ON MARTINGALES WHOSE EXPONENTIAL PROCESSES
SATISFY MUCKENHOUPT’S CONDITION A4,

ADAM OSEKOWSKI

ABSTRACT. Let X be a continuous-path uniformly integrable martingale such
that its exponential process £(X) satisfies the probabilistic version of Mucken-
houpt’s condition A;. We establish optimal upper bounds for the BMO norm
of X and a class of related sharp exponential estimates.

1. INTRODUCTION

Let (2, F,P) be a complete probability space, filtered by (F;)¢>0, & nondecreas-
ing family of sub-o-fields of F, such that Fy contains all the events of probability
0. Throughout the paper, X will be an adapted uniformly integrable martingale
with continuous trajectories, and (X) will denote the quadratic covariance process
(or square bracket) of X. See e.g. Dellacherie and Meyer [1] for the necessary
definitions. Let

S(X) = (exp(Xt - <X>t/2))t20
stand for the exponential local martingale induced by X. For 1 < p < co, we say
that £(X) satisfies Muckenhoupt’s A, condition (in short, £(X) € A,), if

sup < oQ.

t>0

eCOE[EC0 0]

There is a version of this condition if we pass with p to 1. Namely, £(X) belongs
to the class Ay, if

sup ||<5'(X)t<5'(X);Ql||O<> < 0.

>0

The above supremum will be denoted by ||£(X)||4, and called the A; constant of
E(X). These A, classes, introduced by Izumisawa and Kazamaki in [3], are prob-
abilistic counterparts of the classical analytic A, classes, defined by Muckenhoupt
in [7] during the study of weighted inequalities for the Hardy-Littlewood maximal
operator.

One of the objectives of this note is to study the interplay between the A;
constant of £(X) and the BMO-norm of X. Recall that the martingale X is of
bounded mean oscillation, if

1/2
1Xllaro = sup [E[[Xoo — X, | 7] | <0,
t>0 [e%e]

See Getoor and Sharpe [2], Kazamaki [6] for more details, and consult John and
Nirenberg [4] for the original, analytic version of the BMO class.
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It is well known that X belongs to the class BMO if and only if its exponential
process £(X) belongs to a class A, for some p > 1. See e.g. Kazamaki [5], [6]. On
the other hand, using Holder’s inequality, we easily check that 4, C A, if p < gq.
Combining these two facts, we see that the condition £(X) € A; implies that
X € BMO, and one of our main results is the following sharp bound for || X||zrmo0
in terms of ||E(X)||a,. Here and below, “log” stands for the natural logarithm.

Theorem 1.1. For any uniformly integrable martingale X we have

9 1/2
1.1 X < (210 [|EX)||a, + 7o — 1
(1) X0 < (2108 lEX)ay + g~ )

and the inequality is sharp.

The martingale version of the inequality of John and Nirenberg (see Getoor
and Sharpe [2]) states that if X is of bounded mean oscillation and starts from 0,
then Ee®X>~ < oo for a belonging to some interval containing 0. Thus, in view
of the above theorem, if ||€(X)||4, < oo, then it is exponentially integrable in the
previous sense. Our second result concerns the precise information on the set of
admissible o’s and the size of Ee®X~. For the precise formulation, we need some
extra notation. For any o < 1/4 and ¢ > 1, put

Ay — A
(= A )M + (Ap — @)=
where Ay = (1++/1—4a)/2; for « =1/4 and ¢ > 1, let

1/4

C(a,c) =

c
C =

(Oé;C) 1—|—10gcl/4
Finally, for « > 1/4 and ¢ > 1, define

—1
1-2 Vida —1 Via —1
Cla,¢) = /¥« [\/40[7_(11 sin( O; logc) + cos <O;10gc)] ,

provided the expression in the square brackets is nonzero (and put C(a,c¢) = oo
otherwise).

Theorem 1.2. Suppose that X is a uniformly integrable martingale with Xy = 0.
Let g be the least a € (1/4,00) satisfying

200 — 1 sin Vo —1
Vo —1 2

Gf1E(X)||a, =1, set ag = 00). Then for any a < ag we have
(1.3) Ee*> < C(a, ||E(X)]|a,)

(1.2) (*ﬂ?

1og||€<X>||A1) ~ cos 1og|6<X>||A1)

and the inequality is sharp. If a > ag, then the above exponential inequality does
not hold with any finite constant C' depending only on ||E(X)]| 4, -

As an interesting corollary, we obtain that if £(X) belongs to the class Ay, then
eX~ e L'* and the exponent 1 /4 cannot be enlarged. Higher integrability of e
implies the corresponding upper bound for the A; constant of £(X).

A few words about the organization of this note are in order. We establish
Theorem 1.1 in the next section; Section 3 is devoted to the proof of Theorem 1.2.
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2. ON THE BMO ESTIMATE

We start with rephrasing the condition A; in terms of the maximal function
E(X)* of £(X), given by E(X)f = suppcs; E(X)s, 0 <t < 00,

Lemma 2.1. Let X be a martingale starting from 0 and let ¢ > 1. The following
conditions are equivalent.

(i) X is uniformly integrable and satisfies ||E(X)||a, < c.

(ii) the pair (E(X),E(X)*) takes values in the cone {(y,z) € RZ :y < z < ey}
with probability 1.

Proof. (1)=-(ii) The process £(X) is a nonnegative local martingale, and thus it is
a supermartingale. Hence, for any s < ¢ we have

E(X)s = E[E(X)s|F] <E[c€(X)oo|Fi] < c€(X)s.

This implies £(X); < c€(X); for any ¢, which is exactly what we need.

(ii)=-(i) It will be proved in Lemma 2.2 below that if £(X)* < ¢£(X) for some
¢ > 0, then X is bounded in L? and hence it is uniformly integrable. The condition
[1E(X)||a, < cis evident: we have £(X); < E(X)E, < c€(X)oo forany t >0. O

Let ¢ be a fixed number larger than 1. The key role in the proof of Theorem 1.1
is played by the function U, given on {(z,y,2) € Rx Ry xRy 1y < z < ey} by
the formula

2 cy
U(z,y,z) =z° + 2log (—)

z

29 2

z C

Observe that the function s +— 2log s — 2s is increasing on (0, 1], which implies
2

(2.1) 22 <U(x,y,2) <a®+2loge+ = — 1.
c

The key property of U is the following.

Lemma 2.2. Let X be a uniformly integrable martingale starting from 0 such that
I[E(X)||a, < e Then the process UX = (U(Xy, E(X) e, E(X))i>0 is a uniformly
integrable martingale.

Proof. First we show that X is a local martingale, using It6’s formula. We have
Upy = 0, AE(X))r = E(X)?d(X)¢ and Uy, + y*Uy, = 0, which implies that the
integral with respect to (X) vanishes. Similarly, we have U,(x, z,2) = 0, which
gives

[ v g0, 2007 a8 = o,
0+

since the process £(X)* increases for ¢ lying in the set {s: £(X)s = £(X)%}. This
yields the local martingale property of 4X. Denoting the localizing sequence by
(Tn)n>1, we obtain, by the left inequality in (2.1),

EXZT,,/\t § IEZ’l';—),i/\t = Z/[(}X - U(Oa 17 1)7 t 2 0.

Since n and t were arbitrary, Doob’s maximal inequality implies that X* = sup;> | X/
is in L2. Therefore, using the upper bound in (2.1), we see that U is majorized
by an integrable random variable. This yields the claim. O
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Proof of Theorem 1.1. Fix a nonnegative number t. Of course, the process ¥ =
(Xuvt — Xt)u>0 is a uniformly integrable martingale starting from 0. Furthermore,
we have E(Y),, = E(X)uve/E(X)t, so ||EY)||a, < ||E(X)]|a,- Applying Lemma
2.2 to the process Y and ¢ := ||£(X)||4, we obtain, by virtue of (2.1),

E[|Xo — Xi*| 7] = E[Y2|F] SE[U;U:J =uy

(2.2) = 2
= 2log [|E(X)|[a, + IEG) 4,

This completes the proof of (1.1), since ¢ was arbitrary. To see that this bound is
sharp, fix ¢ > 1, let B = (By);>0 be a standard Brownian motion and consider the
stopping time 7 = inf{t > 0 : £(B); = c£(B):}. If we repeat the reasoning from
(2.2), witht =0 and X =Y = B7, we see that the inequality becomes an equality.
Hence both sides of (1.1) are equal and the proof is finished. ]

1.

3. EXPONENTIAL ESTIMATES

As we have seen in the statement of Theorem 1.2, the optimal upper bounds for
Ee®X> are given by three different formulas, depending on the value of ¢ and a. To
enable the unified treatment of these inequalities, we will first prove the following.

Theorem 3.1. Let o € R, ¢ > 1 be fized. Suppose that there exists a function
il 1] = [1,00) of class C? which satisfies the equalities

(3.1) a?f(s) + 2asf'(s) + 52f”(s) =0, s e (cil, 1),
(32) =) =0

and

(3.3) fehH =1.

Then for any uniformly integrable martingale X with Xo = 0 and ||E(X)|]a, < ¢
we have

(3.4) Eexp(aXa0) < £(1).
The inequality is sharp.

Proof. The reasoning is similar to that appearing in the proof of Theorem 1.1
and rests on the existence of a certain special function. Namely, let us introduce
U:{(z,y,2) e RxRy xRy : y <z <cy} — R given by

Ulz,y,2) = e* f(y/2).

By It6’s formula, the process UY = (U(Xy, £(X)s, E(X)F))e>0 is a local martingale.
Indeed, the equation (3.1) implies that the integral with respect to (X) vanishes;
moreover, (3.2) enforces U,(z,z,2) = 0 and hence the integral with respect to
E(X)* is zero. Let (7,)n>1 be the localizing sequence of UX. Since f takes values
in [1,00), we have U* > ¢®X and hence, for any n and t,

(3.5) Eexp(aX,, o) <EUZ = U = f(1).

Letting n and ¢ to infinity we get (3.4), by virtue of Fatou’s lemma. To see that this
inequality is sharp, observe that (exp(aX;, At/2))i>0 is a nonnegative submartin-
gale. Consequently, by Doob’s maximal inequality in L2, if we let ¢ — oo and



EXPONENTIAL MARTINGALES 5

n — oo in (3.5), we get that sup,~,exp(aX;) is integrable and thus U~ is a uni-
formly integrable martingale. Now, as previously, we take X to be a standard Brow-
nian motion B = (By):>o stopped at the time 7 = inf{t > 0 : £(B); = c&€(B):}.
Then ||E(B7)||a, = ¢ and, since f(1/c) =1,

Eexp(aB,) = EUE = UF" = r(1).
This completes the proof. ([l

We turn to the proof of Theorem 1.2 and consider the cases « <1/4 and o > 1/4
separately. We may assume that ¢ := ||€(X)||4, > 1, since if the A; constant of
E(X) is equal to 1, then X is zero almost surely and the claim is obvious.

Proof of Theorem 1.2 for o < 1/4, ¢ > 1. The function C(-,-) is continuous on the
set (—o0, 3] x [1,00). Thus, by Lebesgue’s monotone convergence theorem, we may
restrict ourselves to a’s which are strictly smaller than 1/4. Tt is not difficult to
determine a function f which satisfies (3.1), (3.2) and (3.3): we have f = 1 for

a =0 and

a—\_)sh« Ay —a)sh-—@
(= A )M 4+ (Ap — )™= (a—A)e™ M + (A — a)c@™A=

for @ # 0 (here, as in the statement of Theorem 1.2, Ay = (1 £ /1 —4a)/2).

Observe that f takes values in [1,00). This is clear for « = 0. For the remaining

values of the parameter a, we compute that

(0= A ) (s — (5ot = o)
(@ —=A)er= M + (A —a)cr-

f'(s) =

It suffices to note that « — A_ = /1 —-4da+20-1<0, Ay —a>1—a >0,
shmal _gA-—a-l <0 for s € (0,1) and

(@ =A)™ M 4+ Ay — )™ =" [(a—A)AM "M + (A —a)]
> M [(a—A2)+ (A —a)] > 0.
This shows that f is increasing on (1/¢,1) and hence f > f(1/¢) = 1. Thus, by

Theorem 3.1, the inequality (1.3) holds true and the constant C(a, ||E(X)||4,) is
the best possible. (I

Proof of Theorem 1.2 for a > 1/4, ¢ > 1. First we will show that

\/4C¥0 —1

(3.6) .

loge <,

or, equivalently, ag < % + T . To do this, note that if we let @« — 1/4 in (1.2),

log? ¢

then the left-hand side tends to —loge/4 and the right-hand side converges to 1;
similarly, if we let o — 1 + log—zc, then the left-hand side of (1.2) converges to 0

and the right-hand side approaches —1. Thus (3.6) follows from Darboux property.
Now, suppose that a < «p. It is easy to find a function which satisfies the
differential equation (3.1) and the condition (3.2): let F': [c™!,1] — R be given by

2a —1 da —1 Vo -1
F(s) = gl/2—a L/% sin( O; logs) + cos <O;10gs>} .
o —
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The key fact is that F' takes positive values. Indeed, we have F(c™1) > 0 in view
of (1.2); furthermore, an easy calculation shows that

202 “1/2—a . [ Via—1
——35 sin { ————1logs |,
Via -1 2

This is nonnegative, because

F'(s) = — se(ch1).

Via —1 Viag —1
0> aTlogs > Oéfologc_1 > —,

where the latter passage is due to (3.6). Therefore the function f(s) = F(s)/F(c™1),
s € [e71, 1], satisfies (3.1), (3.2), (3.3) and takes values in [1,00). An application of
Theorem 3.1 gives the assertion.

Finally, suppose that a > ¢ and pick oy < 9. By Hélder’s inequality, we have

EeoXe > [Eei ]/

and by the appropriate choice of X, the right-hand side can be made equal to
C(aq,c)®/ 1. Tt suffices to note that C(ay,c) — 0o as a; T a; this proves that the
inequality (1.3) does not hold with any finite constant. The proof is complete. O
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