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Abstract. Let X be a continuous-path uniformly integrable martingale such

that its exponential process E(X) satisfies the probabilistic version of Mucken-

houpt’s condition A1. We establish optimal upper bounds for the BMO norm
of X and a class of related sharp exponential estimates.

1. Introduction

Let (Ω,F ,P) be a complete probability space, filtered by (Ft)t≥0, a nondecreas-
ing family of sub-σ-fields of F , such that F0 contains all the events of probability
0. Throughout the paper, X will be an adapted uniformly integrable martingale
with continuous trajectories, and 〈X〉 will denote the quadratic covariance process
(or square bracket) of X. See e.g. Dellacherie and Meyer [1] for the necessary
definitions. Let

E(X) =
(

exp(Xt − 〈X〉t/2)
)
t≥0

stand for the exponential local martingale induced by X. For 1 < p < ∞, we say
that E(X) satisfies Muckenhoupt’s Ap condition (in short, E(X) ∈ Ap), if

sup
t≥0

∣∣∣∣∣∣∣∣E(X)tE
[
E(X)−1/(p−1)

∞
∣∣Ft]p−1

∣∣∣∣∣∣∣∣
∞
<∞.

There is a version of this condition if we pass with p to 1. Namely, E(X) belongs
to the class A1, if

sup
t≥0

∣∣∣∣E(X)tE(X)−1
∞
∣∣∣∣
∞ <∞.

The above supremum will be denoted by ||E(X)||A1 and called the A1 constant of
E(X). These Ap classes, introduced by Izumisawa and Kazamaki in [3], are prob-
abilistic counterparts of the classical analytic Ap classes, defined by Muckenhoupt
in [7] during the study of weighted inequalities for the Hardy-Littlewood maximal
operator.

One of the objectives of this note is to study the interplay between the A1

constant of E(X) and the BMO-norm of X. Recall that the martingale X is of
bounded mean oscillation, if

||X||BMO = sup
t≥0

∣∣∣∣∣∣E[|X∞ −Xt|2
∣∣Ft]1/2∣∣∣∣∣∣

∞
<∞.

See Getoor and Sharpe [2], Kazamaki [6] for more details, and consult John and
Nirenberg [4] for the original, analytic version of the BMO class.
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It is well known that X belongs to the class BMO if and only if its exponential
process E(X) belongs to a class Ap for some p > 1. See e.g. Kazamaki [5], [6]. On
the other hand, using Hölder’s inequality, we easily check that Ap ⊆ Aq if p ≤ q.
Combining these two facts, we see that the condition E(X) ∈ A1 implies that
X ∈ BMO, and one of our main results is the following sharp bound for ||X||BMO

in terms of ||E(X)||A1 . Here and below, “ log ” stands for the natural logarithm.

Theorem 1.1. For any uniformly integrable martingale X we have

(1.1) ||X||BMO ≤
(

2 log ||E(X)||A1
+

2

||E(X)||A1

− 1

)1/2

and the inequality is sharp.

The martingale version of the inequality of John and Nirenberg (see Getoor
and Sharpe [2]) states that if X is of bounded mean oscillation and starts from 0,
then EeαX∞ < ∞ for α belonging to some interval containing 0. Thus, in view
of the above theorem, if ||E(X)||A1

<∞, then it is exponentially integrable in the
previous sense. Our second result concerns the precise information on the set of
admissible α’s and the size of EeαX∞ . For the precise formulation, we need some
extra notation. For any α < 1/4 and c ≥ 1, put

C(α, c) =
λ+ − λ−

(α− λ−)cα−λ+ + (λ+ − α)cα−λ−
,

where λ± = (1±
√

1− 4α)/2; for α = 1/4 and c ≥ 1, let

C(α, c) =
c1/4

1 + log c1/4
.

Finally, for α > 1/4 and c ≥ 1, define

C(α, c) = c1/2−α
[

1− 2α√
4α− 1

sin

(√
4α− 1

2
log c

)
+ cos

(√
4α− 1

2
log c

)]−1

,

provided the expression in the square brackets is nonzero (and put C(α, c) = ∞
otherwise).

Theorem 1.2. Suppose that X is a uniformly integrable martingale with X0 = 0.
Let α0 be the least α ∈ (1/4,∞) satisfying

(1.2)
2α− 1√
4α− 1

sin

(√
4α− 1

2
log ||E(X)||A1

)
= cos

(√
4α− 1

2
log ||E(X)||A1

)
(if ||E(X)||A1

= 1, set α0 =∞). Then for any α < α0 we have

(1.3) EeαX∞ ≤ C(α, ||E(X)||A1)

and the inequality is sharp. If α ≥ α0, then the above exponential inequality does
not hold with any finite constant C depending only on ||E(X)||A1 .

As an interesting corollary, we obtain that if E(X) belongs to the class A1, then
eX∞ ∈ L1/4 and the exponent 1/4 cannot be enlarged. Higher integrability of eX∞

implies the corresponding upper bound for the A1 constant of E(X).
A few words about the organization of this note are in order. We establish

Theorem 1.1 in the next section; Section 3 is devoted to the proof of Theorem 1.2.
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2. On the BMO estimate

We start with rephrasing the condition A1 in terms of the maximal function
E(X)∗ of E(X), given by E(X)∗t = sup0≤s<t E(X)s, 0 ≤ t ≤ ∞.

Lemma 2.1. Let X be a martingale starting from 0 and let c ≥ 1. The following
conditions are equivalent.

(i) X is uniformly integrable and satisfies ||E(X)||A1
≤ c.

(ii) the pair (E(X), E(X)∗) takes values in the cone {(y, z) ∈ R2
+ : y ≤ z ≤ cy}

with probability 1.

Proof. (i)⇒(ii) The process E(X) is a nonnegative local martingale, and thus it is
a supermartingale. Hence, for any s ≤ t we have

E(X)s = E
[
E(X)s|Ft

]
≤ E

[
cE(X)∞|Ft

]
≤ cE(X)t.

This implies E(X)∗t ≤ cE(X)t for any t, which is exactly what we need.
(ii)⇒(i) It will be proved in Lemma 2.2 below that if E(X)∗ ≤ cE(X) for some

c > 0, then X is bounded in L2 and hence it is uniformly integrable. The condition
||E(X)||A1

≤ c is evident: we have E(X)t ≤ E(X)∗∞ ≤ cE(X)∞ for any t ≥ 0. �

Let c be a fixed number larger than 1. The key role in the proof of Theorem 1.1
is played by the function U , given on {(x, y, z) ∈ R × R+ × R+ : y ≤ z ≤ cy} by
the formula

U(x, y, z) = x2 + 2 log
(cy
z

)
− 2y

z
+

2

c
.

Observe that the function s 7→ 2 log s− 2s is increasing on (0, 1], which implies

(2.1) x2 ≤ U(x, y, z) ≤ x2 + 2 log c+
2

c
− 1.

The key property of U is the following.

Lemma 2.2. Let X be a uniformly integrable martingale starting from 0 such that
||E(X)||A1

≤ c. Then the process UX = (U(Xt, E(X)t, E(X)∗t )t≥0 is a uniformly
integrable martingale.

Proof. First we show that UX is a local martingale, using Itô’s formula. We have
Uxy = 0, d〈E(X)〉t = E(X)2

td〈X〉t and Uxx + y2Uyy = 0, which implies that the
integral with respect to 〈X〉 vanishes. Similarly, we have Uz(x, z, z) = 0, which
gives ∫ t

0+

Uz(Xs, E(X)s, E(X)∗s) dE(X)∗s = 0,

since the process E(X)∗ increases for t lying in the set {s : E(X)s = E(X)∗s}. This
yields the local martingale property of UX . Denoting the localizing sequence by
(τn)n≥1, we obtain, by the left inequality in (2.1),

EX2
τn∧t ≤ EUXτn∧t = UX0 = U(0, 1, 1), t ≥ 0.

Since n and t were arbitrary, Doob’s maximal inequality implies thatX∗ = supt≥0 |Xt|
is in L2. Therefore, using the upper bound in (2.1), we see that UX is majorized
by an integrable random variable. This yields the claim. �
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Proof of Theorem 1.1. Fix a nonnegative number t. Of course, the process Y =
(Xu∨t−Xt)u≥0 is a uniformly integrable martingale starting from 0. Furthermore,
we have E(Y )u = E(X)u∨t/E(X)t, so ||E(Y )||A1

≤ ||E(X)||A1
. Applying Lemma

2.2 to the process Y and c := ||E(X)||A1
we obtain, by virtue of (2.1),

E
[
|X∞ −Xt|2|Ft

]
= E

[
Y 2
∞|Ft

]
≤ E

[
UY∞|Ft

]
= UYt

= 2 log ||E(X)||A1 +
2

||E(X)||A1

− 1.
(2.2)

This completes the proof of (1.1), since t was arbitrary. To see that this bound is
sharp, fix c ≥ 1, let B = (Bt)t≥0 be a standard Brownian motion and consider the
stopping time τ = inf{t ≥ 0 : E(B)∗t = cE(B)t}. If we repeat the reasoning from
(2.2), with t = 0 and X = Y = Bτ , we see that the inequality becomes an equality.
Hence both sides of (1.1) are equal and the proof is finished. �

3. Exponential estimates

As we have seen in the statement of Theorem 1.2, the optimal upper bounds for
EeαX∞ are given by three different formulas, depending on the value of c and α. To
enable the unified treatment of these inequalities, we will first prove the following.

Theorem 3.1. Let α ∈ R, c > 1 be fixed. Suppose that there exists a function
f : [c−1, 1]→ [1,∞) of class C2 which satisfies the equalities

(3.1) α2f(s) + 2αsf ′(s) + s2f ′′(s) = 0, s ∈ (c−1, 1),

(3.2) f ′(1−) = 0

and

(3.3) f(c−1) = 1.

Then for any uniformly integrable martingale X with X0 = 0 and ||E(X)||A1 ≤ c
we have

(3.4) E exp(αX∞) ≤ f(1).

The inequality is sharp.

Proof. The reasoning is similar to that appearing in the proof of Theorem 1.1
and rests on the existence of a certain special function. Namely, let us introduce
U : {(x, y, z) ∈ R× R+ × R+ : y ≤ z ≤ cy} → R given by

U(x, y, z) = eαxf(y/z).

By Itô’s formula, the process UX = (U(Xt, E(X)t, E(X)∗t ))t≥0 is a local martingale.
Indeed, the equation (3.1) implies that the integral with respect to 〈X〉 vanishes;
moreover, (3.2) enforces Uz(x, z, z) = 0 and hence the integral with respect to

E(X)∗ is zero. Let (τn)n≥1 be the localizing sequence of UX . Since f takes values

in [1,∞), we have UX ≥ eαX and hence, for any n and t,

(3.5) E exp(αXτn∧t) ≤ EUX
τn∧t = UX

0 = f(1).

Letting n and t to infinity we get (3.4), by virtue of Fatou’s lemma. To see that this
inequality is sharp, observe that (exp(αXτn∧t/2))t≥0 is a nonnegative submartin-
gale. Consequently, by Doob’s maximal inequality in L2, if we let t → ∞ and
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n → ∞ in (3.5), we get that supt≥0 exp(αXt) is integrable and thus UX is a uni-
formly integrable martingale. Now, as previously, we take X to be a standard Brow-
nian motion B = (Bt)t≥0 stopped at the time τ = inf{t ≥ 0 : E(B)∗t = cE(B)t}.
Then ||E(Bτ )||A1

= c and, since f(1/c) = 1,

E exp(αBτ ) = EUBτ

∞ = UBτ

0 = f(1).

This completes the proof. �

We turn to the proof of Theorem 1.2 and consider the cases α ≤ 1/4 and α > 1/4
separately. We may assume that c := ||E(X)||A1

> 1, since if the A1 constant of
E(X) is equal to 1, then X is zero almost surely and the claim is obvious.

Proof of Theorem 1.2 for α ≤ 1/4, c > 1. The function C(·, ·) is continuous on the
set (−∞, 1

4 ]× [1,∞). Thus, by Lebesgue’s monotone convergence theorem, we may
restrict ourselves to α’s which are strictly smaller than 1/4. It is not difficult to
determine a function f which satisfies (3.1), (3.2) and (3.3): we have f ≡ 1 for
α = 0 and

f(s) =
(α− λ−)sλ+−α

(α− λ−)cα−λ+ + (λ+ − α)cα−λ−
+

(λ+ − α)sλ−−α

(α− λ−)cα−λ+ + (λ+ − α)cα−λ−

for α 6= 0 (here, as in the statement of Theorem 1.2, λ± = (1 ±
√

1− 4α)/2).
Observe that f takes values in [1,∞). This is clear for α = 0. For the remaining
values of the parameter α, we compute that

f ′(s) =
(α− λ−)(λ+ − α)(sλ+−α−1 − sλ−−α−1)

(α− λ−)cα−λ+ + (λ+ − α)cα−λ−
.

It suffices to note that α − λ− =
√

1− 4α + 2α − 1 < 0, λ+ − α > 1 − α > 0,
sλ+−α−1 − sλ−−α−1 < 0 for s ∈ (0, 1) and

(α− λ−)cα−λ+ + (λ+ − α)cα−λ− = cα−λ−
[
(α− λ−)cλ−−λ+ + (λ+ − α)

]
≥ cα−λ−

[
(α− λ−) + (λ+ − α)

]
> 0.

This shows that f is increasing on (1/c, 1) and hence f ≥ f(1/c) = 1. Thus, by
Theorem 3.1, the inequality (1.3) holds true and the constant C(α, ||E(X)||A1

) is
the best possible. �

Proof of Theorem 1.2 for α > 1/4, c > 1. First we will show that

(3.6)

√
4α0 − 1

2
log c < π,

or, equivalently, α0 <
1
4 + π2

log2 c
. To do this, note that if we let α → 1/4 in (1.2),

then the left-hand side tends to − log c/4 and the right-hand side converges to 1;

similarly, if we let α → 1
4 + π2

log2 c
, then the left-hand side of (1.2) converges to 0

and the right-hand side approaches −1. Thus (3.6) follows from Darboux property.
Now, suppose that α < α0. It is easy to find a function which satisfies the

differential equation (3.1) and the condition (3.2): let F : [c−1, 1]→ R be given by

F (s) = s1/2−α
[

2α− 1√
4α− 1

sin

(√
4α− 1

2
log s

)
+ cos

(√
4α− 1

2
log s

)]
.
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The key fact is that F takes positive values. Indeed, we have F (c−1) > 0 in view
of (1.2); furthermore, an easy calculation shows that

F ′(s) = − 2α2

√
4α− 1

s−1/2−α sin

(√
4α− 1

2
log s

)
, s ∈ (c−1, 1).

This is nonnegative, because

0 >

√
4α− 1

2
log s >

√
4α0 − 1

2
log c−1 > −π,

where the latter passage is due to (3.6). Therefore the function f(s) = F (s)/F (c−1),
s ∈ [c−1, 1], satisfies (3.1), (3.2), (3.3) and takes values in [1,∞). An application of
Theorem 3.1 gives the assertion.

Finally, suppose that α ≥ α0 and pick α1 < α0. By Hölder’s inequality, we have

EeαX∞ ≥
[
Eeα1X∞

]α/α1

and by the appropriate choice of X, the right-hand side can be made equal to
C(α1, c)

α/α1 . It suffices to note that C(α1, c)→∞ as α1 ↑ α; this proves that the
inequality (1.3) does not hold with any finite constant. The proof is complete. �
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