
ON THE BEST CONSTANT IN THE ESTIMATE RELATED TO

H1 −BMO DUALITY

ADAM OS�KOWSKI

Abstract. Let I ⊂ R be an interval and let f , ϕ be arbitrary elements of H1(I) and
BMO(I), respectively, with

∫
I ϕ = 0. The paper contains the proof of the estimate∫

I
fϕ ≤

√
2‖f‖H1(I)‖ϕ‖BMO(I)

and it is shown that
√
2 cannot be replaced by a smaller universal constant. The

argument rests on the existence of a special function enjoying appropriate size and
concavity requirements.

1. Introduction

Suppose that f is a real-valued locally integrable function de�ned on some �xed interval
I ⊂ R. It maximal functionMf : I → [0,∞) is de�ned by

Mf(x) = sup
∣∣〈f〉[a,b]∣∣ ,

where the supremum is taken over all intervals [a, b] ⊆ I containing x and 〈f〉[a,b] =
1
b−a

∫ b
a
f stands for the average of f over [a, b] (all the integrals considered in this paper

will be taken with respect to the Lebesgue measure). Given 1 ≤ p < ∞, if the maximal
function Mf lies in Lp(I), then f is said to belong to the Hardy space Hp(I) and we
de�ne ‖f‖Hp(I) = ‖Mf‖Lp(I). By the classical inequality of Hardy and Littlewood, if p is
strictly bigger than 1, then we have Hp(I) = Lp(I) and therefore the dual space of Hp(I)
is equal to Lq(I), 1/p + 1/q = 1. In the boundary case p = 1, the celebrated result of
Fe�erman [5] asserts that (Hp(I))∗ = BMO(I), the class of functions of bounded mean
oscillation. The latter space consists of all (equivalence classes of) functions ϕ : I → R
satisfying

‖ϕ‖BMO(I) := sup
[a,b]⊆I

〈(
ϕ− 〈ϕ〉[a,b]

)2〉1/2
[a,b]

= sup
[a,b]⊂I

(
〈ϕ2〉[a,b] − 〈ϕ〉2[a,b]

)1/2
<∞.

The class BMO was introduced by John and Nirenberg in [9], and it has turned out to
be one of the fundamental spaces in harmonic analysis and probability theory. One of
important features of this object is that in many contexts, it is a convenient replacement
for the space L∞. For example, many classical operators in analysis do not map L∞ into
L∞, but are bounded on BMO (cf. [8]); another important example comes from the
interpolation theory: there is an appropriate version of Marcinkiewicz' theorem, which
describes Lp spaces (1 < p <∞) as interpolation spaces between L1 and BMO (cf. [2]).
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It is not di�cult to see that the aforementioned H1 − BMO duality is equivalent to
the existence of a universal constant C such that

(1.1)

∫
I

fϕ ≤ C‖f‖H1(I)‖ϕ‖BMO(I),

provided
∫
I
ϕ = 0. The purpose of this paper is to identify the optimal constant in the

estimate (1.1).

Theorem 1.1. The inequality (1.1) holds with C =
√
2. The constant is the best possible.

The inequality (1.1) and its variants have been studied by a number of authors, mostly
in the context of square-function-based H1. For example, Getoor and Sharpe [7] estab-

lished a probabilistic analogue, with the same constant
√
2. See also [4] for a version in

the context of E-martingales and [3, 6, 12] for other probabilistic variants. Consult also
[15] for an analytic estimate involving Triebel-Lizorkin spaces.

Our approach rests on the Bellman function method, a powerful technique used widely
in analysis and probability theory. This approach has its origins in the theory of optimal
control (cf. [1]) and, roughly speaking, it reduces the problem of proving a given estimate
to the existence of a certain special function, enjoying appropriate size and concavity
conditions. For an overview of the general method, see e.g. [10, 11]; consult also the
works [13, 14, 16] for a version speci�ed to BMO-estimates.

The next section contains the proof of (1.1) with C =
√
2. The �nal part of the

paper is devoted to the optimality of the constant; this is accomplished by constructing
appropriate examples.

2. Proof of (1.1)

Throughout this section, ε is a �xed positive number (which eventually will be sent
to zero). Introduce the domain D = {(u, v, y, z) : v > 0, v ≥ |u|, 0 ≤ z − y2 ≤ 1} and
consider the function B : D → R given by the formula

B(u, v, y, z) = uy − v

2
√
2(1− ε)

(
u2

v2
+ 2(y2 − z) + 3

)
.

This function has a certain concavity-type property, which will be studied in two lemmas
below.

Lemma 2.1. Let α−, α+ be two positive numbers satisfying α− + α+ = 1 and α− ≤
ε. Assume further that (u, v, y, z), (u−, v−, y−, z−) and (u+, v+, y+, z+) are elements of

D such that u = α−u− + α+u+, y = α−y− + α+y+, z = α−z− + α+z+ and v± =
max{|u±|, v}. If in addition we have |u−| ≤ |u+|, then

(2.1) B(u, v, y, z) ≥ α−B(u−, v−, y−, z−) + α+B(u+, v+, y+, z+).

In the proof of the above statement, we will use the notation d± = u± − u and
e± = y± − y. We split the analysis into two major cases.

Proof of Lemma 2.1 for |u+| ≤ v. Then both |u−| and |u+| are not bigger than v, so
v− = v+ = v and the estimate (2.1) is equivalent to

0 ≥ α−d−e− + α+d+e+ −
v

2
√

2(1− ε)

[
α−d

2
− + α+d

2
+

v2
+ 2(α−e

2
− + α+e

2
+)

]
.
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But this is easy: observe that

v

2
√
2(1− ε)

(
α−d

2
−

v2
+ 2α−e

2
−

)
≥ α− ·

2
√
2

2
√

2(1− ε)
|d−e−| ≥ α−d−e−

and similarly,

v

2
√
2(1− ε)

(
α+d

2
+

v2
+ 2α+e

2
+

)
≥ α+ ·

2
√
2

2
√
2(1− ε)

|d+e+| ≥ α+d+e+.

Summing these two estimates, we get the assertion. �

Proof of Lemma 2.1 for |u+| > v. Here the reasoning will be a bit more technical. We
start from the observation that it is enough to show the claim under the additional
assumption |u−| ≤ v. Indeed, if |u−| > v, then replacing v with the bigger quantity |u−|
does not change the right-hand side of (2.1) and decreases the left (we have Bv(u, v, y, z) =

−(2
√
2(1− ε))−1

[
−(u/v)2 + 2(y2 − z) + 3

]
≤ 0, due to the estimates y2 − z ≥ −1 and

0 ≤ |u/v| ≤ 1). For |u−| ≤ v < |u+|, the inequality (2.1) takes the form

uy− v

2
√
2(1− ε)

[
u2

v2
+ 2(y2 − z) + 3

]

≥ α−

{
u−y− −

v

2
√

2(1− ε)

[
u2−
v2

+ 2(y2− − z−) + 3

]}

+ α+

{
u+y+ −

|u+|
2
√
2(1− ε)

[
1 + 2(y2+ − z+) + 3

]}
.

(2.2)

Let us look at the terms involving the variables y and z. Note that

− 2(y2 − z)v + α− · 2(y2− − z)v + α+ · 2(y2+ − z+)|u+|
= 2v

[
− (y2 − z) + α−(y

2
− − z−) + α+(y

2
+ − z+)

]
+ α+ · 2(y2+ − z+)(|u+| − v)

≥ 2v
(
α−e

2
− + α+e

2
+

)
− α+ · 2(|u+| − v) =

2α+

α−
· ve2+ − 2α+(|u+| − v).

Here in the last line we have used the identity α−e− + α+e+ = 0 (which implies α−e
2
− +

α+e
2
+ = α+

α−
e2+). We come back to (2.2). Observe that

uy − α−u−y− − α+u+y+ = −α−d−e− − α+d+e+ = −α+

α−
d+e+

and

− v

2
√
2(1− ε)

·
(
u2

v2
+ 3

)
+

α−v

2
√
2(1− ε)

·
(
u2−
v2

+ 3

)
=
−α+u

2
+ + α+

α−
d2+ − 3α+v

2

2
√

2(1− ε)v
.

Therefore, the estimate (2.2) will follow if we prove that

−α+

α−
d+e+ +

2α+

α−
· ve2+ − 2α+(|u+| − v)

2
√
2(1− ε)

+
−α+u

2
+ + α+

α−
d2+ − 3α+v

2

2
√

2(1− ε)v
+

4α+|u+|
2
√

2(1− ε)
≥ 0.

After some straightforward manipulations, this inequality becomes

−α−
v

(|u+| − v)2 + 2ve2+ +
d2+
v
≥ 2
√

2(1− ε)d+e+.
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Note that 0 ≤ |u+|−v ≤ |u|+ |d+|−v ≤ |d+|; furthermore, we have α− ≤ ε, as we assume
in the statement of the lemma. Consequently, the left-hand side above is not smaller than

(1− ε)
d2+
v

+ 2ve2+ ≥ 2
√

2(1− ε)d+e+,

which is the desired claim. �

Now we will establish the key geometric splitting lemma.

Lemma 2.2. Let I be an arbitrary interval, let f : I → R be an integrable function and

pick ϕ ∈ BMO(I) with ‖ϕ‖BMO ≤ 1. In addition, let v be a positive number satisfying

|〈f〉I | ≤ v. Then there is a splitting I = I− ∪ I+ with α± := |I±|/|I| ≥ ε such that

B
(
〈f〉I , v, 〈ϕ〉I , 〈ϕ2〉I

)
≥ α−B

(
〈f〉I− , v−, 〈ϕ〉I− , 〈ϕ2〉I−

)
+ α+B

(
〈f〉I+ , v+, 〈ϕ〉I+ , 〈ϕ2〉I+

)
,

(2.3)

where v± = max{v, |〈f〉I± |}.

Remark 2.3. The assumptions |〈f〉I | ≤ v and ‖ϕ‖BMO ≤ 1 imply that the points(
〈f〉I , v, 〈ϕ〉I , 〈ϕ2〉I

)
and

(
〈f〉I± , v±, 〈ϕ〉I± , 〈ϕ2〉I±

)
lie in the domain of B.

Proof of Lemma 2.2. We may and do assume that I = [0, 1], by a simple a�ne change of

variables. Furthermore, passing from f to −f if necessary, we may assume that
∫ 1

0
f ≥ 0.

We consider separately three cases.

Case 1. Suppose that 〈f〉[0,ε] and 〈f〉[1−ε,1] are both not smaller or both not bigger
than 〈f〉[0,1]. Then there is a number a ∈ [ε, 1 − ε] such that 〈f〉[0,a] = 〈f〉[a,1] =
〈f〉[0,1]. (This can be easily shown by Darboux property of the continuous function
F (t) = 〈f〉[0,t] − 〈f〉[t,1], t ∈ [ε, 1 − ε]). Set I− = [0, a] and I+ = [a, 1]. Then α± ≥ ε,
〈f〉I− = 〈f〉I+ = 〈f〉I , v− = v+ = v and the desired inequality (2.3) is equivalent to

−(〈ϕ〉2I − 〈ϕ2〉I) ≥ −α−(〈ϕ〉2I− − 〈ϕ2〉I−)− α+(〈ϕ〉2I+ − 〈ϕ
2〉I+).

But this follows at once from the convexity of the function t 7→ t2, since 〈ϕ〉I = α−〈ϕ〉I−+
α+〈ϕ〉I+ and 〈ϕ2〉I = α−〈ϕ2〉I− + α+〈ϕ2〉I+ .

Case 2. Now, in contrast to the previous situation, we assume that 〈f〉[0,1] lies between
〈f〉[0,ε] and 〈f〉[1−ε,1]. Replacing f with f(2−·) if necessary, we may assume that 〈f〉[0,ε] ≤
〈f〉[0,1] ≤ 〈f〉[1−ε,1]. Now, if |〈f〉[0,ε]| ≤ |〈f〉[ε,1]|, then we take I− = [0, ε] and I+ = [ε, 1].
Then (2.3) follows from (2.1), applied to α− = ε, α+ = 1− ε, u− = 〈f〉[0,ε], u+ = 〈f〉[ε,1],
u = 〈f〉I , with y±, y, z± and z de�ned as analogous averages for ϕ and ϕ2. One proceeds
similarly if |〈f〉[1−ε,1]| ≤ |〈f〉[0,1−ε]|, taking I− = [1− ε, 1] and I+ = [0, ε] and using (2.1),
with the same choices for α±, u, y and z, but for u−, y−, z− one takes the averages of f ,
ϕ and ϕ2 over [1− ε, 1], and for u+, y+, z+ - the averages over [0, 1− ε].

Case 3. It remains to consider the case in which 〈f〉[0,ε] ≤ 〈f〉[0,1] ≤ 〈f〉[1−ε,1],
|〈f〉[0,ε]| > |〈f〉[ε,1]| and |〈f〉[1−ε,1]| > |〈f〉[0,1−ε]|. If these conditions hold, then there
is a number a ∈ [ε, 1− ε] such that 〈f〉[0,a]+ 〈f〉[a,1] = 0. To see this, recall that 〈f〉[0,ε] <
〈f〉[0,1], which implies 〈f〉[0,ε] < 〈f〉[ε,1] and hence 〈f〉[0,ε] < 0 (because |〈f〉[0,ε]| >
|〈f〉[ε,1]|, as we have assumed above). Thus

F (ε) = 〈f〉[0,ε] + 〈f〉[ε,1] = −|〈f〉[0,ε]|+ 〈f〉[ε,1] < 0.

Analogous reasoning shows that F (1− ε) > 0: we have 〈f〉[1−ε,1] > 〈f〉[0,1] ≥ 0, so

F (1− ε) = 〈f〉[0,1−ε] + 〈f〉[1−ε,1] = 〈f〉[0,1−ε] + |〈f〉[1−ε,1]| > 0.
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This guarantees the existence of the parameter a, by the Darboux property of the function
t 7→ 〈f〉[0,t] + 〈f〉[t,1]. Set I− = [0, a] and I+ = [a, 1]; then α± ≥ ε. Note that 〈f〉I− =
−〈f〉I+ , by the very de�nition of parameter a. As in the proof of the previous lemma, we
may assume that |〈f〉I− | ≤ v, since otherwise we replace v with |〈f〉I− |, decreasing the
left-hand side and not changing the right. But then |〈f〉I± | ≤ v and the inequality was
proved at the beginning of Lemma 2.1. �

Equipped with the above splitting lemma, we are ready for the proof of our main
inequality.

Proof of (1.1) with C =
√
2. By homogeneity, we may restrict ourselves to ‖ϕ‖BMO ≤ 1.

In addition, by straightforward approximation, we may assume that f and ϕ are bounded,
and 〈f〉I 6= 0. Our next step is to construct inductively an increasing set of partitions of
I: �rst we set I0 = {I}, and then, for any n ≥ 0 and any J ∈ In, we apply Lemma 2.2
to J and the functions f |J , ϕJ , obtaining its splitting J− ∪ J+. All the intervals J−, J+,
corresponding to di�erent choices of J ∈ In, are put into In+1. Note that the condition
α± := |I±|/|I| ≥ ε appearing in the assertion of Lemma 2.2 guarantees that the diameter
of In converges to zero as n→∞. By a straightforward induction, (2.3) implies that for
any n we have∑

J∈In

|J |
|I|
B
(
〈f〉J , vJ , 〈ϕ〉J , 〈ϕ2〉J) ≤ B

(
〈f〉I , |〈f〉I |, 〈ϕ〉I , 〈ϕ2〉I

)
,

where vJ = max
{
|〈f〉K | : K ∈ Ij for some j, J ⊆ K

}
is the `truncated' maximal

function of f , associated with the partitions I0, I1, . . ., In. (Note that the assumption
〈f〉I 6= 0, imposed at the beginning of the proof, guarantees that vJ > 0 for each J : this
is required for the use of (2.3)). Now, observe that

B
(
〈f〉I , |〈f〉I |, 〈ϕ〉I , 〈ϕ2〉I

)
= B

(
〈f〉I , |〈f〉I |, 0, 〈ϕ2〉I

)
≤ 0,

since 〈ϕ2〉I ≤ 〈ϕ〉2I + 1 = 1. Furthermore, for any (u, v, y, z) ∈ D we have y2 − z ≤ 0, so

B(u, v, y, z) ≥ uv − v

2
√
2(1− ε)

· 4 = uv −
√

2

1− ε
v.

Consequently, the previous estimate yields∑
J∈In

|J |〈f〉J〈ϕ〉J ≤ |I| ·
√

2

1− ε
vJ ≤

√
2

1− ε

∫
I

Mf.

Now we let n → ∞: then, as we have already noted above, the diameter of In tends
to zero and thus, by Lebesgue's di�erentiation theorem, the left-hand side converges to∫
I
fϕ. It remains to observe that ε > 0 was arbitrary to complete the proof. �

3. Sharpness

Now we will construct explicit examples showing that the constant C =
√
2 is optimal

in (1.1). Let q ∈ (0, 1) be a �xed parameter and introduce the families (I±n )
∞
n=0 of

intervals, given by I−n =
(
qn+1, (qn+ qn+1)/2

]
, I+n =

(
(qn+ qn+1)/2, qn

]
, n = 0, 1, 2, . . ..
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For any positive integer N , consider f : [0, 1]→ R given by

f = −q−Nχ[0,qN ] +

N−1∑
n=0

q−n(−χI−n + χI+n ),

The L1-norm of the maximal function of f behaves as follows.

Lemma 3.1. We have

‖Mf‖L1 ≤ 1 +N

(
1

q
− 1

)
.

Proof. We will prove the pointwise estimate

Mf(x) ≤ q−Nχ[0,qN )(x) +

N−1∑
n=0

q−n−1χ[qn+1,qn)(x),

from which the assertion follows immediately. If x ≤ qN−1, thenMf(x) ≤ ‖f‖L∞([0,1]) =

q−N , as needed. So, suppose that x > qN−1: then there is a unique integer n ≤ N − 2
such that x ∈ I−n ∪ In+ . Let [a, b] be an arbitrary subinterval of [0, 1] containing x; we

will prove that
∣∣∣ 1
b−a

∫ b
a
f
∣∣∣ ≤ q−n−1. If a ∈ I−n ∪ I−n (i.e., a ≥ qn+1), then we proceed as

previously:
∣∣∣ 1
b−a

∫ b
a
f
∣∣∣ ≤ ‖f‖L∞([a,b]) ≤ q−n−1, as desired. So, suppose that a < qn+1 and

write ∣∣∣∣∣ 1

b− a

∫ b

a

f

∣∣∣∣∣ =
∣∣∣∣∣qn+1 − a
b− a

· 1

qn+1 − a

∫ qn+1

a

f +
b− qn+1

b− a
· 1

b− qn+1

∫ b

qn+1

f

∣∣∣∣∣
≤ qn+1 − a

b− a

∣∣∣∣∣ 1

qn+1 − a

∫ qn+1

a

f

∣∣∣∣∣+ b− qn+1

b− a

∣∣∣∣∣ 1

b− qn+1

∫ b

qn+1

f

∣∣∣∣∣ .
Since qn+1−a

b−a + b−qn+1

b−a = 1, this implies∣∣∣∣∣ 1

b− a

∫ b

a

f

∣∣∣∣∣ ≤ max

{∣∣∣∣∣ 1

qn+1 − a

∫ qn+1

a

f

∣∣∣∣∣ ,
∣∣∣∣∣ 1

b− qn+1

∫ b

qn+1

f

∣∣∣∣∣
}
.

We have already proved above that
∣∣∣ 1
b−qn+1

∫ b
qn+1 f

∣∣∣ ≤ q−n−1. To handle the second

expression under the above maximum, note that

1

qn+1 − a

∫ qn+1

a

f =
1

qn+1 − a

∫ qm

a

f,

where m is de�ned as follows: m = N if a < qN , and otherwise, m ≥ n + 1 is uniquely
determined by the double inequality qm+1 < a < qm. If the �rst possibility occurs, we
note that ∣∣∣∣∣ 1

qn+1 − a

∫ qm

a

f

∣∣∣∣∣ =
∣∣∣∣∣ 1

qn+1 − a

∫ qN

a

f

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

qn+1

∫ qN

0

f

∣∣∣∣∣ = q−n−1.

On the other hand, if a > qN , then the expression
∣∣∣ 1
qn+1−a

∫ qm
a

f
∣∣∣, considered as a function

of a ∈ [qm+1, qm), attains its maximum for a = (qm + qm+1)/2, with the maximal value
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equal to

1

qn+1 − (qm + qm+1)/2
· 1− q

2
≤ 1

qn+1 − (qn+1 + qn+2)/2
· 1− q

2
= q−n−1.

Hence the claim follows. �

Now de�ne

ϕ =

∞∑
n=0

[
− n√

2

(
1

q
− 1

)
χI−n +

(
− n√

2

(
1

q
− 1

)
+
√
2

)
χI+n

]
.

We compute that for any nonnegative integer n,∫ qn

0

ϕ =

∞∑
k=n

qk − qk+1

2

[
− k√

2

(
1

q
− 1

)
− k√

2

(
1

q
− 1

)
+
√
2

]

= − (1− q)2√
2

∞∑
k=n

kqk−1 +
1− q√

2

∞∑
k=n

qk

= −qn · n(1− q)√
2q

(3.1)

and ∫ qn

0

ϕ2 =

∞∑
k=n

qk − qk+1

2

[(
− k√

2

(
1

q
− 1

))2

+

(
− k√

2

(
1

q
− 1

)
+
√
2

)2
]

=
(1− q)3

2

∞∑
k=n

k(k − 1)qk−2 +
(1− q)2(1− 3q)

2q

∞∑
k=n

kqk−1 + (1− q)
∞∑
k=n

qk

= qn
[
n2(1− q)2

2q2
+

1 + q

2q

]
.

(3.2)

We will prove the following estimate for the BMO norm of ϕ.

Lemma 3.2. We have ‖ϕ‖2BMO ≤ 1
8

(
1
q − 1

)2
+ 1+q

2q .

Proof. It is convenient to split the reasoning into a few intermediate steps.

Step 1. On the approach. We will check that for any [a, b] ⊆ [0, 1] we have

(3.3) 〈ϕ2〉[a,b] − 〈ϕ〉2[a,b] ≤
1

8

(
1

q
− 1

)2

+
1 + q

2q
,

i.e., we will show that the point (〈ϕ〉[a,b], 〈ϕ2〉[a,b]) lies on, or below the parabola y =

x2 + 1
8

(
1
q − 1

)2
+ 1+q

2q . We will frequently use the following simple observation, which

enables us to avoid most of the technical issues. Namely, for 0 ≤ a < c < b ≤ 1, we have

(3.4) (〈ϕ〉[a,b], 〈ϕ2〉[a,b]) =
c− a
b− a

(〈ϕ〉[a,c], 〈ϕ2〉[a,c]) +
b− c
b− a

(〈ϕ〉[c,b], 〈ϕ2〉[c,b]),

i.e., the point (〈ϕ〉[a,b], 〈ϕ2〉[a,b]) is a convex combination of the points (〈ϕ〉[a,c], 〈ϕ2〉[a,c])
and (〈ϕ〉[c,b], 〈ϕ2〉[c,b]) (in particular, all three are colinear). A similar observation holds

true if [a, b] is split into several intervals J1, J2, . . ., Jk: then (〈ϕ〉[a,b], 〈ϕ2〉[a,b]) is a convex
combination of (〈ϕ〉J1 , 〈ϕ2〉J1), (〈ϕ〉J2 , 〈ϕ2〉J2), . . . , (〈ϕ〉Jk , 〈ϕ2〉Jk).
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Step 2. Auxiliary parameters and their geometric interpretation. For any nonnegative

integer n, de�ne the points Pn =
(
〈ϕ〉[0,qn], 〈ϕ2〉[0,qn]

)
and A±n =

(
〈ϕ〉I±n , 〈ϕ

2〉I±n
)
. By

(3.1) and (3.2), the point Pn lies on the parabola y = x2 + 1+q
2q ; furthermore, since

ϕ is constant on I−n and I+n , the points A−n and A+
n lie on the parabola y = x2. A

straightforward computation shows that the line PnPn+1 is described by the equation

y = −2n+ 1√
2

(
1

q
− 1

)(
x+

n√
2

(
1

q
− 1

))
+
n2

2

(
1

q
− 1

)2

+
1 + q

2q

and is tangent to the parabola y = x2 + 1
8

(
1
q − 1

)2
+ 1+q

2q . Finally, let Qn be the

intersection point of the lines A−nPn+1 and PnA
+
n . See Figure 1 below.

Figure 1. The distinguished points arising in the analysis of the BMO
norm of ϕ. The line PnPn+1 passes through the center of A−nA

+
n .

Step 3. Proof of (3.3) for a = 0. We start with the observation that the point
(〈ϕ〉[0,(qn+qn+1)/2], 〈ϕ2〉[0,(qn+qn+1)/2]) is precisely Qn: indeed, by (3.4), it lies on the line

segment A−nPn+1 (since [0, (qn + qn+1)/2] = [0, qn+1] ∪ I−n ) and on the line PnA
+
n (since

[0, qn] = [0, (qn + qn+1)/2] ∪ I+n ).
Now, suppose that b ∈ I−n for some nonnegative integer n. Since [0, (qn + qn+1)/2] =

[0, b] ∪ [b, (qn + qn+1)/2] and the average of ϕ (or ϕ2) over [b, (qn + qn+1)/2] is the same
as the average over I−n , (3.4) implies that the point (〈ϕ〉[0,b], 〈ϕ2〉[0,b]) lies on the segment

QnPn+1, which, in turn, is located under the parabola y = x2 + 1
8

(
1
q − 1

)2
+ 1+q

2q . A

similar argument shows that if b ∈ I+n , then (〈ϕ〉[0,b], 〈ϕ2〉[0,b]) belongs to the segment
QnPn, which again lies below the parabola.

Step 4. Proof of (3.3) for arbitrary a < b. This is the most elaborate part. Let n be
an integer uniquely determined by the requirement b ∈ I−n ∪ I+n (i.e., qn+1 < b ≤ qn). We
consider three cases.
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1◦ Assume that a ∈ I−m ∪ I+m such that A−m lies below the line passing ` through A+
n

and tangent to y = x2 + 1+q
2q . Then the point (〈ϕ〉[a,b], 〈ϕ2〉[a,b]) is a convex combination

of A±m, A
±
m−1, . . ., A

±
n lying below `. Therefore it also lies below `, and hence, in turn,

also below the parabola y = x2 + 1
8

(
1
q − 1

)2
+ 1+q

2q .

2◦ Now suppose that a ∈ I−m ∪ I+m such that A−m lies on or above the line ` con-
sidered in the previous case. Assume additionally that the point (A−m + A+

m)/2 lies
below the line PnPn+1. Then A+

m lies below PnPn+1 and hence, by (3.4), so does
(〈ϕ〉[a,qm], 〈ϕ2〉[a,qm]). A similar argument shows that the point (〈ϕ〉[qn+1,b], 〈ϕ2〉[qn+1,b])

lies on or below PnPn+1. Therefore, the point (〈ϕ〉[a,b], 〈ϕ2〉[a,b]), being the convex combi-

nation of (〈ϕ〉[a,qm], 〈ϕ2〉[a,qm]), (〈ϕ〉[qn+1,b], 〈ϕ2〉[qn+1,b]) and A
±
m−1, A

±
m−2, . . ., A

±
n+1, lies

below PnPn+1 and hence also below the parabola y = x2 + 1
8

(
1
q − 1

)2
+ 1+q

2q .

3◦ Finally, suppose that a ∈ I−m ∪ I+m such that (A−m +A+
m)/2 lies on or above the line

PnPn+1. This means that he point (〈ϕ〉[0,a], 〈ϕ2〉[0,a]) lies above PnPn+1 (being the convex

combination of points with this property). In Step 3 we have proved that (〈ϕ〉[0,b], 〈ϕ2〉[0,b])
lies on or below this line. Consequently, by (3.4), the point (〈ϕ〉[a,b], 〈ϕ2〉[a,b]) lies below

PnPn+1 and hence also below the parabola y = x2 + 1
8

(
1
q − 1

)2
+ 1+q

2q . �

We are ready to show the optimality of the constant
√
2 in (1.1). We compute that∫ 1

0

fϕ

= − 1

qN

∫ qN

0

ϕ+

N−1∑
n=0

q−n · q
n − qn+1

2
·
[
n√
2

(
1

q
− 1

)
+

(
− n√

2

(
1

q
− 1

)
+
√
2

)]
=

N√
2

(
1

q
− 1

)
+

N√
2
(1− q),

where in the last line we have exploited (3.1). Therefore, Lemmas 3.1 and 3.2 imply∫ 1

0
fϕ

‖Mf‖L1‖ϕ‖BMO
≥

N√
2

(
1
q − 1

)
+ N√

2
(1− q)(

1 +N
(

1
q − 1

))(
1
8

(
1
q − 1

)2
+ 1+q

2q

)1/2
.

Letting N →∞, we see that the best constant in (1.1) cannot be smaller than

1√
2

(
1
q − 1

)
+ 1√

2
(1− q)(

1
q − 1

)(
1
8

(
1
q − 1

)2
+ 1+q

2q

)1/2
=

q + 1

√
2

(
1
8

(
1
q − 1

)2
+ 1+q

2q

)1/2
.

It remains to note that the latter expression increases from zero to
√
2 if we let q → 1.

This establishes the desired sharpness.
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