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Abstract. The purpose of the paper is to study the behavior of the classes of functions

of bounded lower oscillation under the change of measure given by the weight w. More

speci�cally, we provide sharp upper and lower bounds for the norm of the inclusion

BLO ↪→ BLO(w) in terms of A∞ constant of the weight. The results hold in the general

context of probability spaces equipped with a treelike structure.

1. Introduction

The motivation for the results obtained in this paper comes from a very natural question

about structural properties of some classical spaces of harmonic analysis. We start from

introducing the basic background and notation. Let f be a real-valued locally integrable

function on Rn. We say that f belongs to BMO, the space of functions of bounded mean

oscillation, if

(1) sup
Q

1

|Q|

∫
Q

|f(x)− fQ|dx <∞.

Here the supremum is taken over all cubes Q in Rn with edges parallel to the coordinate

axes, |Q| denotes the Lebesgue measure of Q and

fQ =
1

|Q|

∫
Q

f(x)dx

stands for the average of f overQ. A function f is said to have a bounded lower oscillation,

if the average fQ in (1) can be replaced by essinfQ f , the essential in�mum of f over Q.

That is, f ∈ BLO if

(2) sup
Q

[
fQ − essinf

Q
f

]
<∞.

The suprema in (1) and (2) are denoted by ‖f‖BMO and ‖f‖BLO. One can consider the

slightly di�erent setting in which only the cubes Q within a given Q0 are considered.

In such a case, one often uses the notation BMO(Q0) and BLO(Q0), to indicate the

corresponding base space. Another important modi�cations, the so-called dyadic BMO

and BLO, correspond to the case when in (1) and (2) only the dyadic cubes (i.e., products

of intervals of the form (a2−m, (a+1)2−m], where a, m ∈ Z) are taken into consideration.
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If this is the case, we will add the superscript �d� and denote the modi�ed spaces by

BMOd, BLOd, etc.. Further probabilistic extensions will appear later in the text.

The BMO class was introduced by John and Nirenberg in [6] and it turned out to be

one of the most important spaces in analysis and probability. One of its crucial features

is that many classical operators (maximal, singular integral, etc.) map L∞ into BMO.

Another remarkable result, due to Fe�erman [4], asserts that BMO is dual to the Hardy

space H1. We would also like to mention that BMO is important from the viewpoint

of interpolation. For more on this interesting subject, see any textbook on harmonic

analysis. The BLO class �rst appeared in the paper of Coifman and Rochberg [2], who

used it to prove a decomposition property of BMO: any function from BMO can be

written as a di�erence of two BLO functions. The BLO class arises naturally while

studying the action of the Hardy-Littlewood maximal operatorM on BMO spaces; for

instance, Bennett [1] proved that f ∈ BLO if and only if it is of the formMF +h, where

F is a function of bounded mean oscillation satisfyingMF <∞ almost everywhere, and

h is bounded. See also Korenovskii [7] for a variety of related results in this direction.

Let us recall a few simple properties of the class BLO. It is easy to see that it is a subset

of BMO; more precisely, the bound ||f ||BMO ≤ 2||f ||BLO holds true. Unlike BMO, the

class BLO is not a linear space, as it is not even stable under multiplication by negative

numbers (− log |x| is in BLO, but log |x| is not). Therefore, despite the notation, || · ||BLO
is not a norm. However, it is easy to check that this functional is subadditive and positive-

homogeneous. Furthermore, we have BLO∩ (−BLO) = L∞, which follows from the very

de�nition. All the facts and properties formulated above have their counterparts in the

dyadic case.

We will be interested in certain weighted inequalities for the spaces BLO in the dyadic

context. Here and in what follows, the word `weight' refers to a positive, locally integrable

function w de�ned on a given base measure space (which can be Rn, a �xed cube Q, or

some probability space). Any weight gives rise to the corresponding measure on Rn (again

denoted by w), which is de�ned by w(A) =
∫
A
wdx. Note that the de�nitions of BMO

and BLO make perfect sense if we replace the Lebesgue's measure by an arbitrary Borel

measure; in particular, we may consider these spaces with respect to w.

There are two major problems which will be investigated in this paper:

· Characterize those weights w, for which the inclusion BLO ↪→ BLO(w) is bounded.

· Provide sharp lower and upper bounds for ‖ Id ‖BLO→BLO(w) in terms of appropriate

characteristics of w.

It turns out that the required characterization can be expressed in terms of the so-called

A∞ condition. A weight w is said to be the dyadic A∞ weight (or belong to the dyadic
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A∞ class) if the so-called Wilson constant

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ)dx

is �nite. Here M denotes the dyadic maximal operator, acting on locally integrable

functions by

Mf = sup
Q

(|f |QχQ),

and both suprema above are taken over all dyadic cubes in Rn. We wlll prove the following

two facts.

Theorem 1.1. Suppose that w is a weight on Rn such that ‖ Id ‖BLO→BLO(w) < ∞.

Then w is an A∞ weight and we have [w]A∞ ≤ ‖ Id ‖BLO→BLO(w).

Theorem 1.2. For any dyadic A∞ weight w on Rn, we have ‖ Id ‖BLO→BLO(w) ≤
2d([w]A∞ − 1) + 1. The estimate is sharp: for any c ≥ 1, there is a dyadic A∞ weight w

on Rn for which [w]A∞ = c and ‖ Id ‖BLO→BLO(w) ≥ 2d([w]A∞ − 1) + 1.

The same theorems hold true if instead of Rn, we restrict ourselves to functions and

weights supported on a given base cube Q. Actually, we will study the above statements

in the context of probability measures equipped with a tree-like structure. Here is the

precise de�nition.

Definition 1.3. Suppose that (X,µ) is a nonatomic probability space. A set T of

measurable subsets of X will be called a tree, if the following conditions are satis�ed:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a �nite subset C(Q) ⊂ T containing at least two elements

such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,

(b) Q =
⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and T m+1 =

⋃
Q∈T m C(Q).

(iv) We have limm→∞ supQ∈T m µ(Q) = 0.

Definition 1.4. Let (X,µ) be a probability space with a tree T and let α ∈ (0, 1)

be a �xed parameter. The tree T is called α-regular, if for any Q ∈ T and any child

Q′ ∈ C(Q), we have µ(Q′)/µ(Q) ≥ α.

For example, if we let X be a given dyadic cube in Rn with the normalized Lebesgue

measure and the tree of its dyadic subcubes, then we obtain the localized setting discussed

above. Furthermore, observe that the dyadic tree in this case is 2−n-regular.

We de�ne the probabilistic analogues of BLO classes and A∞ weights using the same

formulas as above: the role of dyadic cubes is played by the elements of the tree T . So,
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a random variable f belongs to the space BLO, if

‖f‖BLO = sup
Q∈T

[
fQ,µ − essinf

Q
f
]
<∞.

Here, of course, fQ,µ = 1
µ(Q)

∫
Q
fdµ is the average of f over Q with respect to the prob-

ability measure µ, and the null-sets in the de�nition of the essential in�mum are with

respect to the measure µ. The A∞ class is handled similarly, with the modi�cation of

Wilson constant given by

[w]A∞ = sup
Q∈T

1

w(Q)

∫
Q

MT (wχQ)dµ,

where

MT f(x) = sup
Q∈T

(fQ,µχQ)

is the T -counterpart of the dyadic maximal function. We will usually skip the index µ

and denote the average fQ,µ just by fQ, as in the Euclidean setting; this should not lead

to any confusion, it will be clear from the context in which case we work.

We will establish the following version of Theorems 1.1 and 1.2.

Theorem 1.5. Let (X,µ) be a probability space with a tree T . Suppose that w is a

weight on X such that ‖ Id ‖BLO→BLO(w) < ∞. Then w is an A∞ weight and we have

[w]A∞ ≤ ‖ Id ‖BLO→BLO(w). This estimate is sharp: for any 1 ≤ c < c′, there is an A∞
weight w on X such that [w]A∞ = c and ‖ Id ‖BLO→BLO(w) ≤ c′.

Theorem 1.6. Let (X,µ) be a probability space with an α-regular tree T , where α ∈
(0, 1) is a given parameter. Then for any dyadic A∞ weight w on X, we have the estimate

‖ Id ‖BLO→BLO(w) ≤ α−1([w]A∞ − 1) + 1. The estimate is sharp: for any c ≥ 1, there is

a probability space (X,µ) with an α-regular tree T and an A∞ weight w on X for which

[w]A∞ = c and ‖ Id ‖BLO→BLO(w) ≥ α−1([w]A∞ − 1) + 1.

A few words about the organization of the paper are in order. We will provide

two proofs of Theorem 1.5: one of them will give a slightly worse estimate [w]A∞ ≤
‖ Id ‖BLO→BLO(w) + 1, but it exploits a number of interesting facts and techniques, so we

believe that it is worth including in the text. Theorems 1.1 and 1.5 are established in the

next section. The �nal part contains the proof of Theorems 1.2 and 1.6.

2. Proofs of Theorems 1.1 and 1.5

We start with the simple observation that it is enough to focus on Theorem 1.5; indeed,

Theorem 1.1 is then a simple consequence. To see this, we pick an arbitrary dyadic cube

Q, equip it with the tree of its dyadic subcubes and the normalized Lebegue measure.

The application of Theorem 1.5 to this new probability space gives

[w]Ad
∞(Q) ≤ ‖ Id ‖BLOd(Q)→BLOd(Q;w) ≤ ‖ Id ‖BLOd→BLOd(w)
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and it remains to take the supremum over Q.

2.1. A special function with a concavity-type property. Let α ∈ (0, 1] be a �xed

parameter. Consider the function B : R4 → R, given by B(x, y, u, v) = (x−y−α−1)v+yu.
This function enjoys the following concavity-type condition.

Lemma 2.1. Assume that x, y, u, v, d and e are real numbers satisfying x − y ≤ 1,

u ≤ v and one of the following conditions: (i) d ≤ α−1− 1 or (ii) d > α−1− 1 and e ≤ 0.

Then we have the estimate

B(x+ d,max{x+ d− 1, y}, u+ e,max{u+ e, v}
)

≤ B(x, y, u, v) +Bx(x, y, u, v)d+Bu(x, y, u, v)e.
(3)

Proof. The argument is straightforward: there are four possibilities to consider. If we

have x+ d− 1 ≤ y and u+ e ≤ v, then the estimate is of the form

B(x+ d, y, u+ e, v) ≤ B(x, y, u, v) +Bx(x, y, u, v)d+Bu(x, y, u, v)e

and actually, it becomes an equality: B is linear in x and u. If x+ d− 1 > y, u+ e ≤ v,

then the inequality is equivalent to the trivial (x+d−1−y)(u+e−v) ≤ 0. If x+d−1 ≤ y

and u+ e > v, then the claim reads (x+ d− y − α−1)(u+ e− v) ≤ 0, which follows from

the bound α−1 ≥ 1. The �nal case is x+ d− 1 > y and u+ e > v, in which the assertion

becomes (x + d − y − α−1)(u + e − v) ≤ 0. But then we necessarily have e > 0 (since

u ≤ v), so the assumption (i) must hold: d ≤ α−1 − 1. Since x − y ≤ 1, the estimate

follows. �

2.2. A lower bound for ‖ Id ‖BLO→BLO(w), the weaker form. We start with a lemma

which follows from the results of Coifman and Rochberg [2]. We improve the statement

by providing the best constant.

Lemma 2.2. Suppose that f is a nonnegative function. Then ‖ logMT f‖BLO ≤ 1.

Proof. Recall the following classical maximal weak-type estimate for martingales: for

any Q ∈ T and any integrable random variable ϕ supported on Q, we have

(4) λµ
(
{x ∈ Q :MT ϕ ≥ λ}

)
≤
∫
{x∈Q:MT ϕ≥λ}

ϕdµ, λ > 0.

We proceed to the BLO bound for logMT f . Fix Q ∈ T . If
∫
Q
fdµ = 0, then there

is nothing to prove: MT f is constant on Q and the lower oscillation on Q is zero. So,

suppose that
∫
Q
fdµ > 0 in the considerations below. We have

(5) MT f = max

{
sup
R:R⊆Q

1

|R|

∫
R

fdµ, sup
R:R⊇Q

1

|R|

∫
R

fdµ

}
= max {MT (fχQ), y} ,

where y = supR:R⊇Q
1
|R|

∫
R
fdµ. Let us record the trivial bound

(6) y ≥ 1

|Q|

∫
Q

fdµ > 0.
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Using (4) for ϕ = fχQ, we obtain∫
Q

logMT fdµ =

∫
Q

logmax{MT (fχQ), y}dµ

= |Q| log y +
∫
Q

log
max{MT (fχQ), y}

y
dµ

= |Q| log y +
∫ ∞
y

λ−1µ({x ∈ Q :MT (fχQ) ≥ λ})dλ

≤ |Q| log y +
∫ ∞
y

λ−2
∫
{x∈Q:MT (fχQ)≥λ}

fχQdµdλ

= |Q| log y +
∫
Q

f

(
1

y
− 1

MT (fχQ)

)
dµ

≤ |Q| log y +
∫
Q
fdµ

y
≤ |Q| log y + |Q|,

where in the last line we have used (6). Therefore, we will be done if we show that

y = essinfQMT f . To prove this, observe that by (4), we have zµ({x ∈ Q : MT (fχQ) ≥
z}) ≤

∫
Q
fdµ for any z > y. Combining this with (6), we obtain

µ({x ∈ Q :MT (fχQ) ≥ z}) < |Q|

and hence essinfQMT (fχQ) ≤ z. Letting z ↓ y we get essinfQMT (fχQ) ≤ y, which

together with (5) yields the desired identity y = essinfQMT f . �

Theorem 2.3. Suppose that w is a weight on X such that ‖Id‖BLO→BLO(w) <∞. Then

w belongs to the class A∞ and [w]A∞ ≤ ‖Id‖BLO→BLO(w) + 1.

Proof. Fix Q ∈ T . By (4) applied to the variable wχQ, we get∫
Q

MT (wχQ)dµ = |Q|wQ +

∫ ∞
wQ

µ({x ∈ Q :MT (wχQ) ≥ λ})dλ

≤ w(Q) +

∫ ∞
wQ

λ−1
∫
{x∈Q:MT (wχQ)≥λ}

wdµdλ

= w(Q) +

∫
Q

w log
MT (wχQ)

wQ
dµ

and hence

1

w(Q)

∫
Q

MT (wχQ)dµ ≤
1

w(Q)

∫
Q

logMT (wχQ)wdµ− logwQ + 1

≤ ‖ logMT (wχQ)‖BLO(w) + 1

≤ ‖Id‖BLO→BLO(w)‖ logMT (wχQ)‖BLO + 1

≤ ‖Id‖BLO→BLO(w) + 1,

where the last passage follows from the previous lemma. This proves the claim, by taking

the supremum over all Q ∈ T . �
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The above estimate can be improved, by removing the additive constant 1; we will show

this in the next subsection.

2.3. A lower bound for ‖ Id ‖BLO→BLO(w), the stronger form. We will establish the

following fact, which is of independent interest. A random variable f is called T -simple,

if there is an integer N such that f is measurable with respect to the σ-algebra generated

by T N .

Theorem 2.4. Suppose that w is a T -simple weight. Then for any Q ∈ T there is a

random variable f satisfying ‖f‖BLO ≤ 1, essinfQ f = 0 and
∫
Q
MT (wχQ)dµ =

∫
Q
fwdµ.

Proof. By the de�nition of the maximal function and the simplicity of w, for each

ω ∈ Q there is R = R(ω) ∈ T 0 ∪ T 1 ∪ T 2 ∪ · · · ∪ T N which satis�es ω ∈ R ⊆ Q and

MT (wχQ)(ω) = wR (simply speaking: the maximal function is equal to the average over

some set R). In general, there may be many sets R(ω) with this property - if this is the

case, we pick the set having the largest probability. Now, for any S ∈ T , S ⊆ Q, de�ne

E(S) = {ω ∈ Q : R(ω) = S}. Then {E(R)}R∈T , R⊆Q is a collection of pairwise disjoint

sets satisfying E(R) ⊆ R and
⋃
E(R) = Q; furthermore, E(R) = ∅ if R ∈ T n for some

n > N . Therefore, we may write∫
Q

MT (wχQ)dµ =
∑
R∈T ,
R⊆Q

wR · µ(E(R)) =
∫
Q

∑
R⊆Q,
R∈T

µ(E(R))

µ(R)
χR · wdµ.

Introduce the nonnegative T -simple random variable f =
∑

R⊆Q,R∈T
µ(E(R))
µ(R)

χR; then we

have
∫
Q
MT (wχQ)dµ =

∫
Q
fwdµ by the above calculation. Furthermore, this function

satis�es ‖f‖BLO ≤ 1. To check this, �x an arbitrary element S of T . If Q ∩ S = ∅ or

Q ⊆ S, then

fS ≤ fQ =
1

µ(Q)

∑
R⊆Q,
R∈T

µ(E(R)) = 1

and essinfS f ≥ 0, so the BLO condition holds for such S. On the other hand, if S ⊂ Q,

then

fS =
1

µ(S)

∑
R(S,
R∈T

µ(E(R)) +
∑

S⊆R⊆Q,
R∈T

µ(E(R))

µ(R)
µ(S)



≤ 1

µ(S)

µ(S) + µ(S) ·
∑

S⊂R⊆Q,
R∈T

µ(E(R))

µ(R)

 ≤ 1 + essinf
S

f.

Finally, we modify f slightly to ensure the condition essinfQ f = 0. We construct induc-

tively the sequence I0 ⊃ I1 ⊃ I2 ⊃ · · · such that I0 = Q and for each n, In+1 is a child of In
satisfying fIn ≥ fIn+1 . Since f and w are T -simple, there is an integer k such that f and w
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are constant on Ik (in particular, the sequence (fIn) stabilizes: fIk = fIk+1
= fIk+2

= · · · ).
We modify f on Ik: let

f̃ = fIk ·
µ(Ik)χIk+1

µ(Ik+1)
+ fχX\Ik .

This function satis�es essinfQ f̃ = 0: it is nonnegative and vanishes on Ik \ Ik+1. Since w

is constant on Ik, we have
∫
Ik
f̃wdµ =

∫
Ik
fwdµ; furthermore, f = f̃ outside Ik, so∫

Q

MT (wχQ)dµ =

∫
Q

fwdµ =

∫
Q

f̃wdµ.

Finally, we have ‖f̃‖BLO ≤ 1. To check this, �x an arbitrary element S of T . If S does

not intersect Ik, then f̃S = fS and essinfS f̃ = essinfS f , and hence f̃S − essinfS f̃ =

fS − essinfS f ≤ 1 as we have shown above. On the other hand, if S ∩ Ik 6= ∅, then
we have two options. If S is strictly contained in Ik, then f is constant on S and hence

f̃S − essinfS f̃ = 0; if, �nally, Ik ⊆ S, then S = Im for some 0 ≤ m ≤ k and hence

f̃S − essinf
S

f̃ = f̃Im = fIm ≤ fI0 = fQ ≤ 1,

as we computed above. This proves the desired assertion. �

As an immediate corollary, we get the sharp relation between A∞ and BLO.

Theorem 2.5. For any weight w, we have

(7) [w]A∞ ≤ ‖Id‖BLO→BLO(w).

The above inequality is sharp: for any 1 ≤ c ≤ c′ there is a probability space with a tree

which supports a weight w satisfying [w]A∞ = c and ‖Id‖BLO→BLO(w) ≤ c′.

Proof of (7). Fix Q ∈ T and an integer N . Let us apply the previous theorem to the

simple weight wN := ENw, where EN denotes the conditional expectation with respect to

T N . As the result, we obtain a random variable f satisfying ‖f‖BLO ≤ 1, essinfQ f = 0

and ∫
Q

MT (w
NχQ)dµ =

∫
Q

fwNdµ− w(Q) essinf
Q

f.

Furthermore, picking an appropriate child Ik+1 in the previous proof, we may ensure that∫
Q
fwNdµ− w(Q) essinfQ f ≤

∫
Q
fwdµ− w(Q) essinfQ f . Therefore, we get

1

w(Q)

∫
Q

MT (w
NχQ)dµ ≤ ‖f‖BLO(w) ≤ ‖Id‖BLO→BLO(w)‖f‖BLO ≤ ‖Id‖BLO→BLO(w).

It remains to note that the sequence (MT (w
NχQ))N≥1 increases almost surely toMT (wχQ).

Thus, by Lebesgue's monotone convergence theorem, we obtain

1

w(Q)

∫
Q

MT (wχQ)dµ ≤ ‖Id‖BLO→BLO(w)

and taking the supremum with respect to Q completes the proof. �
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2.4. Sharpness of (7). If c = 1, then any constant weight w gives equality in (7). So,

from now on, we assume that c is bigger than 1. Fix a parameter α ∈ (0, 1) (which will

eventually be sent to zero) and put γ = α−1 + c−1 − (αc)−1 > 1.

We split the reasoning into a few steps.

Step 1. De�nitions.

Consider the probability space ([0, 1),B([0, 1)), | · |) with the tree given by the following

inductive procedure. We set T 0 = {[0, 1)} and, given an interval I ∈ T , we split it into

two intervals: the left part I− and the right part I+, with |I−| = α|I| and |I+| = (1−α)|I|.
For the sake of completeness, let us assume that both I− and I+ are closed from the left

and open from the right. The collection of all such I± (obtained from di�erent I ∈ T n)
forms T n+1. Note that the �ltration is min{α, 1−α}-regular, directly from the de�nition.

Obviously, for each n ≥ 0, the interval In = [0, αn) belongs to T n. Finally, introduce

w : [0, 1)→ [0,∞) by the formula

w =
∞∑
n=0

γnχIn\In+1 .

Step 2. The equality [w]A∞ = c. Since γ > 1, the weight w is a decreasing function

on [0, 1). Consequently, for ω ∈ (0, 1), when computing MT w(ω), one has to take the

average over the smallest In which contains ω. That is, if we put m = max{n : αn > ω},
then we have

(8) MT w(ω) =
1

|Im|

∫
Im

wdµ = α−m
∞∑
n=m

γn(αn − αn+1) = γm · 1− α
1− αγ

= cγm.

In other words, we have MT w = cw on (0, 1) and hence [w]A∞ = c. Indeed, on one hand

we have [w]A∞ ≥ 1
w([0,1))

∫
[0,1)

MT wdµ = c, and on the other hand, for any Q ∈ T ,

1

w(Q)

∫
Q

MT (wχQ)dµ ≤
1

w(Q)

∫
Q

MT wdµ = c.

Step 3. Further notation. Let f be an integrable random variable satisfying ‖f‖BLO =

1. Let Q be an arbitrary interval from T ; then there exists m such that Q ∈ T m. De�ne
the sequences (xn)n≥m, (yn)n≥m, (un)n≥m and (vn)n≥m of random variables as follows: for

each n set

xn(ω) = fQn(ω), yn(ω) = essinf
Qn(ω)

f, un(ω) = wQn(ω), vn(ω) = max
m≤k≤n

uk(ω),

where Qn(ω) is the unique element of T n which contains ω. There is a nice probabilitic

interpretation of these sequences. Namely, (xn)n≥m and (un)n≥m are the martingales

generated by f and w with respect to the �ltration (σ(T n))n≥m. Furthermore, (vn)n≥m is

the maximal function of (un)n≥m, and (yn)n≥m can be regarded as a variant of the minimal

function of (xn)n≥m.
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We conclude this part by recording some important observations about the behavior of

the sequences (xn)n≥m, (yn)n≥m and (wn)n≥m. Fix n ≥ m. First, since ‖f‖BLO ≤ 1, we

have xn ≤ yn + 1 almost surely. To present the second property, �x an interval I ∈ T n

and denote its left and right children in T n+1 by I− and I+. Then, using ‖f‖BLO ≤ 1

again, we get

fI ≥
|I−|
|I|

fI− +
|I+|
|I|

essinf
I

f ≥ |I−|
|I|

fI− +
|I+|
|I|

(fI − 1),

or equivalently, fI− − fI ≤ |I|/|I−| − 1 = α−1 − 1. Furthermore, by the aforementioned

monotonicity of w, we immediately obtain wI+ − wI ≤ 0. In other words, we have

xn+1 − xn ≤ α−1 − 1 or un+1 − un ≤ 0 almost surely.

Step 4. Implementing the Bellman function. Let B be the special function of �2.1,

with the parameter K = α−1. We use (3) with x = xn, y = yn, u = un, v = vn and

d = xn+1 − xn, e = un+1 − un. Note that we have d ≤ K − 1; or d > K − 1 and e ≤ 0, so

the assumptions are satis�ed and the application is permitted. As the result, we obtain

B
(
xn+1,max{xn+1 − 1, yn}, un+1,max{un+1, vn}

)
≤ B(xn, yn, un, vn) +Bx(xn, yn, un, vn)dn+1 +Bu(xn, yn, un, vn)en+1.

However, we have max{xn+1 − 1, yn} ≤ yn+1 and max{un+1, vn} = vn+1, so

B(xn+1,max{xn+1 − 1, yn}, un+1,max{un+1, vn}
)
≥ B(xn+1, yn+1, un+1, vn+1)

(indeed: we have By(xn+1, y, un+1, vn+1) = un+1 − vn+1 ≤ 0), which combined with the

previous estimate yields

B
(
xn+1, yn+1, un+1, vn+1

)
≤ B(xn, yn, un, vn) +Bx(xn, yn, un, vn)dn+1 +Bu(xn, yn, un, vn)en+1.

Now, pick an arbitrary R ∈ T n and integrate both sides over R (with respect to the mea-

sure µ). The terms B(xn, yn, un, vn), Bx(xn, yn, un, vn) and Bu(xn, yn, un, vn) are constant

over R; furthermore, we have
∫
R
ddµ =

∫
R
xn+1dµ−

∫
Q
xndµ = 0 and similarly

∫
R
edµ = 0.

Consequently, we obtain∫
R

B
(
xn+1, yn+1, un+1, vn+1

)
dµ ≤

∫
R

B(xn, yn, un, vn)dµ.

Summing over all R ∈ T n which are contained in Q (which was �xed at the beginning of

the proof) we �nally get∫
Q

B
(
xn+1, yn+1, un+1, vn+1

)
dµ ≤

∫
Q

B(xn, yn, un, vn)dµ,

which in particular implies that for each n ≥ m we have

(9)

∫
Q

B
(
xn, yn, un, vn

)
dµ ≤

∫
Q

B(xm, ym, um, vm)dµ = |Q|B(xm, ym, um, vm).
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Step 5. Limiting arguments and completion of the proof. To analyze the right-hand

side of (9), note that um = vm and xm − ym ≤ 1, so

B(xm, ym, um, vm) = (xm − ym − α−1)um + ymum ≤ (essinf
Q

f + 1− α−1)wQ.

Next, by martingale limit theorems, we have xn → f , yn ↑ f , un → w and vn ↑MT (wχQ)
almost surely. Consequently, by Fatou's lemma,

lim inf
n→∞

∫
Q

(xn − yn)vndµ ≥ 0, lim inf
n→∞

∫
Q

ynundµ ≥
∫
Q

fwdµ

(in the second limit we have used the fact that yn is bounded from below by ym) and

hence, by Lebesgue's monotone convergence theorem,

lim
n→∞

∫
Q

vndµ =

∫
Q

MT (wχQ)dµ.

Putting all these facts together and plugging into (9), we arrive at∫
Q

fwdµ− α−1
∫
Q

MT (wχQ)dµ ≤ |Q| · (essinf
Q

f + 1− α−1)wQ,

which is equivalent to

1

w(Q)

∫
Q

fwdµ− essinf
Q

f ≤ α−1
(

1

w(Q)

∫
Q

MT (wχQ)dµ− 1

)
+ 1 ≤ α−1[w]A∞ .

Since Q was arbitrary and ‖f‖BLO = 1, we obtain ‖f‖BLO(w) ≤ α−1[w]A∞‖f‖BLO and

hence ‖ Id ‖BLO→BLO(w) ≤ α−1[w]A∞ . It remains to let α ↑ 1 to get the claim.

3. Proofs of Theorems 1.2 and 1.6

A similar reasoning to that above yields the following statement.

Theorem 3.1. Suppose that (X,µ) is a probability space equipped with an α-regular

�ltration. Then we have the sharp estimate

(10) ‖ Id ‖BLO→BLO(w) ≤ α−1([w]A∞ − 1) + 1.

Proof. Let f be an integrable random variable satisfying ‖f‖BLO = 1 and let w be

an arbitrary weight belonging to the class A∞. Fix an element Q ∈ T and let m denote

the generation of the tree to which it belongs: Q ∈ T m. De�ne the sequences (xn)n≥m,

(yn)n≥m, (un)n≥m and (vn)n≥m as above.

Let us study the evolution properties of these sequences. As before, since ‖f‖BLO ≤ 1,

we have xn ≤ yn + 1 almost surely. Furthermore, �x n ≥ m, an element R ∈ T n and

denote its children in T n+1 by R1, R2, . . ., Rk. Again by ‖f‖BLO ≤ 1, we see that for

each 1 ≤ j ≤ k,

fR ≥
|Rj|
|R|

fRj
+

(
1− |Rj|
|R|

)
essinf

R
f ≥ |Rj|

|R|
fRj

+

(
1− |Rj|
|R|

)
(fR − 1),
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which can be rewritten in the form fRj
−fR ≤ |R|/|Rj|−1 ≤ α−1−1. Hence xn+1−xn ≤

α−1 − 1 almost surely, since R was chosen arbitrarily.

The remaining part of the proof goes along the same lines and exploits the Bellman

function B corresponding to K = α−1. We use the concavity condition (3) with the

assumption (i) only (which is guaranteed by the almost sure estimate xn+1−xn ≤ α−1−1

established above). We omit the straightforward repetition. As the result, we get

1

w(Q)

∫
Q

fwdµ− essinf
Q

f ≤ α−1
(

1

w(Q)

∫
Q

MT (wχQ)dµ− 1

)
+ 1.

This obviously gives the claim. �

Now we will prove that the constant α−1([w]A∞ − 1) + 1 cannot be improved.

Sharpness of (10). If c = 1, then there is nothing to prove: the weight w is constant. So,

let us assume that c > 1, �x α ∈ (0, 1/2] and consider the parameter γ = α−1+c−1−(αc)−1.
We consider the probability space as in the proof of the sharpness of (7). Note that the

�ltration studied there is α-regular, directly from the de�nition. We also distinguish the

interval In = [0, αn) belonging to T n, n = 0, 1, 2, . . ..

Let w, f : [0, 1)→ [0,∞) be given by

w =
∞∑
n=0

γnχIn\In+1 , f =
∞∑
n=0

nχIn\In+1 .

We have already checked above that [w]A∞ = c. Furthermore, as we show now, we have

‖f‖BLO = α/(1 − α). To this end, �x an arbitrary element Q ∈ T . If 0 /∈ Q, then

there exists an integer m such that Q ⊆ Im \ Im+1. Therefore, f is constant on Q and

hence fQ − liminfQ f = 0. On the other hand, if 0 ∈ Q, then Q = Im for some m, so

essinfQ f = m and

fQ =
1

|Q|
∑
n=m

n|In \ In+1| = α−m
∞∑
n=m

nαn(1− α) = m+
α

1− α
.

Hence fQ − liminfQ f = α/(1− α), which yields the identity ‖f‖BLO = α/(1− α).
It remains to compute that

‖f‖BLO(w) ≥
1

w([0, 1))

∫
[0,1)

fwdµ− essinf
[0,1)

f

=
1

c

∞∑
n=0

nγn(αn − αn+1) =
α(1− α)γ
c(1− αγ)2

=
(
α−1(c− 1) + 1

)
· α

1− α
=
(
α−1([w]A∞ − 1) + 1

)
‖f‖BLO.

This yields the desired sharpness. �

It remains to prove the �nal of the statements formulated in the introductory section.
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Proof of Theorem 1.2. Fix an arbitrary dyadic cube Q and equip it with the tree of its

dyadic subcubes and the normalized Lebesgue measure. Pick arbitrary weight w ∈ Ad∞
and f ∈ BLOd. Then the restrictions w|Q and f |Q belong to Ad∞(Q) and BLO

d(Q); we

actually have [w]Ad
∞(Q) ≤ [w]Ad

∞
and ‖f‖BLOd(Q) ≤ ‖f‖BLOd , directly from the A∞ and

BLO conditions. Therefore, by Theorem 1.6,

‖f‖BLOd(Q;w) ≤
(
2d([w]Ad

∞(Q) − 1) + 1
)
‖f‖BLOd(Q) ≤

(
2d([w]Ad

∞
− 1) + 1

)
‖f‖BLOd .

Letting |Q| → ∞ we get the desired estimate. To see that this estimate is sharp, we repeat

the above construction, with the probability space ([0, 1)N ,B([0, 1)N), | · |) and its dyadic

�ltration, and the intervals In replaced by the cubes [0, 2−n)N . Then we extend w and

f to the whole RN by the corresponding averages on [0, 1)N : we set w|Rn\[0,1)N = w[0,1)N

and f |Rn\[0,1)N = f[0,1)N . This guarantees that the Ad∞ and BLOd constants will remain

unchanged. Hence the estimate

‖f‖BLOd(w) ≥
(
α−1([w]A∞ − 1) + 1

)
‖f‖BLO

holds true. This completes the proof. �
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