs)d[Y, Y ]s.

Repeating the reasoning from that subsection we get Up(Z0) ≤ 0, EI1 = 0 and
I2 ≤ εY ∗τ∧t. Using the approximation arguments from §3.3, we see that Lemma 5.2
gives I3 ≤ 0. It remains to let δ → 0, ε → 0, N → ∞ and apply the majorization
Vp ≤ Up to obtain

E|Y ∗t |p ≤
(

p

p− 1

)p
E|Xt|p ≤

(
p

p− 1

)p
||X||pp.

Letting t→∞ yields the claim. �

5.2. Improved bounds for stochastic integrals. Assume that B is a Brownian
motion in Rn, starting from an arbitrary point, and let H, K be two predictable
processes taking values in the class of matrices of dimensions d × n and 1 × n,
respectively. Define X, Y by stochastic integrals

Xt = X0 +
∫ t

0+

Hs · dBs Yt = Y0 +
∫ t

0+

Ks · dBs,
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for any t ≥ 0. For any matrix A = (aij)1≤i≤d, 1≤j≤n, its Hilbert-Schmidt norm is
given by

||A||HS =

 d∑
i=1

n∑
j=1

a2
ij

1/2

.

Theorem 5.2. With the above notation, if |Y0| ≤ |X0| and |Ks| ≤ ||Hs||HS for
any s > 0, then

||Y ∗||p ≤ Cp||X||p, 1 < p <∞,
and the inequality is sharp.

Proof. We have that X, Y are continuous-path martingales taking values in Rd and
R, respectively, and Y is differentially subordinate to X. Indeed, for any t ≥ 0,

[X,X]t − [Y, Y ]t = X2
0 − Y 2

0 +
∫ t

0+

(
||Hs||2HS − |Ks|2

)
ds.

Therefore the assertion follows from Theorem 5.1. �

5.3. Bounds for harmonic functions on Euclidean domains. Suppose that
n ≥ 1 is a fixed integer, let D be a connected open subset of Rn and fix ξ ∈ D. Let
D0 be a bounded subdomain of D, satisfying ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D. Denote
by µξD0

the harmonic measure on ∂D0 with respect to ξ. Consider two harmonic
functions u, v on D, taking values in Rd (in other words, each coordinate of u
and v is a real harmonic function). Following [6], we say that v is differentially
subordinate to u if

(5.4) |∇v(x)| ≤ |∇u(x)| for x ∈ D,
where the gradient of a vector-valued function u = (u1, u2, . . . , ud) is given by

|∇u|2 =
d∑
j=1

|∇uj |2 =
d∑
j=1

n∑
k=1

∣∣∣∣∂uj∂xk

∣∣∣∣2 .
Define the p-th norm of u by

||u||p =
[∫

∂D0

|u(x)|pµξD0
(dx)

]1/p

.

Suppose that B is a Brownian motion in Rn, starting from ξ, and let τ = inf{t ≥
0 : Bt /∈ D0} be the exit time of B from D0. We define v∗, the Brownian maximal
function of v, by the formula v∗ = v∗(ξ) = sups∈[0,τ ] v(Bs).

Theorem 5.3. Assume that u is Rd-valued harmonic function and v is a real-
valued harmonic function which is differentially subordinate to u. If, in addition,
we have |v(ξ)| ≤ |u(ξ)|, then

||v∗||p ≤ Cp||u||p.

Proof. The processes X = (u(Bτ∧t))t≥0, Y = (v(Bτ∧t))t≥0 are martingales, which
have the representation

Xt = u(ξ) +
∫ τ∧t

0+

∇u(Bs) · dBs, Yt = v(ξ) +
∫ τ∧t

0+

∇v(Bs) · dBs

for t ≥ 0. It suffices to apply Theorem 5.2, the assumptions of which are satisfied
due to the properties of u and v. �
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A particularly interesting example corresponds to the case when D is the upper
half-space (0,∞)×Rn−1. We shall prove the following statement (see Burkholder,
Gundy and Silverstein [2] and Burkholder [3] for related results and further con-
nections to nontangential maximal functions).

Theorem 5.4. Let u, v be real valued harmonic functions on D satisfying (5.4).
Then

sup
t≥0

[∫
Rn−1

E|v∗(t, x)− v(t, x)|pdx
]1/p

≤ Cp sup
t≥0

[∫
Rn−1

|u(t, x)|pdx
]1/p

.

Proof. We may and do assume that the right-hand side is finite. Fix t > 0, x ∈ Rn−1

and apply the previous theorem to u, v − v(t, x), ξ = (t, x) and the rectangle
D0 = (ε,M) × (−N,N), where ε, M , N are chosen so that ξ ∈ D0. Letting
M, N →∞ yields

E| sup
s≤τ

v(Bs)− v(t, x)|p ≤ Cpp
∫

Rn−1
|u(ε, r)|pPt,x,ε(r)dr,

where τ = inf{s > 0 : B1
s = ε} and Pt,x,ε stands for the Poisson kernel

Pt,x,ε(r) = P(Bτ ∈ dr) =
Γ (n/2)
πn/2

t− ε
(|x− r|2 + (t− ε)2)n/2

.

It suffices to integrate both sides over x with respect to the Lebesgue measure on
Rn−1 and use the equality

∫
Rn−1 Pt,x,εdx = 1. The proof is complete. �

5.4. An application to Riesz system of harmonic functions. Put D =
(0,∞) × Rn and let u be a real harmonic function on D. Let us introduce uk =
∂u/∂xk and ujk = ∂2u/∂xj∂xk for j, k ∈ {0, 1, 2, . . . , n}. Then u0, u1, . . ., un are
harmonic and satisfy the generalized Cauchy-Riemann equations

(5.5)
n∑
j=0

ujj = 0 and ujk = ukj .

This system of harmonic functions was studied in depth by Stein and Weiss [19].
They showed it is a natural object on which the classical theory of Hardy spaces
can be extended.

To apply our results, observe that the function u0 is differentially subordinate
to n1/2w = n1/2(u1, u2, . . . , un). Indeed, using (5.5), we obtain

|∇u0|2 = |u00|2 +
n∑
k=1

|u0k|2

=

∣∣∣∣∣
n∑
k=1

ukk

∣∣∣∣∣
2

+
n∑
k=1

|uk0|2

≤ (n− 1)
n∑
k=1

|ukk|2 +

(
n∑
k=1

|ukk|2 +
n∑
k=1

|uk0|2
)

≤ (n− 1)|∇w|2 + |∇w|2

= n|∇w|2.
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Note that the constant n is optimal here: consider the gradient of nx2
0−x2

1−. . .−x2
n.

Consequently, if ξ ∈ D satisfies |u0(ξ)| ≤ n1/2|w(ξ)|, then for any 1 < p < ∞ we
have

||u∗0||p ≤ Cp

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 n∑
j=1

|uj |2
1/2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

.

See Essén [10] and Stein [18] for related results and further discussion.

5.5. A sharp bound for three-dimensional Bessel process. Let us turn to
our final application. Assume that B is a Brownian motion in R3 starting from 0
and let ρ = (|Bt|)t≥0 be the three-dimensional Bessel process. Theorem 1.2 allows
us to obtain some sharp estimates for the stopped infimum of ρ. To be precise, we
shall prove the following fact.

Theorem 5.5. Let ρ be as above and let β be an adapted one-dimensional Brownian
motion. Then for any 1 < p <∞ and any stopping time τ ∈ Lp/2,

|| inf
t≥τ

ρ||p ≤ Cp||βτ ||p

and
||βτ ||p ≤ Cp|| inf

t≥τ
ρ||p.

Both inequalities are sharp.

Proof. By Pitman’s theorem (see e.g. Pitman [16] or Revuz and Yor [17]), there
is an adapted standard one-dimensional Brownian motion D such that (ρ, J) =
(2D∗ − D,D∗). Then D is differentially subordinate to β and β is differentially
subordinate to D, since both processes have the same square bracket. Thus, the
desired inequalities follow at once from (1.3). To get the optimality of the constant
Cp, use the reasoning from Section 4 to construct the appropriate Brownian motion
β and the stopping time τ . �
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[12] A. Osȩkowski, Sharp maximal inequality for martingales and stochastic integrals, Elect.

Comm. in Probab. 14 (2009), 17–30.
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