
ON CARLSON-LEVIN INEQUALITIES

ADAM OSȨKOWSKI

Abstract. We present a new proof of Carlson-Levin inequality and some of
its extensions, based on a dynamic programing-type approach.

1. Introduction.

In 1934, F. Carlson proved in [5] that for any sequence (an)n≥1 of nonnegative
numbers, we have the inequality

(1)

( ∞∑
n=1

an

)4

≤ π2
∞∑
n=1

a2
n

∞∑
n=1

n2a2
n.

Furthermore, for any measurable function f : [0,∞)→ [0,∞), we have

(2)

(∫ ∞
0

f(u)du

)4

≤ π2

∫ ∞
0

f2(u)du

∫ ∞
0

u2f2(u)du.

Both inequalities are sharp: the constant π2 cannot be replaced by a smaller num-
ber. These two estimates have been extended in many directions and found many
interesting applications, including harmonic analysis (cf. [4, 10]), interpolation the-
ory (see [8, 12, 14]), and optimal sampling ([1]). See also the papers [2], [6], [7], [9]
and [11] for related results in this direction.

By now, several different proofs of (1) and (2) have been invented. Carlson real-
ized that the estimates cannot be established by a direct use of Hölder’s inequality,
and his original proof exploits the theory of analytic functions. Probably the most
universal argument is due to Hardy [9], who showed that (1) and (2) do follow from
Hölder’s inequality if combined with a clever splitting procedure. This splitting
argument was applied and further extended by many authors. In particular, Levin
[13] exploited it to identify the best constant Cp,q,λ,µ in the estimate

(3)

∫ ∞
0

f(u)du ≤ Cp,q,λ,µ
(∫ ∞

0

up−1−λfp(u)du

)s(∫ ∞
0

uq−1+µfq(u)du

)t
,

where p, q are assumed to be larger than 1, the numbers λ, µ are positive parameters
and s = µ/(pµ+ qλ), t = λ/(pµ+ qλ). The formula for the best constant is

Cp,q,λ,µ =
(λ+ µ)s+t−1

(ps)s(qt)t

[
B
(

s

1− s− t
,

t

1− s− t

)]1−s−t

,

where B(α, β) =
∫ 1

0
uα−1(1−u)β−1du is the usual Beta function. One easily verifies

that, due to homogeneity reasons, for fixed p, q, λ and µ, the above choice of s and
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t is the only one which produces a non-trivial estimate (for other s, t, one is forced
to take the constant to be infinite).

The purpose of this note is to present an alternative proof of the inequality
(3), with the use of a dynamic-programming-type approach. Actually, as we will
indicate, the method can be applied to a much wider class of estimates and we
will manage to obtain a certain extension of (3). Roughly speaking, our technique
enables to deduce an inequality of the above type from the existence of a certain
special function of two variables, enjoying an appropriate monotonicity condition.
We also refer the interested reader to [3] for the description of related methods.

2. A method.

We start with a general setup. Fix a Borel function V : [0, 1]× [0,∞)→ [0,∞),
which is bounded on bounded sets. Suppose that for a fixed y ≥ 0, we want to find
an effective lower bound for the quantity

(4) inf

∫ 1

0

V (u, f(u)) du,

where the infimum is taken over all nonnegative and continuous functions f on [0, 1]

satisfying
∫ 1

0
f(u)du = y. To study this problem, we extend it to a slightly more

general setting: for any x ∈ [0, 1] and any y ≥ 0, let

B(x, y) = inf

∫ x

0

V (u, f(u))du,

where the infimum is taken over all nonnegative and continuous functions f on [0, x]
satisfying 1

x

∫ x
0
f(u)du = y. Here and below, we use the convention 1

x

∫ x
0
f(u)du =

f(0) when x = 0. Directly from the definition, we see that B enjoys the following:

1◦ We have B(0, y) = 0 for all y ≥ 0.
2◦ For any nonnegative and continuous f on [0, 1], the function

ξf : x 7→ B

(
x,

1

x

∫ x

0

f(u)du

)
+

∫ 1

x

V (u, f(u))du

is nonincreasing on [0, 1].

Indeed, the first condition is evident. To prove the second, pick 0 ≤ w < x ≤ 1 and
fix an arbitrary continuous function f : [0, x] → [0,∞). For any ε > 0 there is a

continuous function f̃ : [0, w]→ [0,∞) such that 1
w

∫ w
0
f̃(u)du = 1

w

∫ w
0
f(u)du and

B

(
w,

1

w

∫ w

0

f(u)du

)
+ ε >

∫ w

0

V (u, f̃(u))du.

Actually, modifying f̃ slightly if necessary, we may also assume that f̃(w) = f(w),

without violating the preceding properties. Extend f̃ to [0, x] by setting f̃ = f on

(w, x]. Then f̃ is continuous on [0, x] and we have
∫ x

0
f̃(u)du =

∫ x
0
f(u)du, so

B

(
x,

1

x

∫ x

0

f(u)du

)
≤
∫ x

0

V (u, f̃(u))du

=

∫ w

0

V (u, f̃(u))du+

∫ x

w

V (u, f̃(u))du)

< B

(
w,

1

w

∫ w

0

f(u)du

)
+ ε+

∫ x

w

V (u, f(u))du.
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Since ε was arbitrary, the property 2◦ follows.
A simple but very important observation is that if we manage to find some

function B which satisfies the conditions 1◦ and 2◦, then

(5)

∫ 1

0

V (u, f(u))du ≥ B
(

1,

∫ 1

0

f(u)du

)
for any continuous function f : [0, 1] → [0,∞). This follows immediately from the
fact that the left-hand side is equal to ξf (0), while the right-hand side is precisely
ξf (1). Thus, we see that the problem of proving an effective lower bound for
the infimum (4) boils down to the problem of constructing an appropriate special
function.

So, suppose that we have fixed V and we search for the corresponding function
B. It is clear that the main difficulty lies in handling the second condition. If B is
sufficiently regular, then we can use the following simple observation.

Lemma 1. Suppose that B is continuous on [0, 1]× [0,∞) and differentiable in the
interior of this set. Assume further that B satisfies the inequality

(6) Bx(x, y) +

(
d

x
− y

x

)
By(x, y) ≤ V (x, d)

for any x ∈ (0, 1), y > 0 and d ≥ 0. Then 2◦ holds true.

Proof. Fix a continuous function f : [0, 1]→ [0,∞) and two numbers w, x satisfying
0 ≤ w < x ≤ 1. A direct differentiation shows that

B

(
x,

1

x

∫ x

0

f

)
−B

(
w,

1

w

∫ w

0

f

)
=

∫ x

w

{
Bx

(
u,

1

u

∫ u

0

f

)
+

(
f(u)

u
− 1

u2

∫ u

0

f

)
By

(
u,

1

u

∫ u

0

f

)}
du

≤
∫ x

w

V (u, f(u))du,

which follows from (6), by taking x = u, y = 1
u

∫ u
0
f and d = f(u). We obtained an

inequality equivalent to ξf (w) ≥ ξf (x); this completes the proof. �

In the next section we will see how the above approach can be successfully used
in the study of (3). As we shall see, the method is very effective, at the price of
involving some lengthy and technical computations at some points.

3. Analysis of Levin’s inequality.

For the sake of clarity, we have decided to split the analysis into seven separate
steps.

Step 1. Reductions. Let us start with several useful observations which will
turn the desired inequality (3) into a more convenient form. First, it suffices to
show the claim for p 6= q; then the case p = q follows from an easy limiting
argument. Actually, we may assume that p < q. Indeed, if p > q, then we substitute
w = 1/u under the three integrals in (3): we obtain (3) again, applied to the
function u 7→ f(1/u)/u2, with the parameters p′ = q, q′ = p, λ′ = p − q + µ and
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µ′ = p − q + λ (enjoying p′ < q′, λ′, µ′ > 0, as desired). Secondly, it suffices to
study the “localized” version of (3):

(7)

∫ 1

0

f(u)du ≤ Cp,q,λ,µ
(∫ 1

0

up−1−λfp(u)du

)s(∫ 1

0

uq−1+µfq(u)du

)t
,

in which the integration is taken over the interval [0, 1]. To see how (7) implies (3),
simply apply the substitution w = ru and let r → ∞. Next, note that by stan-
dard approximation, in the analysis of (7) we may restrict ourselves to continuous
functions f : [0, 1] → [0,∞). Our final remark introduces a somewhat different
reformulation of (7). Namely, for each c ≥ 0, we will search for the best lower
bound for the quantity

(8)

∫ 1

0

up−1−λfp(u) + cuq−1+µfq(u)du

depending only on c and
∫ 1

0
f(u)du; then an appropriate optimization with respect

to c will allow us to deduce (7). This reduction is close to Hardy’s argument, as
it replaces analysis of the right-hand side of (7) by a much more convenient linear
expression (8). Clearly, this expression can be studied with the use of the method
introduced in the preceding section: for c ≥ 0, we let V = V c : [0, 1] × [0,∞) →
[0,∞) be given by V c(x, y) = xp−1−λyp + cxq−1+µyq. So, the question is: what is
the corresponding function B : [0, 1]× [0,∞)→ R?

In the next two steps, we will present a reasoning which leads to a candidate for
this special function. Then, in Steps 4 and 5, we will verify rigorously that this
object indeed enjoys all the required conditions.

Step 2. Structural properties of B = Bc. Write the abstract definition:

Bc(x, y) = inf

∫ x

0

up−1−λfp(u) + cuq−1+µfq(u)du,

where the infimum is taken over the class of all continuous f : [0, x]→ [0,∞) with
1
x

∫ x
0
f(u)du = y. For any such f and any r > 0, the function rf is continuous and

has average ry over [0, x]. Hence∫ x

0

up−1−λfp(u) + cuq−1+µfq(u)du

= r−p
∫ x

0

up−1−λ(rf)p(u) + crp−quq−1+µ(rf)q(u)du ≥ r−pBcr
p−q

(x, ry),

and taking the infimum over all f as above, we obtain Bc(x, y) ≥ r−pBcrp−q (x, ry).
Applying this estimate with y, r, c replaced by ry, r−1 and crp−q, respectively,
shows that actually both sides are equal. Next, for any r > 0 and any continuous
f : [0, x] → [0,∞) with 1

x

∫ x
0
f(u)du = y, the function u 7→ f(ru) is continuous on

[0, x/r] and has average y. Consequently,∫ x

0

up−1−λfp(u) + cuq−1+µfq(u)du

= rp−λ
∫ x/r

0

up−1−λfp(ru) + crq−p+λ+µuq−1+µfq(ru)du

≥ rp−λBcr
q−p+λ+µ

(x/r, y)
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and since f was arbitrary, we get Bc(x, y) ≥ rp−λBcrq−p+λ+µ(x/r, y). As previously,
the reverse inequality is also true, which can be seen by applying the bound with
x, c and r replaced by x/r, crq−p+λ+µ and r−1, respectively.

Using the above “structural” properties of Bc, we get that

Bc(x, y) = xp−λBcx
q−p+λ+µ

(1, y) = xp−λypBcx
q−p+λ+µyq−p(1, 1).

Therefore, in our search for the special function (which a priori need not be equal
to Bc: there might exist other special objects leading to the sharp bound), we
may restrict ourselves to the class of functions of the above form: B(x, y) =
xp−λypϕ(cxq−p+λ+µyq−p), for some function ϕ to be found.

Step 3. On an informal search of ϕ. Suppose for a while that the desired function
B is continuous on [0, 1] × [0,∞) and differentiable in the interior of this set. By
the reasoning from Section 2, this function will satisfy 2◦ if the condition (6) holds.
The inequality

Bx(x, y) +

(
d

x
− y

x

)
By(x, y) ≤ V (x, d)

is, after the substitution r = cxq−p+λ+µyq−p and D = d/y, equivalent to

−λϕ(r) + (λ+ µ)rϕ′(r) + (pϕ(r) + (q − p)rϕ′(r))D −Dp − rDq ≤ 0.(9)

For a fixed r, the left-hand side, considered as a function of D, attains its maximum
for D(r) satisfying

(10) pϕ(r) + (q − p)rϕ′(r) = pDp−1(r) + qrDq−1(r).

Now, recall that we search for ϕ leading to a sharp result. So, it seems very
natural to conjecture that for any r and the corresponding D(r), the inequality (9)
is actually an equality. This leads us to the system of differential equations, for
unknown functions D and ϕ. After some easy computations, we rewrite the system
as

−λϕ(r) + (λ+ µ)rϕ′(r) = (1− p)Dp(r) + (1− q)rDq(r),

pϕ(r) + (q − p)rϕ′(r) = pDp−1(r) + qrDq−1(r).

To solve the above system, we express ϕ in terms of D:

ϕ(r) =
λ+ µ

pµ+ qλ

(
pDp−1(r) + qrDq−1(r)

)
+

q − p
pµ+ qλ

((p− 1)Dp(r) + (q − 1)rDq(r)) .

(11)

If we differentiate this equation, we obtain a formula for ϕ′(r); plugging it and the
above identity for ϕ into the first equation of the system, we get the following single
differential equation for the functionD(r) (we skip the argument r, for convenience):

pλDp−1 − qµrDq−1 − p(p− 1)Dp − q(q − 1)rDq

= rD′
[
p(p− 1)Dp−2 + q(q − 1)rDq−2

][
λ+ µ+ (q − p)D

]
.

To solve this equation, substitute D(r) = r1/(p−q)E(r) to get

λ(q − 1) + µ(p− 1)

q − p
(pEp−1 + qEq−1)

= rE′(p(p− 1)Ep−2 + q(q − 1)Eq−2)(λ+ µ+ (q − p)r1/(p−q)E).

(12)
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Multiply both sides by (λ(q− 1) + µ(p− 1))−1(pEp−1 + qEq−1)1/(s+t−1)r1/(p−q)−1

to obtain [
r1/(q−p)F (E)

]′
+
q − p
λ+ µ

EF ′(E) = 0,

where F (u) = (pup−1 + quq−1)−(s+t)/(1−s−t). This leads us to the following candi-
date for E:

(13) r1/(q−p)F (E) +
q − p
λ+ µ

∫ E

0

uF ′(u)du = 0.

Now, we will verify rigorously that E given by the above equation is well-defined
and the resulting function ϕ has all the required properties.

Step 4. Formal definition of E and ϕ. We start with some simple properties of
F . Clearly, this function is strictly decreasing on [0,∞). Next, a simple calculation
shows ∫ ∞

0

uF ′(u)du = −
∫ ∞

0

F (u)du

= −p−
s+t

1−s−t

∫ ∞
0

u−
(p−1)(s+t)

1−s−t

(
1 +

q

p
uq−p

)− s+t
1−s−t

du

= −p
−s/(1−s−t)q−t/(1−s−t)

q − p
B
(

s

1− s− t
,

t

1− s− t

)(14)

(the last passage follows from using the substitution w = (1 + quq−p/p)−1 under
the integral). Equipped with the above properties of F , we turn to the definition
of E.

Lemma 2. Suppose that p < q. For any r > 0, there is a unique positive number
E = E(r) satisfying (13). Furthermore, the resulting function E : (0,∞)→ (0,∞)
is of class C1 and enjoys the asymptotic behavior

lim
r→∞

qE(r)q−1r(1−s−t)/(p−q)(s+t)

=

[
p−s/(1−s−t)q−t/(1−s−t)

λ+ µ
B
(

s

1− s− t
,

t

1− s− t

)]−(1−s−t)/(s+t)

,
(15)

and

(16) lim
r→0

E(r)r1/(p−q) =
λ

p− 1
.

Proof. Fix r > 0 and denote the left-hand side of (13) by G(E). To prove the
existence and uniqueness of E(r), we derive that

G′(E) = F ′(E)

[
r1/(q−p) +

q − p
λ+ µ

E

]
< 0,

and note that limE→0G(E) =∞, limE→∞G(E) < 0. The regularity of the function
E follows from standard theorems on implicit functions. It remains to show (15)
and (16). Let us start with the first equality. By (14), the expression

∫∞
E
uF ′(u)du

is bounded when E ranges from 0 to ∞. This implies that F (E(r)) must converge
to 0 as r →∞, since otherwise the left-hand side of (13) would explode at infinity.
This in turn implies limr→∞E(r) =∞ and hence, since q > p,

lim
r→∞

(qE(r)q−1)(s+t)/(1−s−t)F (E(r)) = 1.
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Combining this with (13) and (14), we get (15). Finally, let us turn our attention to
(16). Note that limr→0E(r) = 0. Indeed, suppose that there is a sequence (rn)n≥1

converging to 0 such that E(rn) is bounded away from zero. Then the integrals∫ E(rn)

0
uF ′(u)du are also bounded away from zero, while the term r

1/(q−p)
n F (E(rn))

tends to 0. This contradicts (13) and hence E(r) → 0 as r → 0. Since F (u) ≈
(pup−1)−(s+t)/(1−s−t) when u is close to 0 (in the sense that the ratio of the two
expressions converges to 1 as u goes to 0), we see that

F (E(r)) ≈ (pE(r)p−1)−(s+t)/(1−s−t)

and ∫ E(r)

0

uF ′(u)du ≈
∫ E(r)

0

u[(pup−1)−(s+t)/(1−s−t)]′du

(where ≈ has a similar meaning to that above). Now divide both sides of (13)
by E(r)−(p−1)(s+t)/(1−s−t)+1, let r → 0 and use the above two approximations.
Calculating a little bit, we get (16). �

Having defined E, we set D(r) = r1/(p−q)E(r) as above, and see that the formula
(11) gives a well-defined function ϕ on (0,∞). It is easy to check that in terms of
E, this function can be expressed as

ϕ(r) =
λ+ µ

pµ+ qλ
r(p−1)/(p−q) [pE(r)p−1 + qE(r)q−1

]
+

q − p
pµ+ qλ

rp/(p−q) [(p− 1)E(r)p + (q − 1)E(r)q] .

Using (15), we see that E(r) is of order O(r(1−s−t)/(q−1)(q−p)(s+t)) as r →∞, and
hence, for large r, the term involving Eq−1(r) in the definition of ϕ dominates over
the remaining three terms. Hence

lim
r→∞

ϕ(r)

rλ/(λ+µ)

=
λ+ µ

pµ+ qλ
lim
r→∞

r(p−1)/(p−q)−λ/(λ+µ) · qE(r)q−1

=
λ+ µ

pµ+ qλ

[
p−s/(1−s−t)q−t/(1−s−t)

λ+ µ
B
(

s

1− s− t
,

t

1− s− t

)]−(1−s−t)/(s+t)

.

(17)

Furthermore, (16) implies that ϕ extends to a continuous function on the whole

[0,∞), by setting ϕ(0) =
(

λ
p−1

)p−1

.

Step 5. Coming back to B. So, for a given c ≥ 0, define B : [0, 1]×[0,∞)→ [0,∞)
by

(18) B(x, y) = xp−λypϕ(cxq−p+λ+µyq−p).

This function enjoys 1◦ and 2◦: the first property follows from the very definition,
and the second condition was actually the base for the whole construction of ϕ.
Hence, by the method developed in the previous section, we obtain
(19)∫ 1

0

up−1−λfp(u) + cuq−1+µfq(u)du ≥
(∫ 1

0

f(u)du

)p
ϕ

(
c

(∫ 1

0

f(u)du

)q−p)
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for any continuous f : [0, 1] → [0,∞). Before we proceed, let us mention that this
bound does generalize Carlson-Levin inequality. It can be shown that the estimate
is sharp for any choice of the parameter c; however, since we will not need this (in
what follows, we focus on obtaining (3)), we will not go further into this direction.

Step 6. Deduction of (7). Divide both sides of (19) by cλ/(λ+µ) to get

c−λ/(λ+µ)

∫ 1

0

up−1−λfp(u)du+ cµ/(λ+µ)

∫ 1

0

uq−1+µfq(u)du

≥
(∫ 1

0

f(u)du

)p+(q−p)λ/(λ+µ) ϕ

(
c
(∫ 1

0
f(u)du

)q−p)
(
c
(∫ 1

0
f(u)du

)q−p)λ/(λ+µ)
.

But the function r 7→ r−λ/(λ+µ)ϕ(r) is decreasing on (0,∞). Indeed, we have the
identity

(λ+ µ)r1+λ/(λ+µ)
[
r−λ/(λ+µ)ϕ(r)

]′
= −λϕ(r) + (λ+ µ)rϕ′(r),

and the right-hand side, by (9) and (10), is equal to (1−p)Dp(r)+(1−q)rDq(r) < 0.
Hence the preceding inequality implies

c−λ/(λ+µ)

∫ 1

0

up−1−λfp(u)du+ cµ/(λ+µ)

∫ 1

0

uq−1+µfq(u)du

≥ γ
(∫ 1

0

f(u)du

)p+(q−p)λ/(λ+µ)

,

where γ is the limit from (17). Finally, optimize the left-hand side over c: the
choice

c =
λ
∫ 1

0
up−1−λfp(u)du

µ
∫ 1

0
uq−1+µfq(u)du

transforms the above bound into (7), as one verifies after some lengthy calculations.

Step 7. Sharpness. Finally, let us address the optimality of the constant Cp,q,λ,µ.
It turns out that our approach also gives a hint how to search for the extremal
functions (i.e., those for which both sides of (3) are equal, or almost equal). We
will be brief. The idea is very simple: let us first try to find functions which are
extremal for the above B: that is, those for which

ξf (x) = B

(
x,

1

x

∫ x

0

f(u)du

)
+

∫ 1

x

V c(u, f(u))du

is constant on [0, 1]. If we differentiate over x and repeat the previous calculations,
we see that this condition holds if for any x ∈ (0, 1) we have d

y = D(s), where

d = f(x), y = 1
x

∫ x
0
f(u)du and s = cxq−p+λ+µyq−p; that is,

(20)
f(x)

1
x

∫ x
0
f(u)du

= D

(
cxq−p+λ+µ

(
1

x

∫ x

0

f(u)du

)q−p)
, for x ∈ (0, 1).

In what follows, we will study the case c = 1 only: this will lead us to the right
candidates (actually, any choice of c produces extremal functions). Since D(r) =
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r1/(p−q)E(r), the equality (20) is equivalent to

(21) E

(
xq−p+λ+µ

(
1

x

∫ x

0

f(u)du

)q−p)
= f(x)x−(q−p+λ+µ)/(p−q).

Now, if we put r(x) = xλ+µ
(∫ x

0
f(u)du

)q−p
, then

r′(x) =
r(x)

x
[λ+ µ+ (q − p)D(r(x))]

and hence the differentiation of both sides of (21) yields

E′(r(x))r(x) [λ+ µ+ (q − p)D(r(x))]

= x

[
q − p+ λ+ µ

q − p
x(q−p+λ+µ)/(q−p)−1f(x) + x(q−p+λ+µ)/(q−p)f ′(x)

]
.

Now plug this into (12) and, in the obtained equality, substitute the right-hand side
of (21) for E(r(x)). After some calculations, we get(

pfp−1(x)xp−1−λ + qfq−1(x)xq−1+µ
)′

= 0.

This means that f (or rather the whole family of the solutions) is given implicitly
by

(22) pfp−1(x)xp−1−λ + qfq−1(x)xq−1+µ = κ,

where x ∈ (0, 1) and κ is a fixed positive parameter. Now take κ = 1 and extend
the above equation to all x ∈ (0,∞). Clearly, this gives a well-defined C∞ function
f : (0,∞)→ (0,∞), satisfying

(23) lim
x→0

pfp−1(x)xp−1−λ = 1, lim
x→∞

qfq−1(x)xq−1+µ = 1.

In particular, f ∈ L1(0,∞). Now, we know that the function ξf is constant on
[0, 1], but we can say more. Namely, if we extend B to the whole [0,∞) × [0,∞)
by the use of (18), then the above calculations imply that the function

x 7→ B

(
x,

1

x

∫ x

0

f(u)du

)
+

∫ ∞
x

V 1(u, f(u))du

is constant on the whole halfline (0,∞). Comparing the limits of this function at
zero and infinity, and exploiting (23), we get the equality∫ ∞

0

V 1(u, f(u))du = lim
x→∞

B

(
x,

1

x

∫ x

0

f(u)du

)
,

or

(24)

∫ ∞
0

xp−1−λfp(x) + xq−1+µfq(x)dx = γ

(∫ ∞
0

f(u)du

)p+λ(q−p)/(λ+µ)

,

where γ is the limit from (17). Next, multiply both sides of (22) (recall that κ = 1)
by x(µ(p−1)+λ(q−1))/(q−p) to get F (f(x)x1+(µ+λ)/(q−p)) = x−(λ+µ)/(q−p), where F is
the function introduced at the end of Step 3. So, if we put u = f(x)x1+(µ+λ)/(q−p),
we see that

−
∫ ∞

0

uF ′(u)du =
λ+ µ

q − p

∫ ∞
0

f(x)dx.
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By (14), we obtain the explicit value of
∫∞

0
f(x)dx. However, multiplying both sides

of (22) by f(x) and integrating over (0,∞), we get∫ ∞
0

pxp−1−λfp(x) + qxq−1+µfq(x)dx =

∫ ∞
0

f(x)dx.

Combining this with (24), we can show that∫ ∞
0

xp−1−λfp(x)dx =
1

ps/(1−s−t)qt/(1−s−t)
· s

λ+ µ
B
(

s

1− s− t
,

t

1− s− t

)
,∫ ∞

0

xq−1+µfq(x)dx =
1

ps/(1−s−t)qt/(1−s−t)
· t

λ+ µ
B
(

s

1− s− t
,

t

1− s− t

)
and ∫∞

0
f(x)dx(∫∞

0
xp−1−λfp(x)dx

)s (∫∞
0
xq−1+µfq(x)dx

)t = Cp,q,λ,µ,

which shows the desired sharpness.
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