ON MARTINGALES WHOSE EXPONENTIAL PROCESSES SATISFY MUCKENHOUPT'S CONDITION A_{1}

ADAM OSȨKOWSKI

Abstract

Let X be a continuous-path uniformly integrable martingale such that its exponential process $\mathcal{E}(X)$ satisfies the probabilistic version of Muckenhoupt's condition A_{1}. We establish optimal upper bounds for the BMO norm of X and a class of related sharp exponential estimates.

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, filtered by $\left(\mathcal{F}_{t}\right)_{t \geq 0}$, a nondecreasing family of sub- σ-fields of \mathcal{F}, such that \mathcal{F}_{0} contains all the events of probability 0 . Throughout the paper, X will be an adapted uniformly integrable martingale with continuous trajectories, and $\langle X\rangle$ will denote the quadratic covariance process (or square bracket) of X. See e.g. Dellacherie and Meyer [1] for the necessary definitions. Let

$$
\mathcal{E}(X)=\left(\exp \left(X_{t}-\langle X\rangle_{t} / 2\right)\right)_{t \geq 0}
$$

stand for the exponential local martingale induced by X. For $1<p<\infty$, we say that $\mathcal{E}(X)$ satisfies Muckenhoupt's A_{p} condition (in short, $\mathcal{E}(X) \in A_{p}$), if

$$
\sup _{t \geq 0}\left\|\mathcal{E}(X)_{t} \mathbb{E}\left[\mathcal{E}(X)_{\infty}^{-1 /(p-1)} \mid \mathcal{F}_{t}\right]^{p-1}\right\|_{\infty}<\infty
$$

There is a version of this condition if we pass with p to 1 . Namely, $\mathcal{E}(X)$ belongs to the class A_{1}, if

$$
\sup _{t \geq 0}\left\|\mathcal{E}(X)_{t} \mathcal{E}(X)_{\infty}^{-1}\right\|_{\infty}<\infty
$$

The above supremum will be denoted by $\|\mathcal{E}(X)\|_{A_{1}}$ and called the A_{1} constant of $\mathcal{E}(X)$. These A_{p} classes, introduced by Izumisawa and Kazamaki in [3], are probabilistic counterparts of the classical analytic A_{p} classes, defined by Muckenhoupt in [7] during the study of weighted inequalities for the Hardy-Littlewood maximal operator.

One of the objectives of this note is to study the interplay between the A_{1} constant of $\mathcal{E}(X)$ and the $B M O$-norm of X. Recall that the martingale X is of bounded mean oscillation, if

$$
\|X\|_{B M O}=\sup _{t \geq 0}\left\|\mathbb{E}\left[\left|X_{\infty}-X_{t}\right|^{2} \mid \mathcal{F}_{t}\right]^{1 / 2}\right\|_{\infty}<\infty
$$

See Getoor and Sharpe [2], Kazamaki [6] for more details, and consult John and Nirenberg [4] for the original, analytic version of the BMO class.

[^0]It is well known that X belongs to the class $B M O$ if and only if its exponential process $\mathcal{E}(X)$ belongs to a class A_{p} for some $p>1$. See e.g. Kazamaki [5], [6]. On the other hand, using Hölder's inequality, we easily check that $A_{p} \subseteq A_{q}$ if $p \leq q$. Combining these two facts, we see that the condition $\mathcal{E}(X) \in A_{1}$ implies that $X \in B M O$, and one of our main results is the following sharp bound for $\|X\|_{B M O}$ in terms of $\|\mathcal{E}(X)\|_{A_{1}}$. Here and below, "log" stands for the natural logarithm.

Theorem 1.1. For any uniformly integrable martingale X we have

$$
\begin{equation*}
\|X\|_{B M O} \leq\left(2 \log \|\mathcal{E}(X)\|_{A_{1}}+\frac{2}{\|\mathcal{E}(X)\|_{A_{1}}}-1\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

and the inequality is sharp.
The martingale version of the inequality of John and Nirenberg (see Getoor and Sharpe [2]) states that if X is of bounded mean oscillation and starts from 0 , then $\mathbb{E} e^{\alpha X_{\infty}}<\infty$ for α belonging to some interval containing 0 . Thus, in view of the above theorem, if $\|\mathcal{E}(X)\|_{A_{1}}<\infty$, then it is exponentially integrable in the previous sense. Our second result concerns the precise information on the set of admissible α 's and the size of $\mathbb{E} e^{\alpha X_{\infty}}$. For the precise formulation, we need some extra notation. For any $\alpha<1 / 4$ and $c \geq 1$, put

$$
C(\alpha, c)=\frac{\lambda_{+}-\lambda_{-}}{\left(\alpha-\lambda_{-}\right) c^{\alpha-\lambda_{+}}+\left(\lambda_{+}-\alpha\right) c^{\alpha-\lambda_{-}}}
$$

where $\lambda_{ \pm}=(1 \pm \sqrt{1-4 \alpha}) / 2$; for $\alpha=1 / 4$ and $c \geq 1$, let

$$
C(\alpha, c)=\frac{c^{1 / 4}}{1+\log c^{1 / 4}}
$$

Finally, for $\alpha>1 / 4$ and $c \geq 1$, define

$$
C(\alpha, c)=c^{1 / 2-\alpha}\left[\frac{1-2 \alpha}{\sqrt{4 \alpha-1}} \sin \left(\frac{\sqrt{4 \alpha-1}}{2} \log c\right)+\cos \left(\frac{\sqrt{4 \alpha-1}}{2} \log c\right)\right]^{-1}
$$

provided the expression in the square brackets is nonzero (and put $C(\alpha, c)=\infty$ otherwise).

Theorem 1.2. Suppose that X is a uniformly integrable martingale with $X_{0}=0$. Let α_{0} be the least $\alpha \in(1 / 4, \infty)$ satisfying

$$
\begin{equation*}
\frac{2 \alpha-1}{\sqrt{4 \alpha-1}} \sin \left(\frac{\sqrt{4 \alpha-1}}{2} \log \|\mathcal{E}(X)\|_{A_{1}}\right)=\cos \left(\frac{\sqrt{4 \alpha-1}}{2} \log \|\mathcal{E}(X)\|_{A_{1}}\right) \tag{1.2}
\end{equation*}
$$

(if $\|\mathcal{E}(X)\|_{A_{1}}=1$, set $\alpha_{0}=\infty$). Then for any $\alpha<\alpha_{0}$ we have

$$
\begin{equation*}
\mathbb{E} e^{\alpha X_{\infty}} \leq C\left(\alpha,\|\mathcal{E}(X)\|_{A_{1}}\right) \tag{1.3}
\end{equation*}
$$

and the inequality is sharp. If $\alpha \geq \alpha_{0}$, then the above exponential inequality does not hold with any finite constant C depending only on $\|\mathcal{E}(X)\|_{A_{1}}$.

As an interesting corollary, we obtain that if $\mathcal{E}(X)$ belongs to the class A_{1}, then $e^{X_{\infty}} \in L^{1 / 4}$ and the exponent $1 / 4$ cannot be enlarged. Higher integrability of $e^{X_{\infty}}$ implies the corresponding upper bound for the A_{1} constant of $\mathcal{E}(X)$.

A few words about the organization of this note are in order. We establish Theorem 1.1 in the next section; Section 3 is devoted to the proof of Theorem 1.2.

2. On the BMO estimate

We start with rephrasing the condition A_{1} in terms of the maximal function $\mathcal{E}(X)^{*}$ of $\mathcal{E}(X)$, given by $\mathcal{E}(X)_{t}^{*}=\sup _{0 \leq s<t} \mathcal{E}(X)_{s}, 0 \leq t \leq \infty$.

Lemma 2.1. Let X be a martingale starting from 0 and let $c \geq 1$. The following conditions are equivalent.
(i) X is uniformly integrable and satisfies $\|\mathcal{E}(X)\|_{A_{1}} \leq c$.
(ii) the pair $\left(\mathcal{E}(X), \mathcal{E}(X)^{*}\right)$ takes values in the cone $\left\{(y, z) \in \mathbb{R}_{+}^{2}: y \leq z \leq c y\right\}$ with probability 1.

Proof. (i) \Rightarrow (ii) The process $\mathcal{E}(X)$ is a nonnegative local martingale, and thus it is a supermartingale. Hence, for any $s \leq t$ we have

$$
\mathcal{E}(X)_{s}=\mathbb{E}\left[\mathcal{E}(X)_{s} \mid \mathcal{F}_{t}\right] \leq \mathbb{E}\left[c \mathcal{E}(X)_{\infty} \mid \mathcal{F}_{t}\right] \leq c \mathcal{E}(X)_{t}
$$

This implies $\mathcal{E}(X)_{t}^{*} \leq c \mathcal{E}(X)_{t}$ for any t, which is exactly what we need.
(ii) \Rightarrow (i) It will be proved in Lemma 2.2 below that if $\mathcal{E}(X)^{*} \leq c \mathcal{E}(X)$ for some $c>0$, then X is bounded in L^{2} and hence it is uniformly integrable. The condition $\|\mathcal{E}(X)\|_{A_{1}} \leq c$ is evident: we have $\mathcal{E}(X)_{t} \leq \mathcal{E}(X)_{\infty}^{*} \leq c \mathcal{E}(X)_{\infty}$ for any $t \geq 0$.

Let c be a fixed number larger than 1. The key role in the proof of Theorem 1.1 is played by the function U, given on $\left\{(x, y, z) \in \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}_{+}: y \leq z \leq c y\right\}$ by the formula

$$
U(x, y, z)=x^{2}+2 \log \left(\frac{c y}{z}\right)-\frac{2 y}{z}+\frac{2}{c}
$$

Observe that the function $s \mapsto 2 \log s-2 s$ is increasing on $(0,1]$, which implies

$$
\begin{equation*}
x^{2} \leq U(x, y, z) \leq x^{2}+2 \log c+\frac{2}{c}-1 . \tag{2.1}
\end{equation*}
$$

The key property of U is the following.
Lemma 2.2. Let X be a uniformly integrable martingale starting from 0 such that $\|\mathcal{E}(X)\|_{A_{1}} \leq c$. Then the process $\mathcal{U}^{X}=\left(U\left(X_{t}, \mathcal{E}(X)_{t}, \mathcal{E}(X)_{t}^{*}\right)_{t \geq 0}\right.$ is a uniformly integrable martingale.

Proof. First we show that \mathcal{U}^{X} is a local martingale, using Itô's formula. We have $U_{x y}=0, \mathrm{~d}\langle\mathcal{E}(X)\rangle_{t}=\mathcal{E}(X)_{t}^{2} \mathrm{~d}\langle X\rangle_{t}$ and $U_{x x}+y^{2} U_{y y}=0$, which implies that the integral with respect to $\langle X\rangle$ vanishes. Similarly, we have $U_{z}(x, z, z)=0$, which gives

$$
\int_{0+}^{t} U_{z}\left(X_{s}, \mathcal{E}(X)_{s}, \mathcal{E}(X)_{s}^{*}\right) \mathrm{d} \mathcal{E}(X)_{s}^{*}=0
$$

since the process $\mathcal{E}(X)^{*}$ increases for t lying in the set $\left\{s: \mathcal{E}(X)_{s}=\mathcal{E}(X)_{s}^{*}\right\}$. This yields the local martingale property of \mathcal{U}^{X}. Denoting the localizing sequence by $\left(\tau_{n}\right)_{n \geq 1}$, we obtain, by the left inequality in (2.1),

$$
\mathbb{E} X_{\tau_{n} \wedge t}^{2} \leq \mathbb{E} \mathcal{U}_{\tau_{n} \wedge t}^{X}=\mathcal{U}_{0}^{X}=U(0,1,1), \quad t \geq 0
$$

Since n and t were arbitrary, Doob's maximal inequality implies that $X^{*}=\sup _{t \geq 0}\left|X_{t}\right|$ is in L^{2}. Therefore, using the upper bound in (2.1), we see that \mathcal{U}^{X} is majorized by an integrable random variable. This yields the claim.

Proof of Theorem 1.1. Fix a nonnegative number t. Of course, the process $Y=$ $\left(X_{u \vee t}-X_{t}\right)_{u \geq 0}$ is a uniformly integrable martingale starting from 0 . Furthermore, we have $\mathcal{E}(Y)_{u}=\mathcal{E}(X)_{u \vee t} / \mathcal{E}(X)_{t}$, so $\|\mathcal{E}(Y)\|_{A_{1}} \leq\|\mathcal{E}(X)\|_{A_{1}}$. Applying Lemma 2.2 to the process Y and $c:=\|\mathcal{E}(X)\|_{A_{1}}$ we obtain, by virtue of (2.1),

$$
\begin{align*}
\mathbb{E}\left[\left|X_{\infty}-X_{t}\right|^{2} \mid \mathcal{F}_{t}\right] & =\mathbb{E}\left[Y_{\infty}^{2} \mid \mathcal{F}_{t}\right] \leq \mathbb{E}\left[\mathcal{U}_{\infty}^{Y} \mid \mathcal{F}_{t}\right]=\mathcal{U}_{t}^{Y} \\
& =2 \log \|\mathcal{E}(X)\|_{A_{1}}+\frac{2}{\|\mathcal{E}(X)\|_{A_{1}}}-1 . \tag{2.2}
\end{align*}
$$

This completes the proof of (1.1), since t was arbitrary. To see that this bound is sharp, fix $c \geq 1$, let $B=\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion and consider the stopping time $\tau=\inf \left\{t \geq 0: \mathcal{E}(B)_{t}^{*}=c \mathcal{E}(B)_{t}\right\}$. If we repeat the reasoning from (2.2), with $t=0$ and $X=Y=B^{\tau}$, we see that the inequality becomes an equality. Hence both sides of (1.1) are equal and the proof is finished.

3. Exponential estimates

As we have seen in the statement of Theorem 1.2, the optimal upper bounds for $\mathbb{E} e^{\alpha X_{\infty}}$ are given by three different formulas, depending on the value of c and α. To enable the unified treatment of these inequalities, we will first prove the following.

Theorem 3.1. Let $\alpha \in \mathbb{R}, c>1$ be fixed. Suppose that there exists a function $f:\left[c^{-1}, 1\right] \rightarrow[1, \infty)$ of class C^{2} which satisfies the equalities

$$
\begin{align*}
\alpha^{2} f(s)+2 \alpha s f^{\prime}(s)+s^{2} f^{\prime \prime}(s) & =0, \quad s \in\left(c^{-1}, 1\right) \tag{3.1}\\
f^{\prime}(1-) & =0 \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
f\left(c^{-1}\right)=1 \tag{3.3}
\end{equation*}
$$

Then for any uniformly integrable martingale X with $X_{0}=0$ and $\|\mathcal{E}(X)\|_{A_{1}} \leq c$ we have

$$
\begin{equation*}
\mathbb{E} \exp \left(\alpha X_{\infty}\right) \leq f(1) \tag{3.4}
\end{equation*}
$$

The inequality is sharp.
Proof. The reasoning is similar to that appearing in the proof of Theorem 1.1 and rests on the existence of a certain special function. Namely, let us introduce $U:\left\{(x, y, z) \in \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{R}_{+}: y \leq z \leq c y\right\} \rightarrow \mathbb{R}$ given by

$$
U(x, y, z)=e^{\alpha x} f(y / z)
$$

By Itô's formula, the process $\mathrm{U}^{X}=\left(U\left(X_{t}, \mathcal{E}(X)_{t}, \mathcal{E}(X)_{t}^{*}\right)\right)_{t \geq 0}$ is a local martingale. Indeed, the equation (3.1) implies that the integral with respect to $\langle X\rangle$ vanishes; moreover, (3.2) enforces $U_{z}(x, z, z)=0$ and hence the integral with respect to $\mathcal{E}(X)^{*}$ is zero. Let $\left(\tau_{n}\right)_{n \geq 1}$ be the localizing sequence of U^{X}. Since f takes values in $[1, \infty)$, we have $\mathrm{U}^{X} \geq e^{\alpha X}$ and hence, for any n and t,

$$
\begin{equation*}
\mathbb{E} \exp \left(\alpha X_{\tau_{n} \wedge t}\right) \leq \mathbb{E} \mathrm{U}_{\tau_{n} \wedge t}^{X}=\mathrm{U}_{0}^{X}=f(1) \tag{3.5}
\end{equation*}
$$

Letting n and t to infinity we get (3.4), by virtue of Fatou's lemma. To see that this inequality is sharp, observe that $\left(\exp \left(\alpha X_{\tau_{n} \wedge t} / 2\right)\right)_{t \geq 0}$ is a nonnegative submartingale. Consequently, by Doob's maximal inequality in L^{2}, if we let $t \rightarrow \infty$ and
$n \rightarrow \infty$ in (3.5), we get that $\sup _{t \geq 0} \exp \left(\alpha X_{t}\right)$ is integrable and thus U^{X} is a uniformly integrable martingale. Now, as previously, we take X to be a standard Brownian motion $B=\left(B_{t}\right)_{t \geq 0}$ stopped at the time $\tau=\inf \left\{t \geq 0: \mathcal{E}(B)_{t}^{*}=c \mathcal{E}(B)_{t}\right\}$. Then $\left\|\mathcal{E}\left(B^{\tau}\right)\right\|_{A_{1}}=c$ and, since $f(1 / c)=1$,

$$
\mathbb{E} \exp \left(\alpha B_{\tau}\right)=\mathbb{E} \mathrm{U}_{\infty}^{B^{\tau}}=\mathrm{U}_{0}^{B^{\tau}}=f(1)
$$

This completes the proof.
We turn to the proof of Theorem 1.2 and consider the cases $\alpha \leq 1 / 4$ and $\alpha>1 / 4$ separately. We may assume that $c:=\|\mathcal{E}(X)\|_{A_{1}}>1$, since if the A_{1} constant of $\mathcal{E}(X)$ is equal to 1 , then X is zero almost surely and the claim is obvious.

Proof of Theorem 1.2 for $\alpha \leq 1 / 4, c>1$. The function $C(\cdot, \cdot)$ is continuous on the set $\left(-\infty, \frac{1}{4}\right] \times[1, \infty)$. Thus, by Lebesgue's monotone convergence theorem, we may restrict ourselves to α 's which are strictly smaller than $1 / 4$. It is not difficult to determine a function f which satisfies (3.1), (3.2) and (3.3): we have $f \equiv 1$ for $\alpha=0$ and

$$
f(s)=\frac{\left(\alpha-\lambda_{-}\right) s^{\lambda_{+}-\alpha}}{\left(\alpha-\lambda_{-}\right) c^{\alpha-\lambda_{+}}+\left(\lambda_{+}-\alpha\right) c^{\alpha-\lambda_{-}}}+\frac{\left(\lambda_{+}-\alpha\right) s^{\lambda_{-}-\alpha}}{\left(\alpha-\lambda_{-}\right) c^{\alpha-\lambda_{+}}+\left(\lambda_{+}-\alpha\right) c^{\alpha-\lambda_{-}}}
$$

for $\alpha \neq 0$ (here, as in the statement of Theorem $\left.1.2, \lambda_{ \pm}=(1 \pm \sqrt{1-4 \alpha}) / 2\right)$. Observe that f takes values in $[1, \infty)$. This is clear for $\alpha=0$. For the remaining values of the parameter α, we compute that

$$
f^{\prime}(s)=\frac{\left(\alpha-\lambda_{-}\right)\left(\lambda_{+}-\alpha\right)\left(s^{\lambda_{+}-\alpha-1}-s^{\lambda_{-}-\alpha-1}\right)}{\left(\alpha-\lambda_{-}\right) c^{\alpha-\lambda_{+}}+\left(\lambda_{+}-\alpha\right) c^{\alpha-\lambda_{-}}}
$$

It suffices to note that $\alpha-\lambda_{-}=\sqrt{1-4 \alpha}+2 \alpha-1<0, \lambda_{+}-\alpha>1-\alpha>0$, $s^{\lambda_{+}-\alpha-1}-s^{\lambda_{-}-\alpha-1}<0$ for $s \in(0,1)$ and

$$
\begin{aligned}
\left(\alpha-\lambda_{-}\right) c^{\alpha-\lambda_{+}}+\left(\lambda_{+}-\alpha\right) c^{\alpha-\lambda_{-}} & =c^{\alpha-\lambda_{-}}\left[\left(\alpha-\lambda_{-}\right) c^{\lambda_{-}-\lambda_{+}}+\left(\lambda_{+}-\alpha\right)\right] \\
& \geq c^{\alpha-\lambda_{-}}\left[\left(\alpha-\lambda_{-}\right)+\left(\lambda_{+}-\alpha\right)\right]>0
\end{aligned}
$$

This shows that f is increasing on $(1 / c, 1)$ and hence $f \geq f(1 / c)=1$. Thus, by Theorem 3.1, the inequality (1.3) holds true and the constant $C\left(\alpha,\|\mathcal{E}(X)\|_{A_{1}}\right)$ is the best possible.

Proof of Theorem 1.2 for $\alpha>1 / 4, c>1$. First we will show that

$$
\begin{equation*}
\frac{\sqrt{4 \alpha_{0}-1}}{2} \log c<\pi, \tag{3.6}
\end{equation*}
$$

or, equivalently, $\alpha_{0}<\frac{1}{4}+\frac{\pi^{2}}{\log ^{2} c}$. To do this, note that if we let $\alpha \rightarrow 1 / 4$ in (1.2), then the left-hand side tends to $-\log c / 4$ and the right-hand side converges to 1 ; similarly, if we let $\alpha \rightarrow \frac{1}{4}+\frac{\pi^{2}}{\log ^{2} c}$, then the left-hand side of (1.2) converges to 0 and the right-hand side approaches -1 . Thus (3.6) follows from Darboux property.

Now, suppose that $\alpha<\alpha_{0}$. It is easy to find a function which satisfies the differential equation (3.1) and the condition (3.2): let $F:\left[c^{-1}, 1\right] \rightarrow \mathbb{R}$ be given by

$$
F(s)=s^{1 / 2-\alpha}\left[\frac{2 \alpha-1}{\sqrt{4 \alpha-1}} \sin \left(\frac{\sqrt{4 \alpha-1}}{2} \log s\right)+\cos \left(\frac{\sqrt{4 \alpha-1}}{2} \log s\right)\right] .
$$

The key fact is that F takes positive values. Indeed, we have $F\left(c^{-1}\right)>0$ in view of (1.2); furthermore, an easy calculation shows that

$$
F^{\prime}(s)=-\frac{2 \alpha^{2}}{\sqrt{4 \alpha-1}} s^{-1 / 2-\alpha} \sin \left(\frac{\sqrt{4 \alpha-1}}{2} \log s\right), \quad s \in\left(c^{-1}, 1\right) .
$$

This is nonnegative, because

$$
0>\frac{\sqrt{4 \alpha-1}}{2} \log s>\frac{\sqrt{4 \alpha_{0}-1}}{2} \log c^{-1}>-\pi
$$

where the latter passage is due to (3.6). Therefore the function $f(s)=F(s) / F\left(c^{-1}\right)$, $s \in\left[c^{-1}, 1\right]$, satisfies (3.1), (3.2), (3.3) and takes values in $[1, \infty)$. An application of Theorem 3.1 gives the assertion.

Finally, suppose that $\alpha \geq \alpha_{0}$ and pick $\alpha_{1}<\alpha_{0}$. By Hölder's inequality, we have

$$
\mathbb{E} e^{\alpha X_{\infty}} \geq\left[\mathbb{E} e^{\alpha_{1} X_{\infty}}\right]^{\alpha / \alpha_{1}}
$$

and by the appropriate choice of X, the right-hand side can be made equal to $C\left(\alpha_{1}, c\right)^{\alpha / \alpha_{1}}$. It suffices to note that $C\left(\alpha_{1}, c\right) \rightarrow \infty$ as $\alpha_{1} \uparrow \alpha$; this proves that the inequality (1.3) does not hold with any finite constant. The proof is complete.

References

[1] C. Dellacherie and P. A. Meyer, Probabilities and potential B, North-Holland, Amsterdam, 1982.
[2] R. K. Getoor and M. J. Sharpe, Conformal martingales, Invent. Math. 16 (1972), 271-308.
[3] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales, Tohoku Math. J. 29 (1977), 115-124.
[4] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure and Appl. Math. 14 (1961), 415-426.
[5] N. Kazamaki, A characterization of BMO-martingales, Séminaire de Probabilités, X, 536538. Lecture Notes in Math. 511, Springer, Berlin, 1976.
[6] N. Kazamaki, Continuous Exponential Martingales and BMO, Lecture Notes in Math. 1579, Springer-Verlag, Berlin, Heidelberg, 1994.
[7] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl

[^0]: 2010 Mathematics Subject Classification. Primary: 60G44. Secondary: 60G46.
 Key words and phrases. BMO, Muckenhoupt's class, martingale, exponential martingale. Partially supported by NCN grant DEC-2012/05/B/ST1/00412.

